分析化学--第9章 气相色谱分析法

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

分析化学第14章练习题

复习提纲:第十四章气相色谱法 色谱法的基本原理 1.色谱法的起源(了解)、基本原理(掌握)、仪器基本框图(掌握)、分类、特点及应用(了解) 2.色谱流出曲线及相关术语:基线:可用于判断仪器稳定性及计算检出限(掌握)峰面积(峰高):定量基础(掌握) 保留值:定性基础(掌握);死时间、保留时间、调整保留时间;死体积、保留体积、调整保留体积;相对保留值(选择性因子)等(掌握) 峰宽的各种表示及换算(掌握) 3.色谱基本原理: 热力学(掌握):分配系数K ,仅与两相和温度有关,温度增加K 减小 分配比k,k 除与两相和温度有关外(温度增加k 减小)还与相比有关(相比的概念)k=t r /t0;k=K/ ;=K2/K 1=k2/k1 分离对热力学的基本要求:两组份的>1 或K 、k 不相等;越大或K 、k 相差越大越容易实现分离 动力学:塔板理论:理论(或有效)塔板数(柱效)及理论(有效板高)的计算公式及有关说明(掌握);塔板理论的贡献及不足(了解) 速率理论:H=A+B/u+Cu 中H、A、B、C、u的含义(掌握);减小A 、B、C的手段(掌握);u 对H 的影响及最佳流速和最低板高的计算公式(掌握);填充物粒径对板高的影响(掌握) 4.分离度分离度的计算公式;R=1.5 时,完全分离;R=1 时基本分离(掌握) 5.基本色谱分离方程两种表达形式要熟练掌握;改善分离度的手段:增加柱效n(适当增加柱长的前提下减小板高)、增加选择性因子(GC:改变固定相和柱温)和控制适当的容量因子k (GC:改变温度及固定相用量)(掌握) 分离度与柱效、柱长、分析时间(即保留时间)之间的关系(掌握);柱温对分离度的影响(了解);相关例题(熟练掌握) 6. 定性分析常规检测器用保留时间(相对保留值也可以)定性,但该法存在的不足要知道,双柱或多柱可提高保留时间定性的可靠性;质谱或红外等检测器有很强的定性能力(了解) 7. 定量分析 相对校正因子和绝对校正因子的概念(掌握);归一化法各组分含量的计算公式(掌握);内标法定 量的计算公式(掌握相关作业)归一化法和内标法不受进样量和仪器条件变化的影响,外标法受进样量和仪器条件变化的影响较大 (了解) 气相色谱法 1.气相色谱法流程和适用对象;气固和气液色谱的适用对象(掌握) 2.气相色谱法的仪器: 气路系统:通常采用N2、H2、Ar、He 等惰性气体做载气(高压钢瓶提供),载气纯度、流速的大小及稳定性对色谱柱柱效、仪器灵敏度及整机稳定影响很大,因此载气纯度要高、流速要适当而且稳定。

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

2、分析化学气相色谱分析法、液相和离子色谱

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
高效液相色谱法
第一节 概述
高效液相色谱法:以气相色谱为基础,在经典液相 色谱实验和技术基础上建立的一种液相色谱法 一、HPLC与经典LC区别 二、HPLC与GC差别 三、高效液相色谱仪流程图 四、特点

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
一、HPLC与经典LC区别
主要区别:固定相差别,输液设备和检测手段 1.经典LC:仅做为一种分离手段 柱内径1~3cm,固定相粒径>100μm 且不均匀 常压输送流动相 柱效低(H↑,n↓) 分析周期长 无法在线检测 2.HPLC:分离和分析 柱内径2~6mm,固定相粒径<10μm(球形,匀浆装柱) 高压输送流动相 柱效高(H↓,n↑) 分析时间大大缩短 可以在线检测

School of Chemical Engineering, HFUT
合肥工业大学 化工学院
二、HPLC与GC差别 相同:兼具分离和分析功能,均可以在线检测 主要差别:分析对象的差别和流动相的差别 1.分析对象 GC:能气化、热稳定性好、且沸点较低的样品, 高沸点、挥发性差、热稳定性差、离子型及 高聚物的样品不可检测 占有机物的20% HPLC:溶解后能制成溶液的样品, 不受样品挥发性和热稳定性的限制 分子量大、难气化、热稳定性差及高分子 和离子型样品均可检测 用途广泛,占有机物的80%

白酒气相色谱分析方法

白酒气相色谱分析方法 白酒香味成份复杂,除乙醇和水外,还有大量芳香组分存在。构成白酒质量风格的是酒内所含的香味成分的种类以及其量比关系。应用气相色谱法能快速而准确地测出白酒中的醇类、酯类、有机酸类、碳基化合物、酚类化合物以及高沸点化合物等成分的含量。 一、填充柱DNP柱测定白酒中醇、酯等组分(一般酒厂需要,白酒) (一)DNP柱直接进样法测定白酒中主要醇、酯成份 白酒中醇和酯是主要香味成份。吸取原样品进行色谱分析,其优点是:操作简便,测定结果准确性高、快速;缺点是:极其微量的组分不易检出。 1样品的配制 ●2%内标的配制: 吸取2mL的内标--乙酸正丁酯于1OOmL的容量瓶中,(因内标物易挥发,可在瓶内先放少量酒精),用55%-60%的乙醇定容。 ●1-2%标样的配制: 分别吸取乙醛、甲醇、正丙醇、仲丁醇、乙缩醛、正丁醇、异戊醇、(正己醇)、(糠醛)各lmL,乙酸乙酯、丁酸乙酯、戊酸乙酯、乳酸乙酯、己酸乙酯、乙

酸异戊酯)各2mL一起加入1OOmL容量瓶中,用55%-60%(V/V)的乙醇定容,混匀后组成标样。(在容量瓶中先加少许乙醇,以防挥发) ●混标的配制: 分别用移液管吸取标样lOmL和内标5mL,用55%-60%(V/V)的乙醇定容到1OOmL,混匀后(可分装)待用。 混标中各组分i及内标含量计算公式: mi=ci×Vi×di×lO00 ms=cs×Vs×ds×lO00 式中:mi/ms—混标中各组分i/内标的含量(mg/l0OmL); ci/cs—混标中各组分i/内标的浓度(V/V) Vi/Vs—混标中各组分i/内标的体积(mL) ; di/ds—混标中各组分i/内标的密度(g/mL) ; 1000—算成以mg为单位的系数。 例:计算混标中正丁醇的含量 m正丁醇=1%×lOml×0.809g/ml×lO00=80.9mg/100ml混标样

气体色谱分析方法总结

永久性气体色谱分析 .方法原理 以或分子筛为固定相,用气固色谱法分析混合气中地氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分地含量. .仪器和试剂①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 或分子筛(目);使用前预先在高温炉内,于℃活化后备 用.纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中.氢气装在高压钢瓶内. .色谱分析条件 固定相:或分子筛(目);不锈钢填充柱管φ×;柱温:室温. 载气:氢气,流量个人收集整理勿做商业用途 检测器:热导池检测器,桥流;衰减,检测室温度:室温. 气化室:室温,进样量用六通阀进样,定量管. .定性分析个人收集整理勿做商业用途 记录各组分从色谱柱流出地保留时间,用纯物质进行对照. .定量分析 由谱图中测得各个组分地峰高和半峰宽计算各组分地峰面积.已知氧、氮、甲烷、一氧化碳地相对摩尔校正因子分别为、、、.再用峰面积归一法就可计算出各个组分地体积百分数().个人收集整理勿做商业用途 白酒中主要成分地色谱分析 .方法原理 白酒地主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测. 个人收集整理勿做商业用途为分离白酒中地主要成分可使用填充柱或毛细管柱,常用地填充柱固定相为;邻苯二甲酸二壬酯吐温硅烷化白色载体(目);聚乙二醇有机载体(目);吐温司班红色载体(目)等.也可使用以聚乙二醇或交联制备地石英弹性毛细管柱. .仪器和试剂个人收集整理勿做商业用途 ①仪器带有分流进样器和氢火焰离子化检测器地气相色谱仪、皂膜流量计、微处理机. ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应地醛、醇、酯地色谱纯标样. .色谱分析条件个人收集整理勿做商业用途 色谱柱:冠醚交联石英弹性毛细管柱φ×,固定液液膜厚度.程序升温:℃()以℃升温至℃(). 载气:氮气,流量.燃气:氢气,流量.助燃气:压缩空气,流量. 个人收集整理勿做商业用途 检测器:氢火焰离子化检测器,高阻 Ω,衰减,检测室温度℃. 气化室:℃,分流进样分流比:,进样量. .定性分析个人收集整理勿做商业用途 记录各组分地保留时间和保留温度,用标准样品对照. .定量分析 以乙酸正丁酯作内标,用内标法定量. 有机溶剂中微量水地分析 .方法原理 以为固定相,利用高分子多孔小球地弱极性、强憎水性,可分析有机溶剂甲醇中地微量水含量.用纯水对照定性,用外标法测水地含量. .仪器和试剂①仪器气相色谱仪,热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 氢气,苯水饱和溶液;(目). .色谱分析条件 色谱柱:(目);不锈钢填充柱管φ×;柱温:℃. 载气:氢气,流量. 个人收集整理勿做商业用途

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

分析化学

单选题(共6题,每题10分) 1.以高压液体为流动相的色谱法被称为() 2A.液相色谱 B.高速色谱 C.高压色谱 D.高效液相色谱 E.高分辨色谱 参考答案:D 2 .高效液相色谱法英文缩写为() A.HPLC B.TLC C.HTLC D.HSLC E.HRLC 参考答案:A 3 .正相液-液色谱法,流动相极性()固定相极性,()的组分先流出色谱柱。 A.大于;小极性 B.大于;大极性 C.小于;大极性 D.小于;小极性 E.小于;不肯定 参考答案:D

4 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B 答案解析:?暂无 5 .高效液相色谱法结构流程图为() A.载气源→色谱柱→进样系统→检测器→记录仪 B.载气源→进样系统→色谱柱→检测器→记录仪 C.储液瓶→高压泵→色谱柱→检测器→记录仪 D.储液瓶→色谱柱→高压泵→检测器→记录仪 E.进样系统→储液瓶→色谱柱→检测器→记录仪参考答案:C 6 .以化学键合相作为固定相的色谱法叫做 ( ) A.固相色谱法 B.键合相色谱法 C.正相键合相 D.化学色谱法 E.反相色谱法 参考答案:B

单选题(共18题,每题4分) 1 .常用于定性定量分析紫外光谱区的波长范围是()。 A.200-400 nm B.400-800 nm C.100-200 nm D.100-800 nm E.200-800 nm 参考答案:A 2 .物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态所发射出的光称为() A.红外光 B.紫外光 C.光致发光 D.荧光 E.磷光 参考答案:D 3 .荧光分析法是根据物质的荧光谱线位置及其强度进行物质()的方法。 A.结构式测定 B.化学性质测定 C.物理性质测定 D.元素测定

气相色谱法在分析中的应用(精)

-科苑论谈 气相色谱法在分析中的应用 王颖石 (黑化集团有限公司,黑龙江齐齐哈尔161041) 摘要:简述气相色谱法近年来的发展及在分析中所起到的重要作用,详细阐述气相色谱法的工作原理、方法特点、操作流程及气相色谱曲线的特点。 关键词:气相色谱;色谱柱;色谱峰;载气 前言:气相色谱法是近五十年来迅速发展起来的一种新型分离,分析技术,在石油炼制、基本有机原料、高分子、医药、原子能、冶金工业中得到了广泛的应用。对保证工业生产的正常进行和提高产品质量起到了重要的作用。在许多生产部门,气相色谱分析法逐步代替了化学分析法。当前随着我国石油化学工业的迅速发展,气相色谱法在石油、化工生产中已成为中间控制分析中的一种不可缺少的分析方法了。 近年来电子计算机和专用的微型电子计算机已和气相色谱仪联用,可自动对分析结果进行数据处理,对于提高分析速度、改善分析结果的准确性及实现生产过程高自动化起到了重要的作用。现就气相色谱法的原理、特点及流程作以详细阐述。 1气相色谱法工作原理

气相色谱的工作原理是利用试样中各组份在色谱柱中的气相和固定液相间的分配系数不同,当汽化后的试样被载体带入色谱中运行时,组份就在其中的两相间进行反复多次的分配(吸附-脱附或溶解-放出),由于固定相对各组份的吸附或溶解能力不同,(即保留作用不同),各组份在色谱柱中的运行速度也就不同,经过一定柱长后,便彼此分离,按顺序离开色谱柱,进入检测器,产生的离子流经讯号放大后,在记录仪上就描绘各组份的曲线图,称为色谱峰。根据色谱峰的峰高或峰面积就可定量测定出样品中各级份的含量。 2气相色谱法的主要特点 气相色谱法在应用中的主要特点是选择性高、分离效率高、灵敏度高、分析速度快。 2.1选择性高 选择性高是指气相色谱法对性质极为接近的物质,具有很强的分离能力。如在石油化工生产中比较难解决的碳四烯烃异构体的分离;原子能工业中氢的三种同位素:氢、氘、氚的分离;医药和生物化学中结构复杂的旋光异构体的分离。现都可采用气相色谱法来解决。 2.2分离效率高 分离效率高是指气相色谱法能分离分配系数很接近的组份一根1~2m的色谱柱,柱效率可达几千块理论塔板数,因而对组成复杂的或难以分离的物质,经过色谱柱进行反复多次的分配平衡(或吸附平衡),最终均可达到分离的目的。 2.3灵敏度高

气相色谱分析方法的建立

气相色谱分析方法的建立

内标法与外标法 一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样

第2章气相色谱分析复习过程

第2章气相色谱法 一、判断题 1.色谱法与其他分析方法之间最大的不同是色谱法的灵敏度高。(×)2.在气相色谱中试样中各组分能够被相互分离的基础是各组分具有不同的热导系数。(×) 3.组分的分配系数越大,表示其保留时间越长。(√) 4.色谱法特别适合混合物的分析。(√) 5.热导检测器属于质量型检测器,检测灵敏度与载气的相对分子量成正比。(×)6.塔板理论给出了影响柱效的因素及提高柱效的途径。(×)7.在载气流速比较高(低)时,分子扩散成为影响柱效的主要因素。(×) 8.分离温度提高,保留时间缩短,峰面积不变。(√) 9.某试样的色谱图上出现三个色谱峰,该试样中最多有三个组分。(×)10.分析混合烷烃试样时,可选择极性固定相,按沸点大小顺序出峰。(×) 二、选择题 1、在气相色谱分析中, 色谱流出曲线的宽度与色谱过程的哪些因素无关? ( A ) A、热力学因素 B、色谱柱长度 C、动力学因素 D、热力学和动力学因素 2、在一定的柱温下, 下列哪个参数的变化不会使比保留体积(Vg)发生改变?( A ) A、改变检测器性质 B、改变固定液种类 C、改变固定液用量 D、增加载气流速 3、使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好?( B ) A、H2 B、He C、Ar D、N2 4、在气相色谱法中,实验室之间能通用的定性参数是( C ) A、保留时间 B、调整保留时间 C、相对保留值 D、调整保留体积 5、在气液色谱中,色谱柱使用的上限温度取决于( D ) A、试样中沸点最低组分的沸点 B、试样中各组分沸点的平均值 C、固定液的沸点 D、固定液的最高使用温度 6、为了检查气相色谱仪的整个流路是否漏气,比较简单而快速的方法是打开载气后( C ) A、用皂液涂在管路接头处,观察是否有肥皂泡出现; B、用手指头堵死气路的出口,观察转子流量计的浮子是否较快下降到其底部; C、打开记录仪,观察基线是否发生漂移或不稳定;

气相色谱法(附答案)

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离 3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性 4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检

测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体 16.所谓气相色谱固定液热稳定性好,主要是指固定液在高温下不发生__、__和分解。答案:聚合交联 17. 气相色谱程序升温的方式有_____升温和_____升温。答案:线性非线性 18.气相色谱法分析中,不同的色谱柱温会对柱效、_____、_____、_____和产生影响。

分析化学作业z4

A型题: 1. 以下说法正确的是A A.最佳流速时,塔板高度最小 B.最佳流速时,塔板高度最大 C.最佳塔板高度时,流速最小 D.最佳塔板高度时,流速最大 2. 在气相色谱法中,用于定性的参数是D A.峰面积 B.分配比 C.半峰宽 D.保留时间 3. 在气相色谱法中,色谱柱使用的上限温度取决于错误:正确答案为:D A.试样中沸点最低组分的沸点 B.试样中沸点最高组分的沸点 C.固定液的沸点 D.固定液的最高使用温度 4. 影响组分容量因子的主要因素是A A.固定液种类和性质 B.载气种类 C.柱长 D.柱直径 5. 以下各项能够对H影响不定是错误:正确答案为:D A.减小填料粒度 B.增大液膜后度 C.提高检测器温度 D.增高载气流速 6. 以下说法错误的是C A.气相色谱主要用于分离低沸点、热稳定的化合物 B.气相色谱的优点是高选择性,高灵敏度和高分辨率 C.气相色谱适用于分析有机物、大多数无机物及生物制品 D.气相色谱己能分离混合物,又可在分离后对组分进行定性和定量分析 7. 高效液相色谱仪和气相色谱仪比较,增加了B A.控温装置 B.高压输液泵 C.检测器 D.自动进样器 8. 气相色谱中,色谱柱使用的上限温度取决于错误:正确答案为:C A.试样中沸点最高组分的沸点 B.试样中各组分沸点的平均值 C.固定液的最高使用温度 D.固定液的沸点 9. 影响两组分相对保留值的因素是B A.载气流速 B.柱温 C.柱长 D.检测器的类型 10. 以甲醇—水为流动相的反相色谱分离时,如增加甲醇的比例,则组分的容量因子和保留时间将 B A.k与tR增大 B.k与tR减小 C. k与tR不变 D.k增大;tR减小

气相色谱法分析苯系物

实验一气相色谱法分析苯系物 一、实验目的: 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习纯物质对照法定性和归一化法定量的分析方法。 3.了解气相色谱的仪器组成、工作原理以及数据采集、数据分析的基本操作。 二、实验原理: 气相色谱方法是利用试样中各组份在气相和固定液相间的分配系数不同将混合物分离、测定的仪器分析方法,特别适用于分析含量少的气体和易挥发的液体。当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按流出顺序离开色谱柱进入检测器,被检测,在记录器上绘制出各组份的色谱峰——流出曲线。在色谱条件一定时,任何一种物质都有确定的保留参数,如保留时间、保留体积及相对保留值等。因此,在相同的色谱操作条件下,通过比较已知纯物质和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。测量峰高或峰面积,采用外标法、内标法或归一化法,可确定待测组分的质量分数。 1.典型气相色谱仪由以下五大系统组成: A. 载气系统:包括气源、净化干燥管和载气流速控制; 常用的载气有:氢气、氮气、氦气; 净化干燥管:去除载气中的水、有机物等杂质(依次通过分子筛、活性炭等); 载气流速控制:压力表、流量计、针形稳压阀,控制载气流速恒定。 B. 进样装置:进样器+气化室; 气体进样器(六通阀):推拉式和旋转式两种。 试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱; 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL; 气化室:将液体试样瞬间气化的装置。 C. 色谱柱(分离柱):色谱仪的核心部件。分为填充柱和毛细管柱。 D. 检测系统:色谱仪的眼睛,常用的检测器:热导检测器、氢火焰离子化检测器; E. 温度控制系统:温度是色谱分离条件的重要选择参数; 气化室、分离室、检测器三部分在色谱仪操作时均需控制温度; 气化室:保证液体试样瞬间气化; 分离室:准确控制分离需要的温度。当试样复杂时,分离室温度需要按一定程序控制温度变化,各组分在最佳温度下分离; 检测器:保证被分离后的组分通过时不在此冷凝。

气相色谱仪用途和应用领域

气相色谱仪用途和应用领域 一、气相色谱仪用途和应用领域主要有以下方面: 、石油和石油化工分析: 油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。 、环境分析: 大气污染物分析、水分析、土壤分析、固体废弃物分析。 、食品分析: 农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析。 、药物和临床分析: 雌三醇分析、儿茶酚胺代谢产物分析、尿中孕二醇和孕三醇分析、血浆中睾丸激素分析、血液中乙醇/麻醉剂及氨基酸衍生物分析。 、农药残留物分析: 有机氯农药残留分析、有机磷农药残留分析、杀虫剂残留分析、除草剂残留分析等。 、精细化工分析: 添加剂分析、催化剂分析、原材料分析、产品质量控制。 、聚合物分析: 单体分析、添加剂分析、共聚物组成分析、聚合物结构表征/聚合物中的杂质分析、热稳定性研究。 、合成工业: 方法研究、质量监控、过程分析。 二、分析实例: (一)天然气常量分析: 选用热导检测器,适用于城市燃气用天然气O2、N2、CH4、CO2、C2H6、C3H8、i-C40、n-C40、i-C50、n-C50等组分的常量分析。分析结果符合国标GB10410.2-89。 (二)人工煤气分析: 选用热导检测器、双阀多柱系统,自动或手动进样,适用于人工煤气中H2、O2、N2、CO2、CH4、C2H4、C2H6、C3H6等主要成分的测定。分析结果符合国标GB10410.1-89。 (三)液化石油气分析①: 选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2-C4及总C5烃类组成的分析(不包括双烯烃和炔烃)。分析结果符合SH/T10230-92。 液化石油气分析②: 选用热导检测器,填充柱系统、阀自动或手动切换,并配有反吹 系统,适用于液化石油气中C5以下气态烃类组分的分析(不包括炔烃)。分析结果符合GB10410.3-89。 (四)炼厂气分析: 选用热导和氢焰离子化检测器,填充柱和毛细管柱分离,通过多阀自动切换,

分析化学知识点归纳总结

2.分配系数K:是在一定温度和压力下,达到分配平衡时,组分在固定相(s)与流动相(m)中的浓度(c)之比。K=C s/C m 3.分离度R:是相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。 4.化学位移δ:由于屏蔽效应的存在,不同化学环境的氢核的共振频率(进动频率,吸收频率)不同,这种现象称为化学位移。 5.保留值:表示试样中各组分在色谱柱中停留的时间或将组分带出色谱柱所需流动相体积的数值。 6.直接电位法:是选择合适的指示电极与参比电极,浸入待测溶液中组分原电池,通过测量原电池的电动势,根据Nernst方程直接求出待测组分活(浓)度的方法。 7.电极电位:金属与溶液之间的相界电位就是溶液中的电极电位。 8.离子选择电极(ISE),饱和甘汞电极(SCE),紫外-可见分光光度法(UV),红外吸收光谱发(IR),原子吸收分光光度法(AAS),核磁共振波谱法(NMR),质谱法(MS),高效液相色谱法(HPLC), 9.紫外可见光分光光度计:光源→单色器→吸收池→检测器→信号指示系统,影响紫外-可见吸收光谱的因素:温度,溶剂,PH,时间。 10.化学位移标准物一般为四甲基硅烷(TMS),影响因素屏蔽效应和磁各向导性、氢键。 11.自旋偶合是核自旋产生的核磁矩间的相互干扰。 12.有机质谱中的离子:分子离子、碎片离子、同位素离子、亚稳离子。 13.色谱法:气相(GC),液相(LC),超临界(SFC),气固(GSC),气液(GLC),液固(LSC),液液(LLC),柱(填充柱、毛细管柱、微填充柱),平面(纸、薄层TLC、薄膜) 14.色谱法基本理论:热力学理论、塔板理论、动力学理论、速率理论。 15.评价柱效:塔板数和塔板高度。 16.气相色谱仪:气路系统、进样系统、色谱柱系统、检测和记录系统、控制系统 17.气相色谱检测器FPD)、热离子化(TID),浓度:热导(TCD)、电子捕获(ECD) a,热导检测器(TCD)浓度型,原理:根据物质具有不同的热导系数原理制成。样品选择:几乎对所有物质都有响应,通用性好,如酒中水含量检测。b,氢火焰离子化检测器(FID)

如何建立气相色谱分析方法

气相色谱分析方法的建立步骤 在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。

气相色谱法在环境监测中的应用

气相色谱法在环境监测中的应用 应用化学02 冷方方200941602038 摘要:气相色谱法是现代分析的主要手段之一。近年来,气相色谱的各个领 域都取得长足的进步和发展。本文介绍了气相色谱法在大气、室内气体、各种水体和其他类型污染物的应用,并阐述了气相色谱的发展趋势。 关键字:气相色谱法,联用技术,环境监测 1前言 色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。 气相色谱法由于其具有分离效能高、分析速度快、选择性好等优点而被广泛应用于环境样品中的污染物分析、药品质量检验、天然产物成分分析、食品中农药残留量测定、工业产品质量监控等领域。 2气相色谱法现状 气相色谱法广泛用于纯物质中的杂质、环境污染物、食品中有害成分、药物有效成分、代谢物、刑事法医鉴定、石油化工生产中痕量物质等的分析。随着有毒有害有机污染物对空气、水、土壤及粮食、蔬菜的污染日益严重,有机污染物的监测已得到世界各国的重视。常用的CODCr和CODMn的监测方法不能检测出多环芳烃、苯系物、PCB等强致癌物的状况。GC,GC-MS,HPLC法是有机污染物监测的常用方法。尤其是GC法以其相对价格低廉,操作简便,易于推广利用而备受关注。目前,美国、日本和我国在有机污染物监测的方法中,GC法占了80%。 气相色谱分析法在环境水和废水分析中有着广泛的应用,特别是对水中复杂、痕量、多组分有机物分析,GC是强有力的成分分析工具,而MS是能给出最充分信息的结构分析器。二者的结合常常成为首选的分析方法。据报道少数发达国家已将GC/MS系统列为水中有机物的监测分析方法和标准分析方法,成为有力的鉴定工具。 全球性的多环芳烃污染一直为人们关注。多环芳烃主要产生于煤的加工转化工艺中,后随工业排放水进入环境。由于它具有生物诱变性和致癌性,深受各国的关注。复旦大学的陈正夫、陈思华介绍了利用色谱保留值结合质谱信息鉴定多环芳烃在焦化废水形态分布分析中的应用研究。将多环芳烃的Lee保留指数推广到环境监测中的应用条件和范围,探讨全过程跟踪式的焦化废水采样方式,分析方法切实、有效。

相关文档
最新文档