纳米材料的性质和用途

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料的性质和用途

机电5班张忍201202070226

摘要:本文介绍了纳米材料的一些常用性质以及在环境污染、医学等领域的应用。并对纳米材料的发

展前景进行了展望,最后根据自己的理解对纳米材料在环境污染上的进一步使用作了预测关键词:纳米材料;性质;用途

一、前言

纳米是一个物理学上的度量单位,1纳米是1米的十亿分之一,相当于万分之一头发丝粗细。当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料即为纳米材料[1]。纳米材料处在原子簇和宏观物体交界的过渡区域,既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,即接近于分子或原子的临界状态。在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料跟普通的金属、陶瓷,和其他固体

材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。由于纳米材料从根本上改变了材料的结构,使得它成为当今新材料研究领域最富有活力、对未来经济和社会发展有着十分重要影响的研究对象[2]。

二、纳米材料的性质

纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料与同组成的微米晶体材料相比,在力、磁、电、热、光等方面有许多奇异的性能[3],因而成为材料科学和凝聚态物理领域中的研究热点。

2.1 力学性质

根据经典的Hall—Petch 关系式,当晶粒减小到纳米级时,材料的强度和硬度随粒径的减小而增大。纳米材料的位错密度很低, 位错滑移和增殖符合Frank-Reed 模型, 其临界位错圈的直径比纳米晶粒粒径还要大, 增殖后位错塞积的平均间距一般比晶粒大, 所以纳迷材料中位错滑移和增殖不会发生。纳米材料的这个特性可以应用到韧性包装上面,以提高在以前韧性包装技术上出现的问题。例如纳米二氧化钛、纳米碳酸钙等纳米材料能使塑料改性。通过对塑料进行填充改性,可以提高塑料的力学性能,还可以开发各种功能塑料,如导电塑料、磁性塑料、抗降解塑料、抗紫外耐老化塑料等。在塑料中均匀分散无机纳米材料所制成的纳米塑料具有优异的物理力学性能、强度高、耐热性好、密度较低,良好的透明度和较高的光泽度。还有使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海等。

2.2 热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值, 这是

由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

2.3 光学性质

由于尺寸效应和表面效应使超微粒对光有极强的吸收能力,比如金属超微粒的反射能力显著下降, 一般低于1%, 因此金属超微粒通常呈黑色, 失去了各种美丽的特征颜色由超微粒构成的纳米固体材料也在较宽的范围内显示出对光的均匀吸收性。另外, 超微粒复合材料具有大的三阶光学非线性和快的响应时间。利用这个特性可以作为高效率的光热、光电等转换材料, 可以高效率地将太阳能转变为热能。此外由于量子尺寸效应, 纳米半导体微粒的吸收光谱一般存在蓝移现象, 其光吸收率很大, 所以可应用于红外线感测器材料。

2.4 磁学性质

随着纳米晶粒尺寸变小, 与体积成正比的磁各项异性也降低, 当体积能与热能相当或更小时, 会呈现出超顺磁性。纳米多层膜系统的巨磁电阻效应高达50%, 可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到 1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系, 所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率, 对可见光的吸收系数比传统粗晶材料低得多, 而且对红外波段的吸收系数至少比传统粗晶材料低 3 个数量级, 磁性比FeBO3 和FeF3 透明体至少高1 个数量级。

2.5 电学性质

由于纳米材料晶界上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导,金属向绝缘体转变,在磁场中材料电阻的减小非常明显。常态下电阻较小的金属到了纳米级电阻会增大,电阻温度系数下降甚至出现负数;原来绝缘体的氧化物到了纳米级,电阻却反而下降,变成了半导体或导电

体。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点, 有可能在不久的将来全面取代目前的常规半导体器件。

三、纳米材料的应用

3.1 纳米材料在环保方面的应用

随着人们环保意识的增强,越来越多的新型材料被用于处理各种污染物。尤其是纳米技术的进步,使得纳米材料在环保领域也有了很广泛的应用。其中应用最多的就是Ti02纳米材料。利用Ti02纳米材料光催化可降解其他的方法难以降解的物质,可用于燃料废水、农药废水、表面活性剂,氯代物、氟里昂等废水的处理,还可用以处理无机废水等。李田[16]将纳米Ti02固定于玻璃纤维网上形成催化膜,用于深度净化饮用水。结果显示,自来水中有机物总量去除率达6O%以上,19种优先污染物中有5种被完全去除,其他有机物的浓度也大多降至检测限以下,同时细菌总数明显减少,使水质达到了直接安全饮用的要求。Skubal 等[18]用精氨酸改性胶体Ti02表面,然后光催化还原Hg,吸附和还原效率均提高到99.9%。用Ti02光催化法从Au(CN)-4中还原Au,同时氧化CN-为NH3和CO2的实验方法,并指出将该法用于电镀工业废水的处理,不仅能还原镀液中的贵金属,而且还能消除镀液中氰化物对环境的污染,是一种有实用价值的处理方法。纳米Ti02表面活性羟基等具有非常高的反应活性,它不但能矿化其表面附着的有机物,而且能与其表面附着的细菌的组成成分(也是有机物)进行剧烈的反应,

相关文档
最新文档