近世代数教学PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数理论的三个来源
(1) 代数方程的解 (2) Hamilton四元数的发 (3) Kummer理想数的发现
(1) 代数方程的解
两千多年之前古希腊时代数学家就能够利用开 ax2+bx+c=0 方法解二次方程 。16世纪初欧洲 文艺复兴时期之后,求解高次方程成为欧洲代 数学研究的一个中心问题。1545年意大利数学 家 G.Cardano(1501-1576)在他的著作《大术》 (Ars Magna)中给出了三、四次多项式的求根 公式,此后的将近三个世纪中人们力图发现五 次方程的一般求解方法,但是都失败了。
如图1所示.
A
AB B
(x A B) (x A或x B) (x A B) (x A且x B)
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作:A B ,如图2所示.
A B
显然,A B A , A B B
例如,A={1,2,3,4},B={2,3,4,5},则
元素,就说a属于A,记作 a A ;如果a不是集合A
的元素,就说a不属于A,记作 a A ;
例如,设A是一切偶数所成的集合,那么4∈A,
而 3. A
一个集合可能只含有有限多个元素,这样的 集合叫做有限集合. 如,学校的全体学生的集 合;一本书里面的所有汉字的集合等等这些 都是有限集合.
如果一个集合是由无限多个元素组成的, 就叫做无限集合. 如,全体自然数的集合;全 体实数的集合.
阿贝尔
加罗华
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入 研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、 “伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理 论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透 彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断 几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方 体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代 替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数 学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展 产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构 主义哲学的产生和发展都发生了巨大的影响。
高度的抽象是近世代数的显著特点,它 的基本概念:群、环、域,对初学者也是很抽 象的概念,因此,在本课程的学习中,大家要 多注意实例,以加深对概念的正确理解。
近世代数的习题,因抽象也都有一定的 难度,但习题也是巩固和加深理解不可缺少的 环节,因此,应适当做一些习题,为克服做习 题的困难,应注意教材内容和方法以及习题课 内容。
就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素
的代数运算规律和各种代数结构,完成了古典代数到抽象代数
的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
第一章 基本概念
(A B) (x : x A x B)
以集合A的所有子集为元素的集合,称为A的幂集, 记为P(A). 如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
并运算 设A,B是两个集合. 由A的一切元素和B的一切
元素所成的集合叫做A与B的并集(简称并),记作 A B.
A B {2,3,4}
我们有 (x A B) (x A且x B)
(x A B) (x A或x B)
运算性质:
幂等率 : A A A ; A A A 交换律 : A B B A ; A B B A 结合律 : (A B) C A (B C) ; (A B) C A (B C)
A1, A2 ,,பைடு நூலகம்An 的交. A1, A2 ,, An 的并和交分别记为:
A1 A2 An 和A1 A2 An . 我们有
(x A1 A2
A) (x至少属于某一Ai ,i 1, 2, , n)
(x A1 A2
A) (x属于每一Ai ,i 1, 2, , n)
差运算:
直到1824年一位年青的挪威数学家 N.Abel (1802-1829) 才证明五次和五次以上的一般代数方程 没有求根公式。但是人们仍然不知道什么条件之下一 个已知的多项式能借助加、减、乘、除有理运算以及 开方的方法求出它的所有根,什么条件之下不能求根。
最终解决这一问题的是一位法国年青数学家 E.Galois(1811—1832),Galois引入了扩域以及群的 概念,并采用了一种全新的理论方法发现了高次代数 方程可解的法则。在Galois之后群与域的理论逐渐成 为现代化数学研究的重要领域,这是近世代数产生的 一个最重要的来源。
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
用这种方法 Kummer证明了n≤100时费马大定 理成立,理想数的方法不但能用于费马问题研,实 际上是代数数论的重要研究内容,其后德国数学 家R.Dedekind(1831-1916)把理想数的概念推广为 一般的理想论,使它成为近世代数的一个重要的 研究领域。
Kummer的想法是:如果上面的方程有正 整数解,假定η是一个n次本原单位根,那么 xn+yn=zn 的等式两边可以作因子分解 zn=(x+y)(x+ηy)…(x+ηn-1y),象整数中的因子分解 一样,如果等式右边的n个因子两两互素,那么 每个因子都应是另外一个“复整数”的n次方幂,
进行适当的变换之后有可能得到更小的整数 x1,y1,z1使 xn+yn=zn 成立,从而导致矛盾。如果 上面等式右边的n个因子有公因式,那么同除这 个公因式再进行上面同样的讨论。
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程
xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一个 非常困难的问题,这一问题被后来的研究者称为费马 问题或费马大定理,此定理直到1995年才被英国数学 家A.Wiles证明。对费马问题的研究在三个半世纪内从 未间断过,欧拉、高斯等著名数学家都对此作出过重 要贡献。但最重大的一个进展是由E.Kummer作出的。
描述法:
如果一个集A是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
A {x | 1 x 1, x R } 表示一切大于-1且小于1
的实数的所组成的集合.
常用的数集:
全体整数的集合,表示为Z 全体有理数的集合,表示为Q 全体实数的集合,表示为R
全体复数的集合,表示为C
主要参考书
1.B.L.瓦德瓦尔登著:代数学Ⅰ、Ⅱ 卷,科学出版社,1964年版 2.N.贾柯勃逊著:抽象代数1、2、3卷, 科学出版社,1987年出版 3. <<近世代数基础>>,张禾瑞 ,高等 教育出版,1978年修订本。 4.刘绍学著:近世代数基础,高等教育 出版社,1999年出版
5.石生明著:近世代数初步、高等教育出版 社,2002年出版 6.《近世代数》,吴品山,人民教育出版社, 1979。 7.《抽象代数学》,谢邦杰,上海科学技术出 版社, 1982。 8.《抽象代数基础》,刘云英,北京师范大学 出版 社,1990年。
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发现 可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代 数运算,二元数具有直观的几何意义;与平面上的点一一对应。 这是数学家高斯提出的复数几何理论。二元数理论产生的一个 直接问题是:是否存在三元数?经过长时间探索,力图寻求三 元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865) 于1843年成功地发现了四元数。四元数系与实数系、复数系一 样可以作加减乘除四则运算,但与以前的数系相比,四元数是 一个乘法不交换的数系。从这点来说四元数的发现使人们对于 数系的代数性质的认识提高了一大步。四元数代数也成为抽象 代数研究的一个新的起点,它是近世代数的另一个重要理论来 源。
设A,B是两个集合,如果A 的每一元素都是B 的 元素,那么就说A是B的子集,记作 A B ,或记 作 B A . 根据这个定义,A是B的的子集当且仅当
对于每一个元素x,如果 x A ,就有 x B .
A是B的子集,记作:
(A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
设A,B是两个集合,令 A B {x | x A但x B} 也就是说,A B 是由一切属于A但不属于B 的元素所
组成的,称为A与B 的差.
注意:并没有要求B是A的子集. 例如,Q C Ø
积运算:
设A,B是两个集合,令 A B {(a,b) | a A,b B} 称 A B 为A与B的笛卡儿积(简称为积). 是一切元素 对(a, b )所成的集合,其中第一个位置的元素a取自 A,第二个位置的元素b取自B.
§1 集 合 §2 映射与变换 §3 代数运算 §4 运算率 §5 同态与同构 §6 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素.
我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的
近世代数是在19世纪末至20世纪初发展起来的 数学分支。
1930年荷兰数学家范德瓦尔登(B.Lvan der Wearden 1930-1996) 根据该学科领域几位创始 人的演讲报告,综合了当时近世代数的研究成果, 编 著了《近世代数学》(Moderne Algebra)一书,这 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也
分配律 : A B C A B A C A B C A B A C
两个集的并与交的概念可以推广到任意n个集合上去, 设 A1, A2 ,, A是n 给定的集合. 由 A1, A2 ,, 的An 一切元素 所成的集合叫做 A1, A2 ,, 的An 并;
由A1, A2 ,, An的一切公共元素所成的集合叫做
近世代数
《近世代数》课程是现代数学的基础,既 是中学代数的继续发展,也是高等代数课程的 继续和发展,同时它又同拓扑学、实变函数与泛 函分析构成现代数学的三大基石,是进入数学 王国的必由之路,是数学与应用数学专业学生 必修的重要基础课。
同学应当具备有初等代数,高等代数的 背景,此外还有初等数论等方面的知识背景。
不含任何元素的集合叫空集. 表示为:Ø
枚举法:
例如,我们把一个含有n个元素 a1,a2,,an 的
集合的有限集合表示成:a1,a2,,an . 前五个
正整数的集合就可以记作 1,2,3,4,5 .
拟枚举: 自然数的集合可以记作 1,2,3,4,5....n..... , 拟枚
举可以用来表示能够排列出来的的集合, 像 自然数、整数…