近世代数学习系列四抽象代数的人间烟火

近世代数学习系列四抽象代数的人间烟火
近世代数学习系列四抽象代数的人间烟火

李尚志

北京航空航天大学数学与系统科学学院北京,100191

摘要

抽象代数课如果只是死记硬背一些自己根本不懂的定义,没有例子,没有计算,不会解决任何问题,这样的抽象代数只能给零分。

抽象代数能不能有既体现数学本质、又引人入胜的例子?本文介绍的就是这样的例子。

关键词:抽象代数,精彩案例

某校有一个被保送读研的学生参加我们的面试。我问她哪门课程学得最好。

答曰“抽象代数”。不等我问问题,她就开始自问自答,开始背诵群的定义。我马上制止她,说不要你背定义,只要你举例。让她举一个非交换群。举不出来。举一个有限域,举不出来。我说:这两个例子举不出来,抽象代数零分!她大惑不解,说:“抽象代数就是没有例子嘛!”她大概认为我学的是假的抽象代数,她学的真的抽象代数就是死记硬背一些自己根本不懂的定义,没有任何例子,不解决任何问题,也没有任何前因后果。

如果只是少数学生这样认为,可以怪她自己学得不好。问题的严重性在于:持这样观点的学生不是一两个,也不是 10%--20% ,我估计:学习抽象代数的大学生中有90%都持这种观点,只不过这个学生将这种观点总结得特别明确、特别精彩而已。这恐怕就不能怪学生,而应当从教材和教学中找原因了。

现有的抽象代数教材,不是没有例子。这些例子本来就很精彩。三等分角的尺规作图,五次方程的求根公式,这是迄今为止一些“民间科学家”还在花费毕生精力苦心钻研的世界“难题”,早就被抽象代数解决了,这还不够精彩吗?密码、编码中的理论和实践,抽象代数大显身手,也够精彩了。但是,这些精彩冋题的解答叙述起来太难,学生不容易懂。要讲清楚,课时也不够。只有少数名牌大学的抽象

代数课程还稍微讲一些,在其余的学校,就将抽象代数这些精华和灵

魂砍掉了,只剩下最容易讲的:让学生死背一些自己也不懂的定义。考试也不考用知识解决问题,只考背定义。抽象代数就不是数学课,而是识字课,只要死记硬背就行了。金庸的武侠小说《射雕英雄传》中的武功秘籍《九阴真经》中有一段用梵文写的话:“努尔七八,哈瓜儿,宁血契卡,混花察察,学根许八涂,米尔米尔。” 只要认识字,小学生也可以化功夫死记硬背下来,但是根本不懂它的意思,更不可能照着去练习,难道就因为背熟了这些句子就成了武功高手吗?显然不是。同样,死记硬背抽象代数教材中的定义而根本不懂它的意思,举不出一个例子,不

会用来解决任何一个问题,这样学习的抽象代数就是假冒的,通通都应当给零分!

这些年来,我们在抽象代数课程建设中所做的全部努力,就是要破除这种“就是没有例子”的假抽象代数。我们取得的主要成绩,就是积累了一批既能体现数学本质、又为学生喜欢的案例。下面是其中的一部分案例。

1.幻方一变八----正方形的对称群

我在抽象代数考试中考过这样的题:将如下的3阶幻方通过旋转和轴对称变出尽可能多的不同的幻方。

这不是考小学奥数。而是考正方形的对称群:旋转90o,180°,270o得到3个新的幻方,关于第2行、第2列、两条对角线做轴对称得到4个新的幻方,包括原来的幻方在内一共可以得到8个。

为什么只能得到8个而不能得到更多?通过旋转和轴对称只能将左上角的2 变到4个不同的位置(正方形的4个角)。将2固定在每个角不动,只能通过轴对称得到2个不同的幻方,4组总共2×4=8个。这实际上是说:将正方形变到与自己重合,有8个不同的动作。这8个动作组成的集合对乘法(复合)与求逆运算封闭,组成一个群。其中保持2不动的动作组成一个2阶子群,将2变到同一个位置的动

作组成一个陪集。非交换群、子群与陪集、子群的元素个数2是整个群的元素个数8的因子。这些概念和知识都自然而然引入了。

类似地,可以计算正方体的对称群或者旋转群的元素个数,或者任意正多边形和正多面体的对称群的元素个数。特别,正三角形的对称群由三个顶点的所有置换组成,就是元素最少的非交换群 S3。

2.0 与1 的算术二元域

许多人说有限域是抽象代数最后一节课讲的,最难,没学好情有可原,考试也不应当考。其实有限域最容易讲,最有趣,最有用,最有抽象代数味道,可以在抽象代数课第一节课第一分钟讲。我的抽象代数考试每次必考有限域。

小学生都懂得奇偶数的运算规律:偶 +偶=偶,偶+奇=奇,奇+奇=偶;偶× 整数=偶,奇×奇=奇。将偶数用O表示,奇数用1表示,就得到:0+0=0, 0+仁1, 1+仁0; 0×a=0 (a=0或1),1 ×=1°按这样的运算公式,两个元素 0,1组成的集合 Z2 就对加、减、乘、除封闭, Z2 就是二元域,最简单的有限域。

我的导师曾肯成教授出过一个题:求随机整数组成的 n 阶行列式为奇数和偶

数的概率。貌似概率题,其实是代数题。将行列式中的偶数用 0 表示,奇数用 1 表示,行列式为奇数(也就是等于 1)就是二元域上可逆矩阵,充分必要条件就是各行线性无关。归结为二元域上的线性代数题。另一个例子是:在二元域上解齐次线性方程组,得到纠错码的一个设计方案。二元域在信息与计算机科学中至关重要。会算 1+1=0,就懂了一点真正的抽象代数。

为什么两个整数a,b的和、差、积的奇偶性只与 a,b的奇偶性有关而与奇数与偶数的不同取值无关?将 a,b分别用它们除以2的余数r,s代表(r,s取值为0 或1),写成a=r+偶,b=s+偶的形式,则a± b=(r+偶)± (s+偶)=(r ±s)+(偶±偶), ab=(叶偶)(s+偶)=rs+r偶<+偶×s+偶×禺。不论其中的“偶”取什么偶数值,总有:偶±偶=偶,偶×整数=偶,就好象0± 0=0, 0数=0 一样。可以将算式中的“偶” 看作0来运算,得到a± b = (r ± s)+偶,ab = rs+禺。也就是说:将a,b替换成与它们奇偶性相同的 0 或 1 进行运算,得到的和、差、积的奇偶性不变。这件事可以推广:a,b取值的整数集合Z替换成对合法的加法与乘法圭寸

闭的任意集合D,

称为环;偶数集合替换成D中具有类似于0的运算性质O±O=O, D×O=O的子集 0,称为理想。D中两个元素a,b的差如果在O中,就将a,b “看成”同一类,得到的同

余类组成的集合可以定义加、减、乘运算,这就是商环D/O。特别,当

D=Z , O=nZ时,商环D/0就是整数模n的同余类环Z n。另一个重要例子:D 是在某点C连续的全体全体实函数f(x)组成的环,记X=X — c, OC X)与O(Ax)分别是当DX 0时的无穷小量和高阶无穷小量组成的集合,则OGX)与O(Ax)都是D的理想,同余式f(X) ≡a (mod OC X))表示当X C时f(x)的极限是a,而f(x) ≡ a+b?:X (mod o(. x))表示 b 是 f(x)在 C 的导数。

3. 从凯撒密码谈起-----整数的同余类。

密码的重要性不容置疑,神秘性也令人向往。最早的一种简单密码是凯撒设

计的,加密方案是将每个英文字母用它后面第3个字母代替。将26个字母依次

用整数模26的各个同余类表示,凯撒密码的加密就可以用最简单的加法函数y =

x+3表示,解密函数为X = y— 3。更进一步,可以用 Z26上的一次函数y=ax+b 加密,其中a可逆,称为仿射密码。例如3>9 =1就说明9=3-1 ,加密函数y=3x+5 的解

密函数就是x=9(y-5)。Z26中的乘法可逆元组成乘法群 Z26*,由与26互素的整数所在的同余类组成。更进一步,可以将若干个字母对应的同余类组成列向量 X ,用矩阵运算Y=AX+B来加密,其中A的行列式在Z26*中。也可以将信息写成二元域Z2上的列向量,用Z2上的矩阵运算Y=AX+B加密。

更一般地,讨论Z n的乘法群Z n*。特别,当n为素数P时,Z P中的p-1个非零元都可逆,组成乘法群 Z p*。Z P是有限域,Z p*中的元素都可以写成一个元素的幕,Z p*是循环群。在另一种情形,n = Pq是两个素数p,q的乘积,为了讨论 Z n及其乘法群

Z n*的构造,将每个整数a除以p,q各得到一个余数r,s,将a对应到“坐标”

(r,s),就建立了环同态 Z Z p× Z q ,进而得到环同构 Z n Z p× Z q, 这就引出了中国剩余定理,环同态基本定理,环的直积。进而可以讨论Z n上的

幕函数y=x m是可逆变换的条件,得到RSA公钥密码。

4. 复数的几何模型---同构、同态与单位根群

中学数学强行定义i2= - 1,不解释这种定义的合理性。其实,很容易给出 i2 =-1的一个几何解释:-1乘向量是向后转180度;用i表示向左转90度,则i2 就是向后转180度,就是-1。这其实是将虚数单位i用“左转90度”的线性变

换i表示?还町以将线性变换丨用矩阵J=r 表示.从坯数柑十旳到线性变

换朴1+用再到矩阵沁十Z=(;:)的对应关系保持加、減、桀运算从而也保持

求逆运算,是复数域 C与它的几何版本(由线性变换组成)和矩阵版本(由矩阵组成)之间的环同构、域同构。

在这个同构下,复数COS + i Sin 对应的变换是旋转角其n次幕

就是旋转n「由此立即得到cos〉+ i sin〉n cos n + i sin n 棣

美弗公式)及其矩阵版本

CoH α—HinQ ?n f co S n∏f —HilI Ra \

HiII Q CoS C J? Sin nα cos Fiaf /

由旋转角到复数cos +isin「的对应关系f具有性质f(:+) = f(:)f (■),将实数的加法对应到复数的乘法,这说明加法与乘法本质上是一回事(都满足结合律与交换律,加法的O对应于乘法的1,加法的负元对应于乘法的逆元),对加减法封闭的与对乘除法封闭的集合同样都称为群。以上对应关系f是实数加法群R

到表示旋转的(模为1)的复数乘法群P的同态,同态核为2二的全体整倍数2 Z0 将相差2二的整倍数的角[对应于同一个复数f(χ1。将相差2二的整倍数的角[看成相等,组成一个同余类,得到同余类集合R/2二Z到P的1-1对应二并且保持运算(将加法变到乘法),匚是群同构R/2 -Z P。这就是群同态基本定理。

既然群同态f将2二的整数倍2k二对应到1,求1的n次方根也就相当于将

2kτt 除以 n,得到的方根为 f(2kMn) = cos(2kmn)+isin(2kMn)= a k ,让 k 取遍 n 个值0,1,2,…M就得到n个不同的方根,称为n次单位根,它们都可以写成其中一个根ω= cos(2刑n)+isin(2mn)的整数次幕,其几何意义就是旋转2k 兀的n分之

一。对应关系:k k是整数加群到单位根乘法群的同态,同态核由n的全

体整数倍组成。让相差n的整倍数的整数组成一个同余类,得到同余类Z n的加法群到单位根乘法群的同构,这是群同态基本定理又一个例子。

5. χ15-1在有理数范围内的因式分解

x15— 1在复数范围内分解为一次因子的乘积(X- 1)(x-)…(x—「n-1),每个一次因子X- k对应于一个15次单位根」,每个??k的在乘法群中的阶d都是

15的因子,共有4个不同的值1,3,5,150将15个根按阶的不同值分成4类,以阶是d的单位根为根的一次因子的乘积记为 Gd(X),称为分圆多项式,分别等于

3 2 5

:M(X) = X - 1 ,::」3(x) =(X3 - 1)∕(x - 1)=X2+X+1 , ::>5(X) = (X5 - 1)∕(x - 1)= χ4+χ3+χ2+x+1 ,G 15(x)=(χ15-1)/ :M(X) JΓ?(X)/ 住5(x) = χ8-χ7+χ5-χ4+χ3-X+1 ,都是有理整系数多项式。X15- 1分解为这4个有理系数因式的乘积。

6. 无限循环小数---P元域乘法群中的元素的阶

分数化小数,得到的无限小数为什么一定循环?循环节的长度有何规律?这是小学算术中的问题。其中的奥妙却需要抽象代数来解释。

怎样描述小数的循环性质?例如,无限循环小数a=0.090909??以09为循环节,这可以描述为:将a的小数点往右移动两位得到的102a=9.0909 ??与a的小

数部分相同,差102a- a=09为整数,并且就是循环节。一般地,要使既约分数 m/n

化成的小数a是纯循环小数,只要存在正整数 d使10d a-a=(10d -1)m∕n是整数,也就是10d =1在同余类环Z n中成立。当n与10互素时10是Z n中的可逆元,满足条件的最小正整数d就是10在Z n的乘法群中的阶,必然是(n)的因子。当 n为素数P时(P)=P- 1, m/p的循环节长度是p-1的因子。如果n与10不互素,则有足够大的正整数k使10k m/n约分后得到的最简分数 m1∕n1数的分母与10互素,化成的无限小数10k a的小数部分是纯循环小数,a=m/n由这个循环小数的小数点往左移动k位之后得到,是混循环小数。

以真分数m/7为例。10的1,2,…,6次幕被7除的余数依次为3,2,6,4,5,1,说明10在乘法群Zi7中的阶为 6 ,由m/7展开的小数的循环节为(106 -1)m/7=142857m,是 142857 的 m 倍(m=1,2,…,6)D=142857 是 1/7 的小数展开式

a=0.142857 ??的循环节。对正整数k=1,2,…,将D=142857的前k位移到末尾得到的6位数D k就是10k a- q k=10k∕7- q k = r k / 7的循环节,等于D=142857的r k 倍,其中q k,r k分别是10k被7除的商和余数。当k=1,2,…,5时r k依次为3,2,6,4,5, 因此将142857的前k位移到末尾依次得到142857的3,2,6,4,5倍。

一般地,当n与10互素时,将1/n的循环节D的前若干位移到末尾得到的整数都是D的整倍数。如果n是素数p,且10是乘法群Z p*的生成元,阶是P -1,则1/p的循环节D的2,3,…,-1倍都可以由D的前若干位移到末尾得到。

p=7 就是如此。试验发现 p=17,19 时也是如此,1/17 与 1/19 的循环节0588235294117647,052631578947368421也有类似性质。

1/7 的循环节 142857 还有另外的神奇性质:将它平均分成两段的和

142+857=999,平均分成 3段之和 14+28+57=99,全都由 9 组成!不难证明,这个性质可以推广到别的 1/p 。

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

近世代数课后习题参考答案(张禾瑞)1

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 12)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

抽象代数 孟道骥版 习题解答 第四章

Chapter4 4.1 ? 1. G 4. G 4 Klein K4 . ? ?4 S4 . . (i)G 4 ? G 4 . (ii)G 4 ? ?a∈G,a2=e.? ?a,b∈G,(ab)2= e,, ab=(ab)?1=b?1a?1=ba, G Abel ? G~=K4. 2. G 6. G 6 S3 . G с 3 ? ? 2 ? с Abel ? a=b∈G, a=e,b=e, a,b 4 ? . G с 2 ? ? 3 ? |G| ? . G 2 a, 3 b. 1):a,b ? ab 6 ?? G= ab 6 . 2):a,b? ? G 6 . G k 3 ?j 2 ? 2k+j+1=6, (k,j)=(2,1) (1,3). k=2, G 3 {x,x?1,y,y?1}. xy? 3 ? xy 2 ? yx ? xy=yx, x,y 9 ? . (k,j)=(1,3). ? G S6 ? ?,? ?(b)= (1,2,3), ?(a)=σ. G 3 ? σ(1,2,3)σ?1= (σ(1),σ(2),σ(3)), {σ(1),σ(2),σ(3)}={1,2,3}. σ (1,2,3)? ? ? σ(1)=1,σ(2)=2,σ(3)=3,? σ(1)=1,σ(2)= 3,σ(3)=2. α= 456 σ(4)σ(5)σ(6) σ=(2,3)α, σ2=e, α2=e. σ,(1,2,3) ={(1,2,3),(1,3,2),e,(2,3)α,(1,2)α,(3,1)α} S3 64

65 G ~=S 3. 3. G r =st ?H G t . H ={g s |g ∈G }={h ∈G |h =e }. G = g 0 , {g s |g ∈G }={g s 0,g 2s 0,···,g ts 0},{h ∈G |h t =e }={g s 0,g 2s 0,···,g ts 0}, {g s 0,g 2s 0,···,g ts 0} G t ? G t . G ={g s |g ∈G }={h ∈G |h t =e } 4. G ?a,b ∈G.?[a,b ]=aba ?1b ?1 a,b . {aba ?1b ?1|a,b ∈G } ? G (1)? G . :1) α∈Aut G , α(G (1))=G (1);2) H G. G/H Abel ? H ?G (1). 1)α(G (1))=α( {aba ?1b ?1|a,b ∈G } )= {σ(a )σ(b )σ(a )?1σ(b )?1|a,b ∈G } =G (1).2)G/H Abel ?(G/H )(1)={e }?G (1)?H . 5. S G ? ? ?,ψ G H ? ?(x )=ψ(x ),?x ∈S. ?=ψ. ?a ∈G , G = S , a =y 1y 2···y n , y i ∈S y ?1i ∈S . ?(x )=ψ(x ),?x ∈S , ?(x ?1)=ψ(x ?1),?x ∈S ,? ?(y i )=ψ(y i ),?1≤i ≤n , ?(a )=ψ(a ), ?=ψ. 6. H G ? H =G . G = G ?H . H =G ?a ∈G , GH , aH ∩H =?, aH ?H , G ?H ?H ∪(G ?H )=G , G = G ?H . 7. G ? G с 2 . G k m ?m >1?? m k?(m ) ? ? . m ? ?(m ) ? ? . |G | ? с ?? ? 2 . 8. α∈S 3 ? . α= 1234567836548271 α= 1234567836548271 =(1358)(26).

近世代数第二章答案分解

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数习题与答案

近世代数习题与答案 Prepared on 22 November 2020

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

(完整版)《实变函数》考试说明解读

《实变函数》考试说明 近世代数是广播电视大学数学专业(本科)的一门重要的专业基础课,本期近世代数期末考试内容是教材《实变函数》的内容。试题有填空题、证明题,试题的难易程度和教材《实变函数》的习题相当。希望同学们在期末复习时,做好教材《实变函数》中的每章的习题。 第一章集合 一提要 第一节集合及其运算。 第二节映射及其基数。 第三节可列集 第四节不可列集 二教学要求 1)理解集的概念,分清集的元与集的归属关系,集与集之间的包含关系的区别。 2)掌握集之间的交、差、余运算。 3)掌握集列的上、下限集的概念及其交并表示。 4)理解集列的收敛、单调集列的概念。 5)掌握――映射,两集合对等及集合基数等概念。 6)理解伯恩斯坦定理(不要求掌握证明),能利用定义及伯恩斯坦定理证明两集合对等。 7)理解可数集,不可数集的意义,掌握可数集、基数为C的集合的性质, 理解不存在最大基数的定理的意义。

第二章点集 一.提要 第一节聚点、内点、界点等概念 第二节开集、闭集、完备集。 第三节直线上的开集、闭集及完备集的构造。 第四节点集间的距离 第五节康托集及其性质 二.基本要求 1)明了n维欧氏空间中极限概念主要依赖于距离这个概念,从而了解邻域概念在极限理论中的作用。 2)理解聚点,孤立点、内点、外点、界点的意义,掌握有关性质。 3)理解开集、闭集、完备集的意义,掌握其性质。 4)理解直线上开集、闭集、完备集的构造。 5)理解康托集的构造、特性。 第三章勒贝格测度论 一.提要 第一节勒贝格外测度及其内测度。 第二节勒贝格可测集及其性质。 第三节勒贝格可测集的构造。

二.基本要求 1)理解测度的意义。 2)理解外测度的意义,掌握其有关性质。 3)理解可测集的定义,掌握可测集的性质。 4)了解并掌握不可测集的存在性这一结论。 第四章勒贝格可测函数 一.提要 第一节点集上和函数。 第二节勒贝格右测函数。 3)可测函数列的收敛性。 4)可测函数的构造。 二.基本要求 1)掌握可测函数的定义及等价定义。 2)掌握可测函数的有关性质。 3)理解简单函数的定义,掌握可测函数与简单函数的关系。 4)掌握可测函数列的收敛点集和发散点集的表示方法。 5)掌握叶果洛夫定理,鲁津定理。 6)理解依测度收敛的意义,掌握依测度收敛与a·e收敛的联系与区别。

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

近世代数习题第二章

第二章 群论 近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52 题,最后提交时间为11月25日 1、设G 是整数集,则G 对运算 4++=b a b a 是否构成群? 2、设G 是正整数集,则G 对运算 b a b a = 是否构成群? 3、证明:正整数对于普通乘法构成幺半群. 4、证明:正整数对于普通加法构成半群,不含有左右单位元. 5、G 是整数集,则G 对运算 1=b a 是否构成群? 6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =. 7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群. 8、证:在正有理数乘群中,除1外,其余元素阶数都是无限. 9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限. 10、设群G 中元素a 阶数是n ,则 m n e a m |?=. 11、设群G 中元素a 阶数是n ,则 ) ,(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l. 12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数. 13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数. 14、证明:如果群G 中每个元素都满足e x =2 ,则G 是交换群. 对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx. 或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n . 16、证明:p 阶群中有1-p 个p 阶元素,p 为素数. 17、设群G 中元素a 阶数是n ,则 )(|t s n a a t s -?=. 18、群G 的任意子群交仍是子群.

《近世代数》模拟试题及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213, ,0101c d cd ?? ??== ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

高等代数第四章整环里的因子分解

第四章整环里的因子分解 §1、素元、唯一分解 一、整除、单位、相伴元 定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。b不能整除a记作b|a。 定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。 单位元必是单位,反之不然。 例1在整数环Z中,单位即是1和-1,b是a的相伴元?b=±a。在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元?g(x)=cf(x)。

定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。单位ε的逆元ε-1也是一个单位。 推论整环I中全体单位的集U关于乘法作成群。 二、素元 定义单位以及元a的相伴元叫做a平凡因子。其余的a的因子,假如还有的话,叫做a的真因子。 定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0 ≠,p不是单位,并且p只有平凡因子。 例2 在例1的Z中,素元就是素数。在F[x]中,素元就是不可约多项式。 定理2 单位ε同素元p的乘积εp也是一个素元。 定理3整环I的一个非零元a有真因子?a=bc,b和c都不是单位。

推论假定a≠0,并且a有真因子b:a=bc。那么c也是a的真因子。 三、唯一分解 定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元) (ii)若同时 a=q1q2…q s(q i是I的素元) 那么r=s 并且我们可以把q i的次序掉换一下,使得 q i=εi p i (εi是 I的单位) 零元和单位都不能唯一分解。 例3 在整环I={}Z +, 3中: a∈ - b a b (1)ε是单位1 = ?。 ? ε = 1 ε2± (2)若4 α2=,则α是素元。 (3)4∈I有两种不同的分解(不相伴分解): ()()3 + - = - ? = 1 1 3 2 2 4-

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数课后习题参考答案(张禾瑞)-4

近世代数课后习题参考答案 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2 是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是n m 2 是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12 =ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2 ' 2 2 1ε ε = 即2 '2 1εε=

但2 22 b a +=ε 是一正整数,同样2 ' ε也是正整数, 因此,只有12 =ε 反之,若12 2 2 =+=b a ε ,则0,1=±=b a 或1,0±==b a 这些显然均是单位 此外,再没有一对整数b a ,满足122=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52 =α 的I 的元α一定是素元。 事实上,若52 =α 则0≠α 又由α)1(也不是单位 若2 2 2 5,λβ α βλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-1 2 是α的相伴元 λλ β ?=?=152 2 是单位βαλβ?=?-1 是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2 2 25λβ= 这样,2 β只可能是25,5,1 当52=β由)1(β是单位 当152 2 =?=λ β 由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52 =β 的情形 5,2 2 2 =+=+=b a bi a β β可能的情形是 ???==21b a ??=-=21b a ???-==21b a ???-=-=21 b a ???==12b a ? ??-==12b a ???=-=12b a ???-=-=12 b a 显然)2)(2(5i i -+= 由(2)知52 =β 的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 ,

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

近世代数习题解答(张禾瑞)四章

近世代数习题解答 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是 n m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12=ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε 反之,若1222=+=b a ε,则0,1=±=b a 或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12 2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α 又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-12是α的相伴元 λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52=β的情形 5,222=+=+=b a bi a ββ可能的情形是 ???==21 b a ???-=1b a ???=1b a ???-=-=21b a ???=1b a ???-==12b a ???=-=12b a ???-=1b a 显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 , n a a a ,,21 的两个最大公因子只能查一个单位因子。 用数学归纳法证 当2=n 时,由本节定理3知结论正确。 假定对1-n 个元素来说结论正确。

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则 3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。

近世代数第四章整环里的因式分解

第四章整环里的因式分解 §1. 素元、唯一分解 本讲中, 总假定为整环, 为的商域. 1. 整除 定义1 设D为整环, D b ,, 如果存在D a∈ c∈, 使得 则称整除, 记作; 并称是的一个因子, 是的倍元. ?整环中的整除概念是整数环中整除概念的推广, 因此有许多与整数的整除相类似的性质. ?整除有下列常用的性质: (1) 如果, , 则; (2) 如果, , , 则. 2.相伴 定义2整环D的一个元叫做D的一个单位,假如是一个有逆元的元。元叫做元的相伴元,假如是和一个单位的乘积:

定理1两个单位的乘积也是一个单位.单位的逆元也是一个单位. 例1因为整数环的单位仅有1与-1,故任一非零元有2个相伴元:与a -. 例2有四个单位,1,-1,i,-i,所以任一非零元,有四个相伴元: 定义3 单位以及元的相伴元叫做的平凡因子.若还有别的因子,则称为的真因子. 3. 素元 定义4 设D为整环,D p∈,且既非零也非单位,如果只有平凡因子,则称为一个素元. 定理2单位ε与素元的乘积也是一个素元. 定理3整环中一个非零元有真因子的充分且必要条件是: ,这里,都不是单位.

推论设,并且有真因子:.则也是的真因子. 定义5 我们称一个整环D的元在D中有唯一分解,如果以下条件被满足: (i) (为D的素元) (ii) 若同时有 (为的素元) 则有,并且可以调换的次序,使得(为的单位) 整环的零元和单位不能有唯一的分解.所以唯一分解问题研究的 对象只能是非零也非单位的元. 例3给整环.那么有: (1)的单位只有. (2)适合条件的元一定是素元. 首先,;又由(1),也不是单位.设为的因子: 那么

相关文档
最新文档