数形结合思想数形结合的思想在初中数学教学中的渗透.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合的思想在初中数学教学中的渗透

关键字:数形结合思想发布时间:2010-04-16论文关键词:思维渗透数学思想方法思维能力契合点创新意识

论文摘要:数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能

力,形成良好的数学思维习惯,数形结合的思想贯穿初中数学教学的始终。数形结合思想的主要内容体现在以下几个方面:

(1)建立适当的代数模型(主要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问

题。(3)与函数有关的代数、几何综合性问题。(4)以图象形式呈现信息的应用性问题。采用数形结合思想解决问题的关键是

找准数与形的契合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功

倍的效果。

推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的关注学生的学习方法

和策略。数学家乔治.波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”。随着课程改革的深入,“应试教育”向“素质教育”转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。如基本

知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、

综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教育。

数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好

的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。

“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要的思想方法,它是指把代数的精确刻划

与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

数形结合的思想贯穿初中数学教学的始终。数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型(主

要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问题。(3)与函数有关的代数、几

何综合性问题。(4)以图象形式呈现信息的应用性问题。采用数形结合思想解决问题的关键是找准数与形的契合点。如果能将

数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。

数形结合的思想方法,不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段

的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。

教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对数形结合思想

的的主动应用。

一、渗透数形结合的思想,养成用数形结合分析问题的意识

每个学生在日常生活中都具有一定的图形知识,如绳子和绳子上的结、刻度尺与它上面的刻度,温度计与其上面的温度,我

们每天走过的路线可以看作是一条直线,教室里每个学生的坐位等等,我们利用学生的这一认识基础,把生活中的形与数相结合

迁移到数学中来,在教学中进行数学数形结合思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数与数轴,一对有序实数

与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二元一次方程组的解与一次函数图象之间的关系等,都是渗透数

形结合思想的很好机会。

如:直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个,因为它们的这个共性所以用直线上无数个点

来表示实数,这时就把一条直线规定了原点、正方向和单位长度,把这条直线就叫做数轴。建立了数与直线上的点的结合。即:

数轴上的每个点都表示一个实数,每个实数都能在数轴上找到表示它的点,建立了实数与数轴上的点的一一对应关系,由此让学

生理解了相反数、绝对值的几何意义。建立数轴后及时引导学生利用数轴来进行有理数的比较大小,学生通过观察、分析、归纳

总结得出结论:通常规定右边为正方向时,在数轴上的两个数,右边的总大于左边的,正数大于零,零大于负数。让学生理解数

形结合思想在解决问题中的应用。为下面进一步学习数形结合思想奠定基础。

例:根据所给图形在下列横线上填上合适数字,并说明理由:

-1--,--3---,---6--,----10--,--15----,--21----,---28--,--36---…… --- --在讲解通过形来说明数的找规律问题中应

该从形中找数。如第一个图形有一个小正方形,第二个图形有三个小正方形,第三个图形有六个小正方形,那么第四个图形将有

几个小正方形呢?从前三个中寻找规律,第二个比第一个多两个小正方形,第三个比第二个多三个小正方形,那么第四个就比第

三个多四个小正方形,第四个图形就有十个小正方形,第五个比第四个多五个小正方形,那么第五个就有十五个小正方形,依次

类推,第六个图形就有二十一个小正方形,第七个图形就有二十八个小正方形,第八个图形就有三十六个小正方形。那么上面的

横线上分别填上10、15、21、28、36,第n个图形就应该有1+2+3+4+5+6……+n= 个小正方形。这也体现数形结合的思想。

例2:小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回。父亲看了10分报纸后,用了15分返回家。你能在下面的平面直角坐标系中画出表示父亲和母亲离家的时间和距离之间的关系吗?

结合探索规律和生活中的实际问题,反复渗透,强化数学中的数形结合思想,使学生逐步形成数学学习中的数形结合的意识。并能在应用数形结合思想的时候注意一些基本原则,如是知形确定数还是知数确定形,在探索规律的过程中应该遵循由特殊到一般的思路进行,从而归纳总结出一般性的结论。

二、学习数形结合思想,增强解决问题的灵活性,提高分析问题、解决问题的能力

在教学中渗透数形结合思想时,应让学生了解,所谓数形结合就是找准数与形的契合点,根据对象的属性,将数与形巧妙地结合起来,有效地相互转化,就成为解决问题的关键所在。

数形结合的结合思想主要体现在以下几种:

(1)用方程、不等式或函数解决有关几何量的问题;

(2)用几何图形或函数图象解决有关方程或函数的问题;(3)解决一些与函数有关的代数、几何综合性问题;

(4)以图象形式呈现信息的应用性问题。

例1:一个角的补角是这个角余角的3倍,求这个角的度数。

解:设这个角为X0,则它的余角为(900-x0),它的补角为(1800-x0)根据题意得:

1800-x0=3(900-x0)

解这个方程得:x0=450

所以这个角为450

例2:一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。如果地毯中央长方形图案的面积为18m2,那么花边有多宽?

SHAPE \* MERGEFORMAT

如果设花边的宽为xm,那么地毯中央长方形图案的长_ (8-2x)_________m,宽为___(_5-2x)________m.根据题意,可得方程

______(8-2x)(5-2x)=18_______。

解这个方程得出x的值

这就是用方程的方法来解决有关几何图形的问题

例4:A、B 两地相距150千米,甲、乙两人骑自行车分别从A、B 两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离s(千米)都是骑车时间t(时)的一次函数.

1 时后乙距A地120千米,

2 时后甲距A地 40千米.

问经过多长时间两人相遇 ?

[分析]可以分别作出两人s 与t 之间的关系图象,

找出交点的横坐标就行了。

src="/js/info_end.js">

相关文档
最新文档