弹性力学论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学论文

钢2混凝土组合扁梁受力性能的有限

元分析

西安工业大学

建筑工程系

050705124

周博超

钢2混凝土组合扁梁受力性能的有限元分析

周博超

摘要: 钢2混凝土组合扁梁是将钢梁内嵌于混凝土之中的新型组合梁, 它能最大限度地降低结构的高度, 形成类似"无梁楼盖"的结构体系, 已在住宅钢结构中推广应用, 其承载性能和设计方法研究引起了结构工程界的关注. 本文采用通用有限元程序AN SYS 研究了组合扁梁的承载力问题, 通过建模计算了简支组合扁梁、悬臂组合扁梁和框架组合扁梁的承载力和变形特征, 得到了相应的荷载2位移过程曲线, 并与组合扁梁的试验结果进行了比较, 验证了计算结果的正确性.

关键词: 组合扁梁; 极限承载力; 有限元在多层钢结构建筑, 特别是住宅钢结构中, 钢2

混凝土组合扁梁楼盖已成为深受欢迎的楼盖体系,实现了“无梁楼盖”建筑效果. 组合扁梁是一种新型结构体系, 受力性能比较特殊, 目前尚无成熟的分析和设计方法, 本文采用有限元方法对这种新型组合梁的受力性能和破坏过程进行了模拟, 并与试验结果进行了比较, 得到了对设计和应用组合扁梁具有重要参考意义的结论.

1组合扁梁结构

普通钢2混凝土组合梁充分利用了材料的特性, 混凝土楼板搁置在钢梁的上翼缘, 通过栓钉将钢梁和混凝土楼板连成整体而共同工作, 混凝土受压, 钢梁受拉, 如图1. 为了进一步减小梁高, 组合扁梁将混凝土楼板放在了钢梁的下翼缘, 看上去类似“无梁楼盖”, 它充分考虑了楼盖对梁刚度的加强作用, 如图2. 组合扁梁楼盖可由钢梁与预制混凝土空心楼板或深肋压型钢板楼板组成, 横向钢筋和钢丝网是为了保证在扁梁达到强度极限状态之前不发生混凝土板纵向剪切破坏, 剪力连接件保证混凝土板与钢梁共同工作[ 1 ].

图1普通组合梁

图2组合扁梁

与其它组合梁相比, 组合扁梁楼盖的下表面平整, 一般不需要做吊顶, 便于房间的灵活布置及自由分隔, 同时降低了结构高度, 提高了结构的抗火能力. 这种新型组合梁在工程上已开始应用, 需要对其分析和设计方法进行深入研究[ 223 ].

2有限元模型和计算参数

2. 1混凝土开裂的模拟

AN SYS 可以处理混凝土结构的配筋、开裂和压溃等复杂问题, 本文分析主要用到AN SYS 提供的线单元和块单元两种类型: L IN K8, SOL ID45和SOL ID65. L IN K8 单元模拟钢筋的受力情况;SOL ID45单元模拟钢梁的受力情况; SOL ID65单元用于模拟混凝土模型. 建模时, 忽略钢梁与混凝土之间的滑移, 钢梁与混凝土之间连接采用共用节点以使其变形协调. 试验结果也表明对于组合扁梁,钢与混凝土之间的滑移对其刚度和承载力影响很小, 可以忽略[ 4 ].混凝土的抗拉强度低, 在加载初期就要开裂,能否正确地模拟混凝土的开裂是计算结果是否准确的关键. 本文采用单元的“死活”概念来模拟混凝土的开裂, 其基本思想是如果混凝土开裂, 假设其对结构的刚度和承载力的贡献可以忽略, 在建模计算时, 将这些单元“杀死”. 由于事先不知道哪些单元应该“杀死”, 所以结构分析的有限元模型的单元是不确定的, 是动态的, 随其受力状态而改变. 在计算分析中, 根据AN SYS 计算出来的应力和应变,把满足开裂条件的单元“杀死”, 让其退出工作, 然后按新的模型重新计算, 如此反复迭代, 直到相邻两次迭代结果相差在可接受的范围内即可停止计算.

2. 2网格的划分

本模型所有的实体单元均为8节点的长方块,便于分层, 这样模拟混凝土开裂的效果比较自由网格的三角形单元要好的多, 也更接近混凝土开裂的实际情况, 采用“M erge”或“Glue”等命令把模型各部分连成空间的一个整体, 保证单元之间的位移协调.

2. 3边界条件的处理

边界条件一般有三种: 简支端、自由端和固支端. 简支端约束边界上节点所有的平动自由度; 固支端约束住边界上节点所有的平动自由度和转动自由度; 对于自由端, 让边界截面上所有节点的变形满足平截面假定, 采用约束方程实现, 这样符合实际情况.

2. 4分析中应注意的问题

对于某个节点, 与其连接的所有活单元被“杀死”后, 该节点变成一个漂移的节点, 具有浮动的自由度数值. 在一些情况下, 需要约束住这些不被激活的自由度以减少求解方程的数目, 并防止出现位置错误. 但是, 在重新激活与其相连的单元时要根据情况删除这些人为施加的约束. 另外, 在查看结果时, 尽管其对刚度矩阵的贡献被忽略了, 但由于“杀死”的单元仍在模型中, 在单元显示和其它的后处理操作之前, 需用选择功能排除这些没有被激活的单元以

方便查询处理.

2. 5计算参数取值

本文采用上述有限元模型分析3个组合扁梁:简支梁BL 1, 框架梁BL 2和悬臂梁BL 3. 三根梁的截面尺寸、配筋率、栓钉间距以及混凝土板做法完全相同, 其截面和加载方式见示意图3~5, 钢筋、钢材和混凝土的强度指标通过材料试验测得.

图3组合扁梁截面示意图

图4BL 1梁加载示意图

钢材各向同性, 采用目前非线性分析中常用的Von M ises 等向强化准则, 本构关系为双直

线模型, 实测弹性模量189 GPa, 塑性强化段切线模量750M Pa, 钢材屈服强度为397. 75M Pa; 钢筋取理想弹塑性模型, 初始弹性模量200 GPa, 混凝土的实测压溃强度分别为37. 7, 47. 2和41. 3M Pa[ 3 ].

图5BL 2和BL 3梁加载示意图

2. 6有限元模型

本文对上述3根组合扁梁建立了AN SYS 模型, 进行了计算分析. 组合扁梁沿高度方向共分17层, 钢梁上下翼缘各分2层, 长度方向每100 mm 分1段. 截面的单元划分见图6. 加载采用位移加载方式, 即在加载点施加足够大的位移, 直到构件完全破坏. 计算过程中对所施加的外荷载和特征点挠度进行跟踪.

图6截面网格划分

3有限元数值模拟结果及与试验结果的对

比分析

为了验证有限元分析结果的正确性, 本文参考3个组合扁梁的试验研究数据[ 4 ] , 与有限元分析结果进行了比较.

3. 1扁梁BL1的分析结果

混凝土的抗拉强度很低, 简支组合扁梁全跨承受正弯矩, 在加载初期, 处于中和轴以下的混凝土要开裂, 退出工作, 在进行有限元分析时是将这些不参与工作的混凝土单元“杀死”, 经过反复迭代计算, 最后剩下只有参与工作的混凝土单元(图7).

图7扁梁BL 1开裂后剩余混凝土单元

1) 简支组合扁梁跨中弯矩较大, 开裂的混凝土也较多, 跨中等弯矩段的开裂程度是一样的, 随着向支座处弯矩的降低, 开裂的混凝土逐渐减少,开裂后剩余的混凝土呈拱形, 沿__________着梁长度方向中和轴是一条曲线, 而不是一条直线.

2) 荷载2挠度曲线是最重要的数据, 常常是设计的依据, 扁梁BL 1的荷载2挠度曲线见图8, 为了便于比较, 同时给出了试验的荷载2挠度曲线[ 3 ].

相关文档
最新文档