海瑞克盾构参考

海瑞克盾构参考
海瑞克盾构参考

海瑞克φ8800mm土压平衡盾构机参数书讲解

TABLE OF CONTENTS TECHNICAL DATA E D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1 D O C U M E N T : 7686-001 II. Technical Data 1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 3 1.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 4 2. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 5 2.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 6 3. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 7 3.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 7 4. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 8

海瑞克盾构选型

1.1盾构机选型 综合本区间隧道工程地质、水文、线路、方向控制、地表沉降、工期和环保要求,类似工程盾构选型经验,结合苏州以往盾构使用情况,根据《盾构法隧道工程施工及验收规程》,土压平衡盾构对于淤泥质粘土、粉质粉土、砂质粉土、粘土层对地层的适应性,通过盾构配备加膨润土、泡沫及水装置,可取得良好效果。因此在本区间隧道工程施工中拟选 1.2盾构机来源 拟将采用两台日本株式会社小松制作所生产的TM634PSX加泥式土压平衡盾构机用于本标段的施工,全部来源于新购置。 1.3盾构机供应方案和工程适应性的描述 1.3.1 土层的适应性能 (1)刀盘结构是针对苏州长三角淤泥质粘土、粉质粘土、砂质粉土、粘土地质条件设计的,采用面板式刀盘,开口率为40%。提高开挖效率,使碴土顺利从切削面流入土舱内。刀盘结构见图1-1。在维修时刀盘面板对土体有一定的支护作用,便于土压力平衡。 (2)刀盘采用中间支承式结构,设置有固定搅拌翼和随刀盘转动的搅拌翼,对土舱中的碴土进行强制搅拌,尤其在本工程中有各种地层且相互交错,对切削下来的碴土需要进行搅拌,使碴土具有塑性,并防止土体的滞留和粘附,盾构机刀盘设有中心刀1把,切刀120把,刮刀18把,超挖刀2把,能够确保施工的进度。 (3)刀盘、土舱及螺旋输送机有泡沫、膨润土及水注入系统,通过刀盘和

搅拌翼把注入在开挖面的添加剂与切削下来的碴土在土舱中进行充分搅拌。对于开挖不同的地层,可通过控制泡沫、膨润土或水的注入量,有效调节碴土的塑性及粘度、降低透水性及内摩擦力,提高土体的流塑性,防止螺旋输送机喷涌或产生泥饼,同时可减少刀盘功率的消耗。 (4)刀盘转速分五档可调0~1.3rpm,根据地层情况自动调节速度,且旋转方向可改变。 图1-1 盾构机刀盘示意图 1.3.2 埋深的适应性能 (1)盾构机有足够的承载能力、推进力和刀盘扭矩储备,有足够的土压承受能力及土压调节能力,可以满足本区间隧道施工的需要。 (2)轴式螺旋输送机,液压驱动,出土量易于调节,并有良好的土压减压效果。 (3)主轴承密封可承受3MPA的泥土压力,主轴承密封有良好的油脂润滑系统,保证密封系统的可靠。

海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

海瑞克土压平衡盾构机结构分析

海瑞克土压平衡式盾构机结构分析 [2008-08-07] 关键字:盾构机结构分析 承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。 本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土

海瑞克盾构机液压系统原理

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及

纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵 范围内变化时,调整后的泵供油压力保上的电液比例溢流阀(A300)调整,流量在0-q max 持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。 由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。 油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。缸的快进快退,提高工作效率。A783控制的插装阀。A403为推进油缸底端预卸荷阀。阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。

海瑞克盾构设备-英汉对照

CYLINDER 油缸 DIV.SPARE PARTS SEGMENTFEEDER 待定管片喂送器备件SEGMENTCRANE 管片吊机 GEAR MOTOR 齿轮马达 DRIVE MOTOR 驱动马达 SPARE PART PACK SEGMENT CRANE 管片吊机备件包 DIV.SPARE PARTS 待定备件 DIV.SPARE PARTS ERECTORPULT 待定拼装机备件拼装机控制面板 SCREW TENSION CYLINDER M42 M42螺栓拉伸油缸 SCREW TIGHTENING DEVICE M60 M60螺栓上进装置 HIGH PRESSURE POWER PACK 高压动力包 HIGH-PRESSURE HOSE 高压油管 HIGH PRESSURE HOSE 1600Bar高压油缸 HIGH POWER AGGREGATE G20 G20高压泵站 HIGH PRESSURE HOSE 高压油管INSERT FOR SCREW DRIVER SW 65 SW65套筒 INSERT FOR SCREW DRIVER SW 55 SW55套筒 POWER SCREW DRIVER HYDRAULIC 液压动力扳手 DISPLACEMENT CYLINDER + AGGREGAT 移位油缸+液压泵站TOOL BOX 工具箱 CABLE SHEARS 电缆剪 SCREW DRIVER 螺丝刀 SOCKET WRENCH SET 12K 12K套筒扳手装置 DRILLING MACHINE 钻机 GAS SOLDERING IRON SET 气体烙铁 TIN 锡罐KALIBRATION DEVICE 校准装置 MULTIMETER 万用表 PLIERS 钳子 TORCH 手电筒 TWIST DRILL 螺旋钻 INDICATION 指示器 FAN 风扇 TORQUE WRENCH 扭矩扳手 COAL DRILL 煤钻 GRINDER 电砂轮 Segment data: 管片参数: Outside diameter: 15,000mm 外径: 15,000mm Inside diameter 13,700mm 内径: 13,700mm Length 2,000mm 宽度: 2,000mm Ring distribution: 9+1 管片分布: 9+1 MIX shield with back-up system 混合式盾构机及后配套系统 Shield body 盾体 segmental steel structure (front and rear shields) 钢结构块(前盾和后盾) pressure wall 压力壁 submerged wall (air bubble chamber) 分隔板(气泡调压舱) pressure sensors 土压传感器 Access door in the pressure wall 压力舱壁中的进入门 Access door in the submerged wall 分隔板中的进入门 flange manlock 人闸法兰 lange for material lock 材料闸法兰main drive support 主驱动支架agitators ? 1,900mm 搅拌器? 1,900mm front gate 前闸门 protection grid 保护隔条 Flushing circuit in the excavation chamber 开挖舱内的冲洗回路

海瑞克盾构机技术说明

目录 隧道掘进机的技术说明 5.1 概述 (3) 5.2 功能(EPB盾构) (4) 5.2.1 土料挖掘 / 推进 (5) 5.2.2 控制 (6) 5.2.3 管环拼装周期 (7) 5.3 技术数据/总览 (8) 5.4 操作步骤 (16) 5.4.1 进入开挖室 (16) 5.4.2 人行气闸 (19) 准备和注意事项 (19) 加压 (21) 加压步骤 (22) 加压图 (24) 通过通道室加压(加压附加人员) (26) 附加人员加压图 (27) 卸压 (28) 卸压步骤: (29) 卸压图 (31) 对一个人员的紧急卸压图 (33) 紧急情况下,通道室和主室内应分别采取的措施 (36) 紧急情况卡卡样 (37) 5.4.3 将开挖工具送入压力室 (39) 5.4.4 拼装管环 (40) 5.4.5 回填 (42) 通过尾部机壳进行回填 (42) 灌浆泵的工作原理 (43) 5.4.6 压缩空气供给 (45) 工业用空气 (45) 压缩空气调节 (46) 5.4.7 发泡设备说明 (47) 安装设计 (47) 设备功能 (48)

高压聚合物系统 (48) 5.5 隧道掘进机各部件 (49) 5.5.1 盾构 (50) 概述 (50) 前部盾构 (50) 中间盾构 (51) 尾部机壳 (51) 推力缸 (51) 盾构关节油缸 (52) 5.5.2 人行气闸 (53) 5.5.3 刀盘驱动装置 (55) 原理 (55) 旋转工作机构系统,主轴承 (55) 齿轮润滑 (55) 密封系统 (56) 5.5.4 拼装机 (57) 技术说明 (57) 支架梁 (57) 行走机架 (58) 旋转机架 (58) 带抓取头的横向行走装置 (59) 旋转机架的动力提供 (60) 安全设备 (60) 5.5.5 螺旋输送机 (61) 一般说明 (61) 伸缩缸 (61) 前部闸阀 (61) 前部闸阀 (62) 驱动装置 / 密封系统 (63) 安全装置 (63) 5.5.6 后援装置 (64) 一般说明 (64) 桥 (65) 龙门架1 (66) 龙门架2 (67) 龙门架3 (69) 龙门架4 (70) 龙门架5 (72)

盾构滚刀简介

17”盘型滚刀结构和技术参数介绍 图 1 目前国内生产盾构刀具的厂家相当多。 在关键部件轴承的选择,国内多选择USA的“铁木肯”系列轴承。海瑞克选poland 的SKF系列轴承。所选都是世界知名品牌。我认为所有设计都围绕该部件为基准来设计的,所 有我定为关键部件。(图3) 刀圈多为H13 钢(USA牌号,国内和热做模具钢接近的合金钢材料),热处理后HRC55-60. 与刀榖做过盈配合(过盈量在0.15-0.25mm ),预热套装到刀榖配合位置。在加挡圈以防止 刀圈外脱。 轴多采用轴承钢之内的材料;刀榖,上下端盖采用合金结构钢材料锻打,调质后加工而 成。下端盖与轴配合目前国内的产品多为间隙配合在加工楔口防止转动,以O型圈做密封的方法设计的,而海瑞克是下端盖与轴为小过盈的紧配合。上端盖采用与轴的螺纹配合,通过4 个环形阵列的扳手孔旋紧到轴上。(扳手要自己做) 浮动密封的浮动环目前也有大约 2 种加工情况,一种车床加工再做表面处理的,在研磨;一种为时效处理后磨床加工的,在研磨的。相比后者较好。浮动密封的胶圈要恢复性好,弹 性好,耐油。(图4) 防尘密封主要国内厂家的一些滚刀有这个设计,海瑞克没见到过,所以上图片中没有显 示。就是在刀榖与上下端盖的间隙处,在刀榖内加工环槽,在里面安装密封条与端盖发生小 摩擦以防止岩层粉末进入刀体内。 除单刃滚刀外还有双刃, 3 刃等多种滚刀,即在刀榖上安装多个刀圈,分单个刀榖上安装 2 个刀圈;多个刀榖上安装多个刀圈(多为中心滚刀图5) 以海瑞克17”滚刀出厂标准,刀圈外径为17 英寸,扭矩约24-35n.m ,刀圈HRC55-60(未

做准确测量,凭经验和粗测设备估计和参照国内出厂数据)图 3 图

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述

————————————————————————————————作者:————————————————————————————————日期:

海瑞克盾构机电气控制系统概述 李剑祥 (中铁六局集团有限公司深圳地铁2号线项目部广东深圳 518056) 摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。 关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统 0 海瑞克盾构机电气系统简介 盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。下面对该三个部分进行介绍。 1 配电系统 盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。配电系统分为高压系统和低压系统,其用电设备列表如下: 序号用电设备设备容量备注 1 刀盘驱动945kW 2 超挖刀7.5kW 3 推进系统75kW 4 管片安装机45kW 5 螺旋输送机250kW 6 皮带输送机22kW 7 注浆泵30kW 8 砂浆储存罐的搅拌器7.5kW 9 液压油过滤泵11kW 10 主轴承润滑4kW 11 管片吊机2x2kW 12 排水泵12kW 13 冷却水系统7.5kW 14 二次通风机11kW 15 空压机110kW

海瑞克盾构选型

1.1 盾构机选型 综合本区间隧道工程地质、水文、线路、方向控制、地表沉降、工期和环保要求,类似工程盾构选型经验,结合苏州以往盾构使用情况,根据《盾构法隧道工程施工及验收规程》,土压平衡盾构对于淤泥质粘土、粉质粉土、砂质粉土、粘土层对地层的适应性,通过盾构配备加膨润土、泡沫及水装置,可取得良好效果。因此在本区间隧道工程施工中拟选 1.2 盾构机来源 拟将采用两台日本株式会社小松制作所生产的TM634PSX 加泥式土压平衡盾构机用于本标段的施工,全部来源于新购置。 1.3 盾构机供应方案和工程适应性的描述 1.3.1 土层的适应性能 (1)刀盘结构是针对苏州长三角淤泥质粘土、粉质粘土、砂质粉土、粘土地质条件设计的,采用面板式刀盘,开口率为40%。提高开挖效率,使碴土顺利从切削面流入土舱内。刀盘结构见图1-1。在维修时刀盘面板对土体有一定的支护作用,便于土压力平衡。 (2)刀盘采用中间支承式结构,设置有固定搅拌翼和随刀盘转动的搅拌翼,对土舱中的碴土进行强制搅拌,尤其在本工程中有各种地层且相互交错,对切削下来的碴土需要进行搅拌,使碴土具有塑性,并防止土体的滞留和粘附,盾构机刀盘设有中心刀1 把,切刀120把,刮刀18把,超挖刀 2 把,能够确保施工的进度。 3)刀盘、土舱及螺旋输送机有泡沫、膨润土及水注入系统,通过刀盘和

搅拌翼把注入在开挖面的添加剂与切削下来的碴土在土舱中进行充分搅拌 开挖不同的地层,可通过控制泡沫、膨润土或水的注入量,有效调节碴土的塑性 及粘度、降低透水性 及内摩擦力,提高土体的流塑性,防止螺旋输送机喷涌或产 生泥饼,同时可减少刀盘功率的消耗。 (4)刀盘转速分五档可调 0~1.3rpm ,根据地层情况自动调节速度,且旋转 方向可改变。 1.3.2埋深的适应性能 (1) 盾构机有足够的承载能力、推进力和刀盘扭矩储备,有足够的土压承 受能力及土压调节能力,可以满足本区间隧道施工的需要。 (2) 轴式螺旋输送机,液压驱动,出土量易于调节,并有良好的土压减压 效果。 (3) 主轴承密封可承受3MPA 的泥土压力,主轴承密封有良好的油脂润滑 系统,保证密圭寸系统的可靠 4) 盾尾采用三道钢丝刷密封,油脂注入润滑,保证盾尾密封可靠 (5) 采用管片同步注浆,保证注浆效果和系统可靠。 1.3.3 保持开挖面稳定、减少周边土体扰动、保护环境安全的性能 (1) 区间隧道掘进都在土压平衡状态下,土舱压力可根据埋深、地质、地 表沉降情况调 对于 刀 刀 槽 VII 图1-1盾构机刀盘示意图 VI

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

海瑞克盾构词汇简

active center cutter 主动中心刀盘 agitator 搅拌器 annulus 注浆环面间隙 back-up system 后配套系统 backloading 背部换刀 bentonite 膨润土 Berlin construction method 柏林施工法 blind hole 盲孔 boulders 漂石 breathing air 可呼吸空气 bucket tooth 齿形铲斗 bypass 旁路 center shield 中盾 CLM 衬砌破碎机 closed TBM 封闭式盾构掘进机compact trailer 集成式拖车 compressed air lock 压缩空气人闸conditioning 土壤改良 cone crusher 锥形破碎器 control stand 控制台 crusher 破碎器 cutterhead (traffic tunnelling) 刀盘(交通隧道) cutting wheel 刀盘 Direct Pipe 直接铺管 disk cutters 滚刀 drive 驱动 ELS 激光标靶 EPB 土压平衡式盾构机 erector 管片安装机 excavation bucket 铲斗 excavation chamber 开挖仓 excavation tools 开挖刀具 excavator 铲斗式挖掘机 exchange of tools 换刀 extension 扩径 front shield 前盾 full face tunnelling machine 全断面隧道掘进机 geology 地质状况 geothermy 地热 guidance system 导向系统 HCS 海瑞克复合式盾构机 HDD 水平定向钻进 heavy duty cutter bit 重型刀具 hydraulic hammer 液压锤 in-situ casting 现场浇注 inclinometer 倾角计 industrial air 工业压缩空气 intermediate jacking station 中继顶压站 jacking pipe 顶管 launch shaft 始发(工作)井 lining segment factory 管片生产工厂 long distance tunnelling 长距离隧道掘进 longitudinal cutting head 纵向刀盘 main drive 主驱动 main jacking station 主顶进站 man lock 人闸 material lock 材料输送闸

海瑞克盾构机电气系统概述

海瑞克盾构机电气控制系统概述 剑祥 (中铁六局集团地铁2号线项目部518056) 摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。 关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统 0 海瑞克盾构机电气系统简介 盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。下面对该三个部分进行介绍。 1 配电系统 盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。配电系统分为高压系统和低压系统,其用电设备列表如下:

1.1高压系统 经过负荷计算,Sj1≈2000kVA ,则选择的电压器容量为2000kVA ,选择的高压电缆进线为UGP-3×50+1×25,选用的高压环网柜电压等级为12KV ,容量为200A ,变压器带温度和密封性故障报警。高压系统原理图如下: 1.2 低压系统 变压器将10KV 的市电转变成400V 的低压电,之后分成两路,分别经过断路器1-3Q2(俗称主开关)和断路器1-4Q2(副开关),其中主开关具有相序保护。主开关控制盾构机主要用电设备,比如各个电机。因各个电机为三相用电设备,在启动和运行时需消耗无功功率,所以海瑞克盾构机电气系统投入了功率补偿设备,以保障设备运行时,功率因数大于0.9。副开关控制台车部位和盾体部位的照明系统和备用插座系统。由此可见,三相用电设备系统与照明系统实行分线布置,提高了两者的供电质量。因盾

海瑞克盾构机中英文对照表

海瑞克盾构设备-英汉对照英文汉语 proportional valve block 流量阀 brake valve闸阀 double prestress valve 流量阀 proportional valve block 流量阀 valve 闸阀 valve 闸阀 ball valve球阀 ball valve w/lever/ 球阀 shuttle valve闸阀 ball valve球阀 check valve sae11/2 闸阀 valve 闸阀 ball valve球阀 nozzle 喷嘴 proportional valve流量阀 pressure reducing valve 减压阀 plate 连接块 plate 连接块 erector 管片安装机 cutting wheel drive 刀盘主驱动 tank 水箱 cylinder 液压油缸 waggon 运输料槽 jack 千斤顶 thrust jacks unit+stroke meas 主推进油缸 planetary gear齿轮箱 gear oil cooler齿轮油冷却器 thermometer0-80degrees c温度计 ball valve球阀 valve 闸阀 control block接线板 plate 连接块 mechanical directional control 方向控制器 pressure control valve 流量阀 control block接线板 slide block滑动轴承阻挡块 hydraulik block液压阀组 pressure reducing valve 减压阀 non return valve止回阀 one-way restrictor zp 闸门 directional control valve流量阀 pressure reducing valve zp 流量阀

海瑞克盾构机机械装备图和清单

30032056 SEGMENTFEEDER 2009-03-26Part Number drawing number Part number Designation Quantity Modular parts list Bezeichnung Baukastenstückliste S-520Projekt Teilenummer Zeichnungsnr.Project S-5201236-006-010-00 A 1236-006-010-00 A Pos 282404 SEGMENTFEEDER 30032056 STLDISP110 Supplier ST 30032070 1,00GRUNDRAHMEN 1 BASIC FRAME ST 30032072 2,00HUBRAHMEN 2 LIFTING FRAME ST 30016924 1,00FAHRRAHMEN 3 DRIVING FRAME ST 30016944 4,00AUFLAGER 1 4 SUPPORT 1ST 30016946 8,00AUFLAGER 2 5 SUPPORT 2ST 30016953 2,00RAD 6 WHEEL FEEDER ST 24901251 2,00ACHSHALTER 7 SHAFT SUPPORT ST 30017114 2,00RADACHSE 8 WHEEL SHAFT ST 30017112 4,00GLEITHOLZ 9 SLIDING WOOD ST 30017116 2,00ZYLINDERBOLZEN 10 BOLT ST 30017117 6,00HALTEWINKEL 11 SUPPORT ST 30016189 1,00SPANNVORRICHTUNG 12 CLAMPING FIXTURE ST 30017123 1,00ANSCHLUSS 13 CONNECTION ST 30017130 3,00ABDECKUNG 1 14 COVER

盾构机参数设定

土压平衡式盾构机控制原理与参数设置 随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应 也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效 果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E,也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除 偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行I和D,I调至数值上限,D设定为0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 -0.03Mpa 的系统偏差,接下来逐渐增大P 值,使螺旋机转速逐渐增大,当P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的85% -90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方

相关文档
最新文档