两质量弹簧系统的随机响应

两质量弹簧系统的随机响应
两质量弹簧系统的随机响应

两质量弹簧系统的随机响应

/PREP7 !进入前处理模块

/TITLE, EX 8.4(2) by Zeng P, Lei L P, Fang G

ET,1,COMBIN40 !设定1号单元

H1=1 $H2=1 !设定几何参数

k1=42832 $k2=32416 !设定弹簧参数

m1=0.5 $m2=1.0 !设定质量块参数

R,1,k1,,m1 !设定1号实常数(第1个质量体)

R,2,k2,,m2 !设定2号实常数(第2个质量体)

!MP,EX,1,1 !设定1号材料参数,采用一个很小的弹性模量(该句可不使用)N,1,0,0 $N,2,1,0 $N,3,2,0 !生成3个节点

E,2,1 !由节点2和1生成单元

REAL,2 !指定2号实常数

E,3,2 !由节点3和2生成单元

D,1,UX,0 !对1号节点施加位移约束UX=0

OUTPR,ALL,ALL !设置输出所有求解结果

FINISH !退出前处理模块

/SOLU !进入求解模块

ANTYPE,MODAL !定义模态分析类型

MODOPT,SUBSP,2 !设定子空间算法,提取2阶模态

MXPAND,2,,,YES !定义模态扩展的阶数为2阶,并进行单元应力计算

SOLVE !进行求解

*GET,F1,MODE,1,FREQ !提取第1阶模态的频率值,赋给F1

*GET,F2,MODE,2,FREQ ! 提取第2阶模态的频率值,赋给F2

FINISH !退出

/SOLU !进入求解模块

ANTYPE,SPECTR ! 定义分析类型为谱分析

SPOPT,PSD,2,ON ! 选定前2阶模态的进行PSD响应分析

PSDUNIT,1,ACCG !设定谱分析的类型为加速度谱g2/Hz

D,1,UX,1.0 !在支撑点施加约束

PSDFRQ,1,1,10.0,100.0 ! 设定频率范围为10~100HZ,,前两位数值为数据表的编号PSDV AL,1,.1,.1 ! 设定白噪声PSD值,前一位数为数据表的编号PFACT,1,BASE !计算PSD的参与系数(地基激振)

DMPRAT,0.02 !定义阻尼比为0.02

PSDCOM !设定模态合并方法为默认值

PSDRES,ACEL,REL !设定加速度求解结果的输出

SOLVE $FINISH !进行求解,结束求解模块

/POST1 !进入后处理

LCDEF,6,5,1 ! 从结果文件中调出最后一步结果(第5载荷步的第1子步),生成第6工况

LCFACT,ALL,1/386.4 ! 对所有工况给出乘子,将加速度结果转换为重力加速度的倍数

LCASE,6 !读入工况6

PRNSOL,U,COMP ! 打印节点的求解结果

*GET,P2_UX,NODE,2,U,X !提取节点2的位移UX,赋给P2_UX *GET,P3_UX,NODE,3,U,X !提取节点3的位移UX,赋给P3_UX *STATUS !列显所有参数的内容

FINISH

弹簧质量阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时 目录 目录 (1) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (3) 2.1.1 系统传递函数的计算 (4) 2.2 系统的能控能观性分析 (6) 2.2.1 系统能控性分析 (6) 2.2.2 系统能观性分析 (7) 2.3 系统的稳定性分析 (7) 2.3.1 反馈控制理论中的稳定性分析方法 (7) 2.3.2 利用Matlab分析系统稳定性 (8) 2.3.3 Simulink仿真结果 (9) 2.4 系统的极点配置 (10) 2.4.1 状态反馈法 (10) 2.4.2 输出反馈法 (11) 2.4.2 系统极点配置 (11)

2.5系统的状态观测器 (13) 2.6 利用离散的方法研究系统的特性 (15) 2.6.1 离散化定义和方法 (15) 2.6.2 零阶保持器 (16) 2.6.3 一阶保持器 (17) 2.6.4 双线性变换法 (18) 3.总结 (18) 4.参考文献 (19)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,,,,,。 2.1 系统的建立

弹簧-质量-阻尼模型

弹簧-质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型, 不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

图2.1 弹簧-质量-阻尼系统简图 其中1 m ,2 m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2 m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3 c =3N ?s/cm ,2 c =6N ?s/cm 。 由图 2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1 m 有: (2-1) 对2 m 有: (2-2) 3 建立状态空间表达式 令3 1421122 ,,,x x x x u F u F ====,则原式可化为:

弹簧-质量-阻尼实验指导书

质量-弹簧-阻尼系统实验教学指导书 北京理工大学机械与车辆学院 2016.3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为m 的滑块、一个 刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ??? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应: ()()sin()))] t t x t t d e ζωττζωττ +∞ --=? -= -+-?

2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step 设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。此步是为了使控制器得到一段时间的数据,并不会驱动电机运动。 (4)点击Data菜单,选择Data Acquisition,设置选取Encoder#1 ,然后OK离开;从Utility菜单中选择Zero Position使编码器归零。 (5)从Command菜单中选择Execute,用手将质量块1移动到2.5cm左右的位置(注意不要使质量块碰触移动限位开关),点击Run, 大约1秒后,放开手使其自由震荡,在数据上传后点击OK。 (6)点击Plotting菜单,选择Setup Plot,选取Encoder #1 Position;然后点击Plotting 菜单,选择Plot Data,则将显示质量块1的自由振动响应曲线。 (7)在得到的自由振动响应曲线图上,选择n个连续的振幅明显的振动周期,计算出这段振动的时间t,由n/t即可得到系统的频率,将Hz转化为rad/sec即为系统的振动频率ω。

弹簧质量块模型过程分析

过程分析之弹簧 如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离 A . 1 1k g m B. 22k g m C. 2 1k g m D. 22k g m 如图所示,劲度系数为2k 的轻弹簧B 竖直固定在桌面上.上端连接一个质量为m 的物体,用细绳跨过定滑轮将物体m 与另一根劲度系数为1k 的轻弹簧C 连接。当弹簧C 处在水平位置且没发生形变时.其 右端点位于a 位置。现将弹簧C 的右端点沿水平方向缓慢拉到b 位置时,弹簧B 对物体m 的弹力大小为 mg 3 2 ,则ab 间的距离为________。 如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k1和k2,它们的D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m 静止时,上方的弹簧处于原长;若将物体的质量增加了原来的2倍,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了 ( ) A . B . C . D . 如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少? m 1 m 2 K 2 K 1 图11 m 1 m 2 1 2 k 1 K 2 图10

弹簧质量阻尼系统模型

自动控制原理综合训练项目题目:关于MSD系统控制的设计 目录 1设计任务及要求分析 (2) 初始条件 (2) 要求完成的任务 (2) 任务分析 (3) 2系统分析及传递函数求解 (3) 系统受力分析 (3) 传递函数求解 (8) 系统开环传递函数的求解 (8) 3.用MATLAB对系统作开环频域分析 (9) 开环系统波特图 (9) 开环系统奈奎斯特图及稳定性判断 (10) 4.系统开环频率特性各项指标的计算 (11) 总结 (13) 参考文献 (13)

弹簧-质量-阻尼器系统建模与频率特性 分析 1设计任务及要求分析 初始条件 已知机械系统如图。 1k y p 2k x 图 机械系统图 要求完成的任务 (1) 推导传递函数)(/)(s X s Y ,)(/)(s P s X , (2) 给定m N k m N k m s N b g m /5,/8,/6.0,2.0212==?==,以p 为输入)(t u (3) 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系 统的稳定性。 (4) 求出开环系统的截止频率、相角裕度和幅值裕度。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清

楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出 )(/)(s X s Y ,)(/)(s P s X 两个传递函数。由于本系统是一个单位负反馈系统,故求出的传 递函数即为开环传函。后在MATLAB 中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。 2系统分析及传递函数求解 系统受力分析 单自由度有阻尼振系的力学模型如图2-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=-&&& (2-1) 式中 : x c &-为阻尼力,负号表示阻尼力方向与速度方向相反。 图2-1 将上式写成标准形式,为 0=++kx x c x m &&& (2-2) 令p 2= m k , m c n =2, 则上式可简化为 022=++p x n x &&& (2-3)

弹簧-质量-阻尼实验指导书

质量-弹簧-阻尼系统实验教学指导书 理工大学机械与车辆学院 2016.3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为m 的滑块、一个 刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ??? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应: ()()sin()))] t t x t t d e ζωττζωττ +∞ --=? -= -+-?

2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step 设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。此步是为了使控制器得到一段时间的数据,并不会驱动电机运动。 (4)点击Data菜单,选择Data Acquisition,设置选取Encoder#1 ,然后OK离开;从Utility菜单中选择Zero Position使编码器归零。 (5)从Command菜单中选择Execute,用手将质量块1移动到2.5cm左右的位置(注意不要使质量块碰触移动限位开关),点击Run, 大约1秒后,放开手使其自由震荡,在数据上传后点击OK。 (6)点击Plotting菜单,选择Setup Plot,选取Encoder #1 Position;然后点击Plotting 菜单,选择Plot Data,则将显示质量块1的自由振动响应曲线。 (7)在得到的自由振动响应曲线图上,选择n个连续的振幅明显的振动周期,计算出这段振动的时间t,由n/t即可得到系统的频率,将Hz转化为rad/sec即为系统的振动频率ω。

弹簧质量阻尼系统模型

弹簧质量阻尼系统模型 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

自动控制原理综合训练项目 题目:关于MSD系统控制的设计 目录 弹簧-质量-阻尼器系统建模与频率特性分析

1设计任务及要求分析 初始条件 已知机械系统如图。 1 k y p 2 k 图机械系统图 要求完成的任务 (1)推导传递函数) ( /) (s X s Y,) ( /) (s P s X, (2)给定m N k m N k m s N b g m/ 5 , / 8 , / 6.0 , 2.0 2 1 2 = = ? = =,以p为输入)(t u (3)用Matlab画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系统的稳定性。 (4)求出开环系统的截止频率、相角裕度和幅值裕度。 (5)对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab源 程序或Simulink仿真模型,说明书的格式按照教务处标准书写。

任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出)(/)(s X s Y ,)(/)(s P s X 两个传递函数。由于本系统是一个单位负反馈系统,故求出的传递函数即为开环传函。后在MATLAB 中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。 2系统分析及传递函数求解 系统受力分析 单自由度有阻尼振系的力学模型如图2-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=- (2-1) 式中 : x c -为阻尼力,负号表示阻尼力方向与速度方向相反。 图2-1 将上式写成标准形式,为 0=++kx x c x m (2-2) 令p 2= m k , m c n =2, 则上式可简化为 022=++p x n x (2-3) 这就是有阻尼自由振动微分方程。它的解可取st e x =,其中

二阶弹簧—阻尼系统,PID控制器设计,参数整定

*** 二阶弹簧—阻尼系统的PID控制器设计及参数整定

一、PID 控制的应用研究现状综述 PID 控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自20 世纪30 年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。它的结构简单,参数易于调整, 在长期应用中已积累了丰富的经验。特别是在工业过程控制中, 由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。在应用计算机实现控制的系统中,PID 很容易通过编制计算机语言实现。由于软件系统的灵活性,PID 算法可以得到修正和完善,从而使数字PID 具有很大的灵活性和适用性。 二、研究原理 比例控制器的传递函数为:G (s) K P P G (s) K PI P 1 1 T s I 积分控制器的传递函数为: 1 1 G (s) K T s PID P D T s I 微分控制器的传递函数为: 三、设计题目 设计控制器并给出每种控制器控制的仿真结果(被控对象为二阶环节,传递函数G S ,参数为M=1 kg, b=2 N.s/m, k=25 N/m, F(S)=1 );系统示意图如图 1 所示。

图1 弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:M x bx kx F G( s) X F ( ( s) s) Ms 1 1 2 bs k s2 s 2 25 四、设计要求 通过使用MATLAB 对二阶弹簧——阻尼系统的控制器(分别使用P、PI、PID 控制器)设计及其参数整定,定量 分析比例系数、积分时间与微分时间对系统性能的影响。同 时、掌握MATLAB 语言的基本知识进行控制系统仿真和辅 助设计,学会运用SIMULINK 对系统进行仿真,掌握PID 控制器参数的设计。 (1)控制器为P 控制器时,改变比例带或比例系数大小,分析对系统性能的影响并绘制响应曲线。 (2)控制器为PI 控制器时,改变积分时间常数大小, 分析对系统性能的影响并绘制相应曲线。(当kp=50 时,改变积分时间常数)

弹簧质量系统瞬态响应分析

弹簧质量系统瞬态响应分析 一、弹簧系统研究的背景、研究的目的和意义及国内外研究趋势分析 1.1 弹簧质量系统提出的背景、研究的目的和意义 弹簧作为储能元件,在减振器机械缓冲器等方面得到越来越广泛的应用。而由螺旋弹簧与质量块组成的螺旋弹簧系统可以说几乎在任何机电仪器和设备中都有它的存在。作为一常用零部件,其各项性能指标,尤其是其强度指标,直接或间接地影响整机的性能和工作质量。因此对螺旋弹簧质量系统的机械性解响应及其强度分析受到了国内外专家,学者和工程技术人员的普遍重视。载荷下弹簧质量系统的瞬态响应,这个问题具有广泛的意义和实际应用价值。 1.2 弹簧质量系统在国内外同一研究领域的现状与趋势分析 关于载荷作用下弹簧质量系统的工作和文献很多,大多数问题都是围绕着,螺旋弹簧质量系统在承受静载荷或低频周期性载荷的情况下进行分析的。其结论主要适用于对螺旋弹簧质量系统的静强度分析和固定载荷下的可靠性。实验结果和经验表明,造成弹簧失效的一个主要原因是:当它承受突加载荷时,产生的冲激响应。在冲激载荷下,弹簧失效数目很多,往往经静强度分析或固定载荷分析的结论是可靠的,而实际情况是不可靠的。所以激载荷下的可靠性设计就不得不被提出来了。但这方面文献非常少,实验数据也不多。 就弹簧质量系统在57火炮输弹系统的应用而言,螺旋弹簧失效主要是冲激失效,对这个问题的研究,美国、俄罗斯的水平较高,它们的主要工作是从提高材料性能上大量的实验进行的。其寿命指标可达

2000次,我国的现有水平较差,平均寿命在500一1000次之间,所以,对输弹系统进行寿命估计,找出问题,具有很大的应用价值和经济价值。 二、一维单自由度弹簧质量系统固有频率理论推导 2.1无阻尼弹簧质量系统的自由振动 如图1 所示,就是本文要讨论的单自由度无阻尼系统。 该系统有质量为m 的重物(惯性元件)和刚度为k的弹簧(弹性元件)组成。假设不考虑重物的尺寸效应,可以用一个简单质点来表示这一类重物。为了描述图示系统位置,采用如图 1 所示的单轴坐标系。坐标原点选取在质点静平衡位置,用x 表示质点在任意时刻处于坐标系中的坐标,以向下的方向为正。在此系统运动过程中,x 是时间t 的函数,可以称为质点的位移函数。由于只需要一个空间坐标x,就可以完全确定图中质点任意时刻的位置,因此可以认为该系统就是单自由度系统。不考虑阻尼的情形下,系统将在初始条件激励下,围绕静平衡点做无阻尼自由振动。 2.2 振动方程的建立方法 2.2.1 用牛顿第二定律法建立微分方程 牛顿第二定律又称运动定律,即物体动量的改变与施加的力量成正比。对于图示系统,定义质点的静平衡位置为坐标原点,则质点与

关于弹簧质量系统的讨论

不计m 的重力,旋转载荷为()022sin θω+=t r m F ,方便起见,可令初相位为零,得到:t r m F ωsin 22=,取静平衡位置为位移零点,建立关于M 的运动方程: t F t r m kx x c x M ωωsin sin 022==++ 解得:()()()() 1212 2 2 1sin exp 21sin φωζζωωωζωωφω+--+???? ??+??????????? ? ??--= t t X t k F t x n n n 所以: ()() () ()() 1 22 212 2 2 201sin exp 121sin φωζζωωζωωζωωφωω+----???? ??+??????????? ? ??---=t t X t k F t x n n n n 可以看出,加速度中包含两种频率成分:激励的频率和系统的固有频率(实际上 是由冲击载荷得到的频率,在无阻尼的时候等于固有频率,在有阻尼的时候略小于固有频率) 当时间稍长,自由振动即可认为大幅衰减,可以不考虑,只剩下激励频率。 不论哪种变换,对于激励频率ω所对应的幅值,都应该有: 2 2 2 2 021???? ??+??????????? ? ??-∝n n k F X ωωζωωω 有损伤时,即认为是n ω发生变化,由泰勒展开取一阶近似可得: n n n k F X ωωωζωωω?'????? ??? ? ? ? ???? ??+??????????? ? ??-∝?2 2 2 2 021 k B (x ) k V m m

即: 设固有频率为20Hz ,即Hz 20=n f ,12667.1252≈==n n f πω 对于单自由度的弹簧质量系统,不妨令1kg =m ,可以得到: N/m 158762 ==n m k ω 设阻尼比0.1=ζ,则2522==n c m c ω,2.25==c c c ζ,注意,阻尼不发生变化是指c 不发生变化,而不是阻尼比不发生变化 下面讨论能使固有频率降低的两种情况:降低刚度或者增加质量 (1) 降低刚度 保持质量和阻尼比不变,刚度减少5%,即N/m 1508295.0==k k d 此时,8.122== m k d dk ω (2) 增加质量 保持刚度和阻尼比不变,质量增加5%,即kg 05.1=d m 此时,123== d dm m k ω 对于加速度频响: 2222 01? ?? ? ?+???? ?? -=k c k m k F X ωωω 画出频响函数:

弹簧_质量_阻尼系统的建模及控制系统设计说明书

word文档整理分享 分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时间:2014.11.27

目录 目录 (2) 1 研究背景及意义 (4) 2 弹簧-质量-阻尼模型 (4) 2.1 系统的建立 (5) 2.1.1 系统传递函数的计算 (7) 2.2 系统的能控能观性分析 (9) 2.2.1 系统能控性分析 (10) 2.2.2 系统能观性分析 (11) 2.3 系统的稳定性分析 (12) 2.3.1 反馈控制理论中的稳定性分析方法 (12) 2.3.2 利用Matlab分析系统稳定性 (13) 2.3.3 Simulink仿真结果 (15) 2.4 系统的极点配置 (18) 2.4.1 状态反馈法 (18) 2.4.2 输出反馈法 (19) 2.4.2 系统极点配置 (20) 2.5系统的状态观测器 (22) 2.6 利用离散的方法研究系统的特性 (24) 2.6.1 离散化定义和方法 (24)

2.6.2 零阶保持器 (26) 2.6.3 一阶保持器 (29) 2.6.4 双线性变换法 (31) 3.总结 (33) 4.参考文献 (33)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

弹簧质量对振动系统的影响 修改(1)汇总

玉林师范学院本科生毕业论文 弹簧质量对振动系统的影响The Influence of Spring Quality on Vibration System 院系物理科学与工程技术学院 专业物理学 学生班级2009级2班 姓名戴石贵 学号200905401240 指导教师单位物理科学与工程技术学院 指导教师姓名关小蓉 指导教师职称副教授

弹簧质量对振动系统的影响 物理学2009级2班戴石贵 指导教师关小蓉 摘要 弹簧振子是物理学中的一个典型模型,弹簧振子是指忽略质量的轻弹簧系一物体所组成的系统。在实验中得到的弹簧振子的振动频率和理论结果存在着较大的差异,其中有很多原因,但主要是由于弹簧的质量对振动有一定的影响。人们在讨论弹簧振 m、弹性系数子的振动情况时,往往忽略弹簧本身的质量,实际弹簧振子由质量为 为k的弹簧和连接于弹簧一端质量为m的振动物体组成,为解决实际弹簧振子弹簧质量对振动系统的影响问题,采用研究系统的能量方法,建立了有弹簧质量时系统的动能和势能公式,从不同角度定量的分析了弹簧质量对振动系统的周期之间的影响,该研究对实际振动系统的振动问题具有一定的参考价值和指导意义。 由于弹簧本身有质量,这种弹簧振子不是理想的振子,它的振动周期与弹簧的质量有着密切的联系,当我们把这种影响仅归于质量因素时,振子的周期可以写成与弹簧有效质量有关的表达式,实际上处理这类问题的方法有很多种,像四阶龙格——库塔法、瑞利法、传递矩阵法、求解波动方程法、试探法求解微分方程、机械能守恒近似法、迭代法等等,本文主要运用机械能守恒定律和迭代法分别近似求解实际弹簧振子的周期,并对结果做出详细的讨论。 关键词:弹簧振子,弹簧质量,周期,动能,势能

弹簧-高质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型 ,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提 。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2.1 弹簧-质量-阻尼系统简图 其中1m ,2m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3c =3N ?s/cm ,2c =6N ?s/cm 。 由图2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1m 有: (2-1) 对2m 有:

质量-弹簧系统的谐响应分析

实验六质量-弹簧系统的谐响应分析 (感受共振) 一、实验目的 1、学会分析实际工程问题的方法 2、掌握谐响应分析分析方法 3、学会对问题的抽象处理 二、实验器材 能够安装ANSYS软件,CPU2.0GHz以上,内存1G以上,硬盘5G空间的计算机 三、实验说明 (一)谐响应分析 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功克服共振、疲劳及其他受迫振动引起的有害结果。 谐响应分析的目的是计算出结构在几种频率下的响应,并得到一些响应值(通常是位移)对频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。 (二)实验问题的描述 确定如图4所示的系统中的质量块m1上施加简谐力(F1)时两个质量块(m1和m2)的振幅响应和相位角响应。 该问题的材料属性如下:m1=m2==0.5 lb-sec2/in; k1=k2=kc=200lb/in。 载荷大小如下:F1=200 lb。

弹簧的长度是任意的,只是用来定义弹簧的方向,两个质量块的自由度都是沿着弹簧方向。如图6-1. 图6-1 四、实验内容和步骤 (一)前处理 1.定义工作名:Utility Menu > File > Change Title,在弹出Change Title的对 话框,输入Harmonic Response of the Structure,然后单击OK按钮。 2.定义单元类型:Main Menu > Preprocessor > Element Type>Add/Edit/Delete, 弹出“Element Types”对话框,单击Add按钮,弹出“Library of Element Types ”对话框,在左边的滚动条中选择Structural及其下的 Combination, 在右边的滚动条中选择 Spring-damper14 ,单击Apply按钮。如图6-2所示

两质量弹簧系统的强迫振动

两质量弹簧系统的强迫振动 /PREP7 !进入前处理模块 /TITLE, EX 8.2(1) by Zeng P, Lei L P, Fang G ET,1,COMBIN14,,,2 !设定1号单元为弹簧阻尼单元,自由度为UX,UY ET,2,MASS21,,,4 ! 设定2号单元为质量块单元,自由度为UX,UY m1=0.5 $m2=0.5 !设置质量块的参数 k1=200 $k2=200 $k3=200 !设置弹簧参数 Force=200 !设置载荷的幅值 R,1,k1 $R,2,k2 $R,3,k3 !设定实常数为弹簧常数 R,11,m1 $R,12,m2 !设定实常数为质量 N,1,0,0 $N,4,1,0 $FILL !生成1号节点及4号节点,然后填充生成之间的节点 c*** 以下三行,分别生成3个弹簧单元 TYPE,1 $REAL,1 $E,1,2 TYPE,1 $REAL,2 $E,2,3 TYPE,1 $REAL,3 $E,3,4 c*** 以下分别生成2个质量块单元 TYPE,2 $REAL,11 $E,2 TYPE,2 $REAL,12 $E,3 FINISH !结束前处理模块 /SOLU !进入求解模块 ANTYPE,HARMIC !设置简谐响应分析方式 HROPT,FULL !设置完全简谐响应算法 HROUT,OFF !设置输出结果为幅值和相位角方式 OUTPR,BASIC,1 !设置基本的输出方式 HARFRQ,0,7.5 !设置频率范围为0到7.5Hz NSUBST,30 !设置频率间隔的子步数 KBC,1 !设置阶梯式加载方式 D,1,UY,,,4 !对1号节点至4号节点施加位移约束UY=0 D,1,UX,,,4,3 !对1号节点和4号节点施加位移约束UX=0 F,2,FX, Force !在2号节点处施加载荷FX=200 SOLVE $FINISH !进行求解,结束求解模块 /POST26 !进入时间历程后处理模块 NSOL,2,2,U,X,P2_UX !将2号节点的位移UX设置为2号变量,标识为P2_UX NSOL,3,3,U,X,P3_UX !将3号节点的位移UX设置为3号变量,标识为P3_UX /GRID,1 !设置图形的网格线 /AXLAB,Y,DISP !设定Y轴的标识为DISP PLV AR,2,3 !图形显示2号及3号变量的曲线 *GET,X1_R,V ARI,2,RTIME,1.5 !获取2号变量对应与频率1.5的响应幅值(实部),赋给X1_R *GET,X1_I,V ARI,2,ITIME,1.5 !获取2号变量对应与频率1.5的响应幅值(虚

弹簧质量阻尼系统的建模与控制系统设计

弹簧质量阻尼系统的建模与控制系统设计 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号: 提交时 目录 目录 (2) 1 研究背景及意义 (3) 2 弹簧-质量-阻尼模型 (3) 2.1 系统的建立 (4) 2.1.1 系统传递函数的计算 (5) 2.2 系统的能控能观性分析 (7) 2.2.1 系统能控性分析 (8) 2.2.2 系统能观性分析 (9) 2.3 系统的稳定性分析 (10) 2.3.1 反馈控制理论中的稳定性分析方法 (10) 2.3.2 利用Matlab分析系统稳定性 (10) 2.3.3 Simulink仿真结果 (12) 2.4 系统的极点配置 (15) 2.4.1 状态反馈法 (15) 2.4.2 输出反馈法 (16)

2.4.2 系统极点配置 (16) 2.5系统的状态观测器 (18) 2.6 利用离散的方法研究系统的特性 (20) 2.6.1 离散化定义和方法 (20) 2.6.2 零阶保持器 (22) 2.6.3 一阶保持器 (24) 2.6.4 双线性变换法 (26) 3.总结 (28) 4.参考文献 (28)

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示, 图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即 ,表示小车的位移,是系统的输出,即,

弹簧质量阻尼系统的建模与控制系统设计样本

任课教师签字华北电力大学研究生结课作业 学年学期:第—年第—学期 课程名称:线性系统理论 学生姓名: 号:

提交时间:.11.27 目录 目录 (2) 1研究背景及意义 (4) 2弹簧-质量-阻尼模型 (4) 2.1系统的建立 (5) 2.1.1系统传递函数的计算 (7) 2.2系统的能控能观性分析 (9) 2.2.1系统能控性分析 (10) 2.2.2系统能观性分析 (11) 2.3系统的稳定性分析 (12) 2.3.1反馈控制理论中的稳定性分析方法错误!未定义书签。 2.3.2利用Matlab分析系统稳定性 (14) 2.3.3 Simulink 仿真结果 (16) 2.4系统的极点配置 (19) 2.4.1状态反馈法 (19) 242输出反馈法 (21) 242系统极点配置 (21)

2.5系统的状态观测器 (23) 2.6利用离散的方法研究系统的特性 (26) 2.6.1离散化定义和方法 (26) 2.6.2零阶保持器 (29) 2.6.3 —阶保持器 (31) 2.6.4双线性变换法 (34) 3.总结 (36) 4?参考文献 (37)

弹簧?质量?阻尼系统的建模与控制系统设计 1硏究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会■对接时缓冲系统的稳定与否直接影响着父会对接的成功。因此, 对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表示式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都能够用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。因此,建立数学模型是研究系统、预测其动态响应的前提。—般情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图 2.1所示,

两质量弹簧系统的随机响应

两质量弹簧系统的随机响应 /PREP7 !进入前处理模块 /TITLE, EX 8.4(2) by Zeng P, Lei L P, Fang G ET,1,COMBIN40 !设定1号单元 H1=1 $H2=1 !设定几何参数 k1=42832 $k2=32416 !设定弹簧参数 m1=0.5 $m2=1.0 !设定质量块参数 R,1,k1,,m1 !设定1号实常数(第1个质量体) R,2,k2,,m2 !设定2号实常数(第2个质量体) !MP,EX,1,1 !设定1号材料参数,采用一个很小的弹性模量(该句可不使用)N,1,0,0 $N,2,1,0 $N,3,2,0 !生成3个节点 E,2,1 !由节点2和1生成单元 REAL,2 !指定2号实常数 E,3,2 !由节点3和2生成单元 D,1,UX,0 !对1号节点施加位移约束UX=0 OUTPR,ALL,ALL !设置输出所有求解结果 FINISH !退出前处理模块 /SOLU !进入求解模块 ANTYPE,MODAL !定义模态分析类型 MODOPT,SUBSP,2 !设定子空间算法,提取2阶模态 MXPAND,2,,,YES !定义模态扩展的阶数为2阶,并进行单元应力计算 SOLVE !进行求解 *GET,F1,MODE,1,FREQ !提取第1阶模态的频率值,赋给F1 *GET,F2,MODE,2,FREQ ! 提取第2阶模态的频率值,赋给F2 FINISH !退出 /SOLU !进入求解模块 ANTYPE,SPECTR ! 定义分析类型为谱分析 SPOPT,PSD,2,ON ! 选定前2阶模态的进行PSD响应分析 PSDUNIT,1,ACCG !设定谱分析的类型为加速度谱g2/Hz D,1,UX,1.0 !在支撑点施加约束 PSDFRQ,1,1,10.0,100.0 ! 设定频率范围为10~100HZ,,前两位数值为数据表的编号PSDV AL,1,.1,.1 ! 设定白噪声PSD值,前一位数为数据表的编号PFACT,1,BASE !计算PSD的参与系数(地基激振) DMPRAT,0.02 !定义阻尼比为0.02 PSDCOM !设定模态合并方法为默认值 PSDRES,ACEL,REL !设定加速度求解结果的输出 SOLVE $FINISH !进行求解,结束求解模块 /POST1 !进入后处理 LCDEF,6,5,1 ! 从结果文件中调出最后一步结果(第5载荷步的第1子步),生成第6工况 LCFACT,ALL,1/386.4 ! 对所有工况给出乘子,将加速度结果转换为重力加速度的倍数 LCASE,6 !读入工况6

相关文档
最新文档