镁合金精炼工艺规程

镁合金精炼工艺规程
镁合金精炼工艺规程

镁合金精炼生产工艺规程与检验

生产工艺是指导生产活动的重要依据,是生产过程中必须遵守和执行的规章要求,根据公司实际情况,制定如下规程:

白云石煅烧工艺规程:

回转窑是煅烧的主要设备,焦炉煤气是主要燃料。

1主要指标要求:

白云石:Mgo含量21.5% 粒度:2cm3——4cm3

煤气:压力不低于800pa 流量:下低于900 cm3/小时

风压:压力不低于1000Pa

2回转窑温度与转速调节控制要求:

2.1生产过程中出现煤气压力波动时,根据实际情况调节煤气与风的配比;

2.2根据煅白的质量要求和窑内温度调节回转窑转速,出现过烧时要提高转速,出现欠烧时要减慢转速。

2.3喷煤必须根据窑内温度进行,并且必须要在煅白到迭窑出口后实施,严禁无料喷煤。

3煅白质量的捡验要求:

3.1化验检验

标准指标:含量:Mgo≥38%

活性度:29——33%

灼减:<0.5%

化验频次:24小时随时抽检

取样要求:随意取样

验结果处理:(1)及时反馈到工仵岗位,以便及时调整。

(2)定时向主管部门和技质部报告。

(3)填写化验报告单。

3.2操作工自检:

看:观察高温区温度与烧料情况,煅白发光呈透明状,合格。

砸:轻击断面整齐,且颜色雪白,无生核,合格。

泡:用清水泡后炸开,里白色,无颗粒和核心,合格。

4不合格晶处理要求:发现生料或过烧料时,作为废料及时彻底处理, 并做记录。

5回转窑检修后或停窑后重新启动后煅烧的要求:

颜色:黄白色

温度:1100度

转速:200 ——400转/小时

6对设备与人员的基本要求:

6.1每小时对设备进行一次检查。

6.2每小时对各种监测仪表进行一次记录。

6.3定期对设备进行保养,每月对回转窑托轮加一次黄油。

6.4上岗人员必须经过现场实际操作培训,培训时间不少于7天。6.5每年对上岗员工进行―次培训,培训时间不少于3天。

压球工艺规程:

1指标要求:

煅白含量:含量:Mgo≥38%

活性度:29 --33%

灼减:<0.5%

硅铁:Si≥75% 粒度:1——2cm3

萤石:CaF含量≥8O% 粒度:1——2cm3

2配料标准比例:

煅白:100Kg

硅铁:16.5Kg

萤石:1.5Kg

注:配料比例必须由技质部发出指令后执行。

3球磨指标:细度≥100目不少于80%以上。

4压球指标:油压泵压力8——12MPa

球团含硅量:13.6%

球团含粉率:<2%

5球团质量检验:

5.1化验:含硅量、细度(抽样化验)

取样要求:在料车容器内分布取样。

化验结果:(1)及时反馈到工作岗位,以便及时调整。

(2)定时向主管部门和技质部报告。

(3)填写化验报告单。

5.2操作工自检:球团在2m高自动落地,碎成3——5块基本合格。

6不合格品的处理:重新球磨、压球、检验,并做记录。

还原生产粗镁工艺规程:

1还原炉装料控制标准:

装出炉时间:2小时/次

真空还原周期:10小/次

还原罐规格:¢ss9×2.75,¢37O×2.75

装料量:¢339 140±2Kg/支

¢370 170±2Kg/支

炉前操作要求:

(l)推入罐内料密度均匀,不得太紧或太松。

(2)防止装料太满或不足,一般罐内料离罐口2OOmm,是档火板放置的位置。

(3)档火板必须放正放稳,结晶罐推入本套内必须到位,用石绵绳扎严,收集器放正放稳,严禁用灰面塞缝。

(4)还原扒渣必须扒干净。

(5)压镁后,结晶罐、收集器必须清娌干净,校正校圆。

(6)装料时地面废渣清除后再进行装料,严禁洒水。

(7)粗镁严禁浇水受潮,压出后放入专用车内。

(8)做好生产记录。

2真空度标准:

机械泵:10-5Pa

射流泵:15——10Pa

操作要求:(l)装料完毕后,立即起动真空系统,按设备操作规程执行。

(2)随时监测真空度,每小时记录一次,记入真空记录表。

(3)随时检查还原罐口密封情况,发现漏气或发现还原罐损坏漏气,要马上停泵处理,处理办法罐口泄漏更换密封圈,还原罐损坏要盲严真空管道。

3还原炉温度与控制要求

装料温度:1170度

真空还原温度:1200±10度

操作要求:⑴每台炉上的每个测温区之间温度偏差不得低于10度。

(2)每个烧嘴火煸大小必须根据炉内温度均匀要求进行调节。

(3)装料温度下降后必须在2小时内回升到温度指标要求范围。

(4)随时对烧嘴和温度进行检查,每小时记录一次,记入温

度记录表。

(5)如果煤气出现波动,要及时调查煤气与风的配比。

(6)其它操作按照操作规程作业。

精炼粗镁工艺规程

1国家标准:

一级镁锭:含镁99.95%

二级镁锭:含镁99.9%

三级镁锭:含镁99.85%

2操作要求:

2.1粗镁分类:

2.1.1将还原车间生产的粗镁,按质量好坏严格区分,结晶好、杂质含量少的筒镁归为一类。

2.1.2将碎镁、小块镁、结晶发黑发黄以及带燃烧的筒镁归为一类,

分别进行粗镁精炼工作。

2.2精炼锅的处理:

勺过镁锭的精炼锅底部,存在大量的废熔剂,以及精炼过程中炼去的杂质,所以,在重新使用以前必须将锅内的杂物进行清渣处理,要求: 2.2.1锅口周围所撒落的熔剂粉、萤石粉等杂特全部清理干净。

2.2.2锅壁四周用铁铲将附着在上面的氧化镁、残熔剂铲入底部并清除干净,再用因出渣而加入的新熔剂表皮部分将上面清洗。

2.2.3出渣时将锅底部分的残渣全部彻底的清理:

2.2.4完成以上工作后,要用锅盖将锅盖好,以免进入杂物影响再次使用。符合了这四条,精炼锅的处理工作就完成了。

2.3熔镁过程:

第一类粗镁的熔化:

2.3.1处理好精炼锅后,将50公斤二号熔剂加入锅中,待熔化后,直接加入粗镁进行熔化,在此过程中,要经常搅拌加淬熔化,如有着火现象,及时用熔剂粉撒灭。如遇工作环境粉尘太大时,要用锅盖将锅盖好,以免影响镁液的品质,待锅满后准备精炼。

2.3.2第二类粗镁的熔化:

筛选出来的不好的粗镁要放入指定的锅内,加入适量的熔剂搅拌使之熔化,然后加入10公斤左右的萤石粉和适量的熔剂粉进行精炼,搅拌20分钟后,静置20分钟后,将镁液全部勺入预备好的新锅新熔剂中,重新精炼,在此过程中如有着火现象,要用熔剂粉灭火。

2.3.3总之,熔镁过程中尽量避免着火现象。

2.4精炼过程:

第―锅:待粗镁熔化后,再加入外购的镁锭,完全熔化后:温度达到

710度时,加入(精炼熔剂:(萤石粉:熔剂粉=20:60:3的混合粉),一锅使用萤石粉不超过5公斤,翻底转边搅拌20分钟,使之完全充分的化学反应,然后在镁液表面撒入适量的熔剂细粉开始静置,使镁液中的杂质部分完全沉淀,同时关火降温,待时间达到30分钟后,开始浇铸,浇铸时使用硫磺粉灭火。

第二锅:在第一锅浇铸过程中,剩下四分之一的镁液停止铸锭,再添加入5-10公斤熔剂块搅拌使之熔化后,苒加入粗镁和外购的镁锭,完全∷熔化后,温度达到750度时,加入(精炼熔剂:萤石粉:熔剂粉=20:60:3的混合粉),一锅使用萤石粉不超过5公斤,翻底转边搅拌2O分钟,使之进入完全充分的化学反应,然后在镁液表面撒入适量的熔剂细粉开始静置,使镁液中的杂质部分完全沉淀,同时关火降温,待时间达到30分钟后,开始浇铸,浇铸时使用硫磺粉灭火。在第二铞浇铸过程是,剩下四分之一的镁液所铸的锭子为重熔镁锭,应另外堆放,下个班次时再田炉重熔,严禁将该重熔镁锭混入成品。否则重罚200元/次。

2.5镁锭的浇铸:

2.5.1模具必须清理干净。每班接班后必须进行模具的打磨工作,将喷涂的过厚的滑石粉用砂纸打磨平滑,使模具干诤无污,棱角分明。2.5.2浇铸的滤槽要保持干净,摆放规矩,浇铸留下的镁皮及时清除,避免因下一次浇铸冲入镁锭中。

2.5.3勺镁开始浇铸时,镁液表面的氧化了的镁液要用刮板刮掉,严禁将氧化了的镁液铸入锭中。

2.5.4浇铸满后:用刮板轻轻刮去零面的部分,要求表面光滑,边沿无毛刺。

2.5.5镁锭要求表面光洁,无大的缩孔、无裂缝、无夹层、无底花。

2.5.6出渣竖持炼两锅一出渣的办法,班班清锅。出渣所曲的镁珠归入第二类粗镁中进行嚣新精炼。所出的镁渣内不允许有镁珠存在。2.7其它事项:

2.7.1坚持高温精炼,低温出炉的原则,掌握好温度,避免锅内与勺内着火。

2.7.2车间卫生班班清除,清除卫生时锅要加盖,遇大风天气时,锅也要加盖。

2.7.3模具坚持倒一锅喷一次的方法,保证镁锭的质量。

2.7.4各班要循规蹈矩,按部就班的工作,绝对不允许有章不循,否则

重罚。

酸洗打包工艺规程

1使用硫酸与包装材料的标准:

硫酸浓度:98%

酸洗时硫酸和水的比例为1:10

酸洗用清水

包装托盘、塑料编织袋根据顾客要求制作

打包钢带规格为:0.9×32

⑴分批次把镁锭放入稀释后的酸液糟中,液体以浸没镁锭为宜,镁锭在液体中反应3分钟。

⑵捞出放入清水糟,然后人工用手把每个镁锭备个面擦一遍,再放入另一个清水糟中漂洗。

⑶捞出后用干净的毛巾迅速擦净。

⑷洗净的镁锭要在圃定的架上自然风干。

⑸对风干后的镁锭进行检验.表面光亮,无酸洗残迹,无蜂窝孔,无隙痕,无夹渣的镁定为合格品。

⑹合格品码放整齐,过磅计量。

⑺如发现镁锭留有酸液残迹,则应重新酸洗,如发现有蜂窝

孔和块重不符合要求,退回精炼车间重新精炼,并分别进行记录。

打包操作要求:

(1)镁锭过磅计量后,进行打包,以木托为底座,把镁锭整齐平稳的码放。

(2)用专用的包装塑料袋或编织袋进行包装。

(3)用钢带进行捆扎,每托捆扎四条,上下捆扎距离要均匀,力度要坚固。

(4)最后贴上商品标签,商标位置在上面中下50mm的位置上,商标规格为:280×200mm。商标必须注明:品名、毛重、净重、块重、等级、收货地址与客户和本公司标志和名称。

(5)检验员最后进行检验,主要事顼:包装质量,商标内容和规范与否,

然后登记入库。

镁合金热处理过程中组织与相的变化

镁合金热处理过程中组织 与相的变化 Prepared on 24 November 2020

镁合金热处理过程中组织与相的变化摘要:本文研究了AZ91D等温热处理过程中的溶质扩散、晶界熔化、晶粒合并以及相变等对枝晶球化过程的影响。结果表明:随着热处理时间的延长,晶粒逐渐球化,而且发生合并现象;同时在界面能降低的驱使下,通过溶质原子的扩散,晶粒内部包裹小液滴;半固态部分重熔过程中经历以下相变:β→α,α +β→L,α→L。 关键词:AZ91D镁合金;等温处理;相变 The Research of Organization and Phase Change of Magnesium Alloy during Isothermal Heat Treatment Abstract: The effect of solute diffusion and the grain boundary melting and grain merger and phase transitions on dendrite spheroidzing process is researched during the isothermal heat treatment. The results show that the grains gradually spheroidize and appear the merger phenomenon with extending the heat treatment the same time, owing to decreasing interfacial energy; the packed small liquid drop form intra - grain by the diffusion of solute atoms, There is the following phase transition: β→α,α+β→L,α→L during The semi-solid remelting. Key words:AZ91D magnesium alloy; isothermal treatment; phase transition 1、概述 镁合金是现代金属结构材料中最轻的一种,以其密度低、比强度和比刚度高、尺寸稳定性好、电磁屏蔽好及价格稳定等优点,近年来在航空航天、仪器制造、国防和电子工业等领域,尤其是汽车工业中获得日益广泛的应用[1]。 镁合金半固态成具有成形温度低、凝固收缩小、缺陷和偏析减少、晶粒尺寸细小、模具寿命延长等优点,被专家学者誉为21世纪新一代新兴金属加工方法。但是,要实现镁合金的半固态成型,首先必须制备初生相为颗粒的非枝晶组织合金。国内外研究者常用的枝晶粒化方法为机械搅拌法或电磁搅拌法。由于机械搅拌法的工艺参数难以控制、搅拌设备易磨损和腐蚀、不适应与高熔点合金和易氧化合金,因此该法很难在工业上推广应

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

铝合金的热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面: 1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力; 2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能; 3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变

化; 4)消除晶间和成分偏析,使组织均匀化。 二、热处理方法 1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室

皮江法冶炼镁的工艺过程与优缺点

皮江法冶炼镁的工艺过程与优缺点 镁的冶炼方法总体上可分成三种:一种是电解法;一种是硅热法(皮江法);另一种是碳热法。 皮江法是一种应用广泛的镁的冶炼方法,以发明者皮江(L_M.Pidgeon)命名的这种方法应用时间较长,可称是硅热法炼镁的经典方法。与其他方法相比,此法具有建厂快、投资省、可利用多种热源、产品质量好等优点,但由于间歇作业、单台生产能力低、能耗较高等问题,而影响它的发展。加拿大蒂尼柯(Timminco)公司的哈雷(taley)镁厂于1941年最先采用皮江法炼镁生产金属镁。随后,日本古河镁厂和字部兴产镁厂也先后采用这种炼镁方法。70年代以后,这些炼镁厂对皮江法炼镁的工艺和设备进行了改进,并逐步实现机械化、自动化操作后,进一步改善了作业条件和提高了劳动生产率。 皮江法炼镁的主要工艺流程是:

白云石在回转窑或立窑中煅烧成煅白,经破碎后与硅铁粉(含硅75%)和萤石粉(含GaF2)=95%)混合均匀制团,装入耐热不锈钢还原罐内,置于还原炉中,在1200-1250℃及真空的1.33Pa 真空度下还原制取粗镁,经过熔剂精制、铸锭、表面处理得到成品镁锭。 具体工艺过程: (1)白云石煅烧:将白云石在回转窑或竖窑中加热至1100~1200℃,烧成煅白(MgOCaO)。 白云石煅烧天然白云石是一种分布很广的矿物,其分子式为MgCO3?CaCO3。用于皮江法炼镁的白云石一般含MgO19%~21%、CaO30%~33%、(SiO2+A12O3+Fe2O3)<0.5%、(Na2O+K2O)<0.05%,粒度10~30mm。白云石要先进行煅烧。国际上主要的皮江法炼镁厂均采用回转窑煅烧法,使用的燃料有天然气、重油、重油焦粉(或煤粉)、半水煤气、焦炉煤气、发生炉煤气等。白云石在1423~1473K温度下煅烧,分解成Mg()?CaO。经煅烧的白云石称煅烧白云石,含MgO37%~39%,灼减1%以下(最好0.5%以下),活度超过30%。 (2)配料制球:将煅白、硅铁粉和萤石粉计量配料、粉磨,然后压制成球。 粉磨与压球煅烧白云石与破碎过的硅铁(Si>75%、Al<1.5%。Mn<0.05%)按摩尔比Si:MgO=1.2~1.3配料,并加入总料质量3%的萤石粉((2aF2>95%)。将配好的物料磨细至O.1mm粒级以下的煅烧白云石占60%,0.075mm粒级以下的硅铁占70%~80%。磨细的物料经混合后,用对辊式压球机在大于150MPa的压力下压制成球团。压制好的球团装入防潮的纸袋中备用。 (3)还原:将料球在还原罐中加热至1200+10℃,在13.3Pa或更高真空条件下,保持8~10小时,氧化镁还原成镁蒸气,冷凝后成为粗镁。 真空热还原球团料装入还原炉的还原罐中于真空下被硅铁中的硅还原成金属镁的过程。

热处理对于铸造镁合金的影响

热处理对于铸造镁合金的影响 热处理的影响热处理对于铸造镁合金没有任何影响,尤其是对高纯镁合金更没有影响。但是变形镁合金热处理对提高其耐蚀性非常有效。试验证明,镁合金经过均匀处理和淬火后,其在海水中耐蚀性最好,退火后固溶体耐蚀性最低。加热时效温度影响铸造镁合金的盐腐蚀速度,当时效温度高于二百到二百五十摄氏度以后,AZ91D腐蚀速度显著提高。工艺参数对镁合金耐蚀性影响很小。高纯镁合金经过T5和T6处理以后的腐蚀速度低于0.25mm/a。铸态和固溶处理后的晶粒尺寸越小,耐蚀性越好。试验证明,减小壁厚有利于改善铸造镁合金的耐蚀性,但是选择合理壁厚才能达到既提高耐蚀性又提高产量的目的。表面处理的影响表面状态对镁合金腐蚀有非常重要的影响,并且还与铁的含量有关系,可见湿砂处理的精细表面可以使腐蚀速度降低接近两倍。镁合金的冷加工,如拉伸和弯曲,对腐蚀速度没有明显度的影响。喷丸或者喷砂处理表面的耐蚀性能常常比较差,这并非冷加工效应所导致,而是因为表面嵌入了铁杂质。可以通过酸洗去掉0.001~0.005mm深度的这些杂质。若想彻底除掉杂质,最好采用氟化物处理。 镁及镁合金的氧化室温或者高于室温的干燥氯气、碘、溴和氟对镁合金几乎没有腐蚀。溴在低于沸点的时候,及时含有0.02%H2O其腐蚀性也不大。但是氯气中海油微量的水就会使镁合金产生剧烈腐蚀。镁和氧有很大的亲和力,镁和铝相似,但是其还原性更强,镁比

铝和氧的亲和力更大。在高温的时候镁在空气中极易发生氧化甚至燃烧,在高温下其氧化膜无保护性。镁和氧反应生成立方晶格的氧化镁,在氧中,前五到十分钟主要发生镁吸收氧反应,而吸氧速度迅速下降,一小时后几乎就停止了。在空气中镁的氧化速度比在氧气中的要低很多。温度在在四百到四百五十摄氏度的条件下,初始生成的氧化膜具有一定的保护性能。高于四百五十摄氏度的时候,由于生成氧化物体积小于被氧化金属的体积,则氧化膜失去了其保护性能。在高温的情况下,即使在干燥空气中镁也极易发生氧化。经过计算,硅、镁钙在高温四百摄氏度的时候都能被氧化,其中最容易被氧化的是钙,镁与氧的结合力大于硅,略低于钙。

铝合金的热处理工艺

铝合金的热处理工艺文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。 二、热处理方法 1、退火处理

金属镁锭的制造工艺流程

金属镁锭的制造工艺流程 一.金属镁简介 镁是地球上储量最丰富的轻金属元素之一,镁的比重是1.74g/cm3,只有铝的2/3、钛的2/5、钢的1/4;镁合金比铝合金轻36%、比锌合金轻73%、比钢轻77%。镁的熔点为648.8℃ 镁具有比强度、比刚度高,导热导电性能好,并具有很好的电磁屏蔽、阻尼性、减振性、切削加工性以及加工成本低、加工能量仅为铝合金的70%和易于回收等优点。 元素来源: 镁存在于菱镁矿MgCO3、白云石CaMg(CO3)2、光卤石KCl·MgCl2·H2O中,海水中也含镁盐。可以由电解熔融的氯化镁或光卤石制得。白云石:菱镁矿(碳酸钙镁)含量40%以上。 镁合金的比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;比刚度与铝合金和钢相当,远高于纤维增强塑料;耐磨性能比低碳钢好得多,已超过压铸铝合金A380;减振性能、磁屏蔽性能远优于铝合金。 镁物理性能:除了比重低,镁还有很多其它的良好的物理特性,使之在汽车结构材料应用中,有时比铝和塑料更有应用价值。镁物理性能的主要优点是:比铝高30倍的减振性能;比塑料高200倍的导热性能;其热膨胀性能只有塑料的1/2。 镁机械性能:和压铸铝合金相比,镁除了上述物理性能等优点,还具有较高的机械性能。镁的强度和刚度要明显好于塑料,延伸率和冲击抗力则明显好于压铸铝合金。 镁加工性能:镁有很好的加工性能,也就是说有很好的铸造性能。和其它材料比,它的制造成本很低,值得重视的是,尽管每公斤镁锭的价格要比铝和铁贵一些,但它单位体积的成品价格几乎是一样的。镁的物理化学特性使其比铝更适合压铸大型部件。镁单位体积的熔化潜热只有铝的2/3,比热只有铝的3/4,并且有非常低的溶铁性。这些特性使镁压铸件达到和铝几乎相同的生产成本/每公斤 二.镁合金与几种材料的性能比较: 三.镁及镁合金的应用领域 镁合金作为密度最小的金属结构材料之一,广泛应用于航空航天工业、军工领域、交通领域(包括汽车工业、飞机工业、摩托车工业、自行车工业等)、3C领域等。 镁合金的特点可满足于航空航天等高科技领域对轻质材料吸噪、减震、防辐射的要求,可大大改善飞行器的气体动力学性能和明显减轻结构重量。从20世纪40年代开始,镁合金首先在航空航天部门得到了优先应用。 在国外,B-36重型轰炸机每架用4086kg镁合金簿板;喷气式歼击机“洛克希德F-80”的机翼用镁板,使结构零件的数量从47758个减少到16050个;“德热来奈”飞船的起动火箭“大力神”曾使用了600kg的变形镁合金;“季斯卡维列尔”卫星中使用了675kg的变形镁合金;直径约1米的“维热尔”火箭壳体是用镁合金挤压管材制造的。 我国的歼击机、轰炸机、直升机、运输机、民用机、机载雷达、地空导弹、运载火箭、人造卫星、飞船上均选用了镁合金构件:一个型号的飞机最多选用了300-400项镁合金构件;一个零件的重量最重近300kg;一个构件的最大尺寸达2m多。

镁合金材料工艺

镁合金发展 针对陕北的跨越式发展目标,提出了建设府谷、神木镁产业基地,推进榆林能源基地资源深度转化,拉长产业链条,加大财政引导资金投入力度,组建省级镁业企业集团,集中力量开展技术攻关,重点发展六种镁合金,加强镁业人才建设 镁锂合金材料是当今世界上最轻的金属结构材料,属于国际上列入高度保密的技术。今年年底,中国将在西安阎良国家航空高技术产业基地实现这种金属结构材料的规模化生产,用于航空、航天、能源等多个领域。 据西安交通大学材料专家柴东朗教授介绍,镁锂合金材料具有低密度、高塑性等特点,是当今世界上最轻的金属结构材料,可部分替代目前应用于航空、航天领域的铝材及其他铝合金材料,具有广泛的应用前景。中国对镁锂合金材料研究已有一段时间,但是大多数处于实验室阶段,直到2010年西安交通大学与西安四方超轻材料有限公司合作在西安阎良国家航空高技术产业基地建成了中国第一条镁锂合金生产线。 经过两年来的进一步研发,目前西安四方超轻材料有限公司已在镁锂合金的冶炼工艺、质量控制、表面处理、机械加工等方面取得了突破性成果,为产品的推广应用创造了良好条件。 根据规划,到今年年底,西安四方超轻材料有限公司镁锂合金超轻材料项目将实现规模化生产,预计可年产100吨镁锂合金超轻材料。 我国镁深加工能力很薄弱。虽然早在50年代后期镁压铸业就已经起步,先后有若干厂家生产林业用机械和工具、风动工具等镁合金压铸件。到了90年代初,在汽车工业、电子工业发展的带动下,国内的镁压铸业有了较大的发展。为3C等产品配套的镁合金压铸件厂主要云集在华南和江、浙地区,尤以珠江三角洲一带最为突出。这一地区受到香港、台湾两地资金的投入、技术的支撑、市场的开拓以及管理的介入等全方位的拉动,发展速度令人关注。 积极稳妥地发展镁产业实现镁合金产业化是一项涉及面广、技术集成度高的大型系统工程。近10多年来,在世界范围内相继建立的一大批镁合金压铸工

镁合金热处理简介

镁合金热处理 各位领导、同事们: 很荣幸能在这里和大家共同学习。感谢公司领导给予我的机会! 我进入公司的这两年多时间,从事了镁合金熔炼、铸造、压力加工、热处理等方面的一些工作。今天,仅就自己在镁合金热处理方面工作、学习的部分收获及心得,与各位进行讨论。由于水平有限,错误与不当处在所难免,请各位不吝赐教。 固态金属(包括纯金属及合金)在温度和压力改变时,组织和结构会发生变化,统称为金属固态相变。金属中固态相变的类型很多,有的金属在不同的条件下会发生几种不同类型的转变。例如钢铁的奥氏体、铁素体转变。掌握金属固态相变规律及影响因素,采取措施控制相变过程,以获得预期组织,从而使其具有预期的性能。常用的措施包括特定的加热和冷却工艺,也就是热处理。钢铁的淬火,为的是快速冷却以保持其高温相,从而达到所需要的性能。 对于镁合金,常采用的热处理方式包括:均匀化退火(扩散退火)、固溶(淬火)(T4)、时效(T5)、固溶+时效(T6)、热水淬火+时效(T61)、去应力退火、完全退火等。这里做以下方面简要介绍: 1.均质化退火,其目的是消除铸件在凝固过程中形成的晶内偏析。那么,晶内偏析是如何形成的呢?这个,我们就需要了解结晶凝固过程,下图1为镁合金相图中最普通的Mg-Al相图: 以AZ61为例,从相图中我们可以看到,从液相线开始,熔体开始凝固,形核随着温度下降开始长大,在每一个温度点,液相和固相

图1 Mg-Al相图 成分分别对应于该温度时的液相线和固相线所对应的成分。造成了晶粒随温度下降而长大过程中的成分不均匀,也就是晶内偏析。均质化退火,主要作用就是将铸件加热到一定温度,使物质迁移作用明显,消除晶粒内浓度梯度。 对于固溶、时效等热处理手段,更确切的来说,是利用合金元素在基体中溶解度随温度变化这一属性。 2.固溶处理。基体不发生多型转变的合金系,室温平衡组织为α+β,α为基体固溶体,β为第二相。当合金加热到一定温度是,β相将溶于基体而得到单相α相固溶体,这就是固溶化。如果合金从该温度以足够大的速度冷却下来,合金元素的扩散和重新分配来不及进行,β相就不能形核和长大,α固溶体中就不可能析出β相,而且由于基体固溶体在冷却过程中不发生多型性转变,因此这时合金的室温

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

镁及镁合金板材的生产工艺流程

镁及镁合金板材的生产工艺流程(一) 镁及镁合金板材的生产工艺流程为: 1、熔炼与铸锭 熔炼包括熔化、合金化、精炼、晶粒细化、过滤等冶金和物理化学过程,通常在反射炉或坩埚炉内进行。镁及镁合金的熔点都在650℃左右,它们极易氧化且随温度的升高而加剧。当温度超过约850℃时,熔体的表面立即燃烧,故熔炼时必须用熔剂覆盖或以保护性气体保护。镁及镁合金在熔融和燃烧状态下遇水、含水(包括结晶水)物质和液态防火介质都可能导致剧烈爆炸,因此,在生产的全过程中注意安全是至关重要的。以隔离空气为主的覆盖熔剂和以提高熔体质量为主的精炼熔剂都是碱金属或碱土金属的氯化物和氟化物。除气(主要是氢)随熔剂精炼进行,也可向熔体中通入活性气体(如氯气)。对凝固时的晶粒粗大倾向,据合金的不同可采取控制熔体温度、向熔体加入微量元素进行变质处理等加以抑制,即晶粒细化(见铸锭晶粒的细化处理)。铸锭通常采用半连续铸锭法。除封闭式铸锭外,流槽和结晶器中裸露的金属,必须用s0:或SF。等气体保护。要科学地确定和控制各项铸造参数,以防止铸锭发生热裂,并降低冷隔深度和减少金属间化合物的形成和聚集。除镁一钇系合金外,铸锭的冷裂倾向小。 2、加热与热轧 铸锭在加热前必须铣面(见有色金属合金锭坯铣面),彻底去除冷隔和偏析物等表面缺陷;合金元素含量高和含锆、钇等的合金还要经均匀化处理(见有色金属合金锭坯均匀化)。铸锭加热时应避免直接热辐射和避免火焰同铝接触,以防局部过热、熔化或燃烧。根据合金的不同加热温度控制在370~510℃范围内。除含锂高的超轻合金有晶型转变外,余者皆为密排六方晶型,塑性差,但变形能力随加热温度的提高和晶粒尺寸的减小而提高,并比立方晶型的金属提高得更快。热轧的总变形量可以达到96%。严格控制终轧温度是保证热加工状态成品板材的力学性能并防止板坯及薄板产生裂纹的重要途径。晶粒粗大的铸锭和厚度较小的热轧成品,有的要进行二

常用铝合金及其热处理工艺

龙源期刊网 https://www.360docs.net/doc/f91763837.html, 常用铝合金及其热处理工艺 作者:杨金刚 来源:《科学与财富》2016年第18期 摘要:铝合金具有很先进的工艺性,同时还具有很好的焊接功能,热处理能够改变金属和合金的性能,一般的铝合金都要通过热处理来提高机械性能和其他性能。热处理工艺有着十分重要的意义。在制造零件过程中应用可以使产品的质量提高,使产品的成品降低。同时,使用热处理工艺可以提高耐腐蚀性,增加稳定性,还可以改善焊接加工的性能,铝合金及其热处理工艺在工业上拥有广泛的应用,尤其是在汽车工业上。汽车牌号就应用了铝合金的热处理工艺。 关键词:铝合金;热处理;处理工艺 0 引言 常用铝合金的使用使汽车工业逐渐被重视起来,汽车产业的发展也会带动经济的发展。由于当前我国国民经济的增长,人民甚生活水平的提高,越来越多的人拥有汽车,因而导致环境的污染。为了减少环境的污染就需要我们就需要降低能耗,节约有限的资源。使汽车的重量变轻就可以节约能耗量、节约资源,所以“使汽车变轻”就变得非常重要。因为铝合金有减重和可回收的性能,所以汽车运用铝合金会带来很高的经济效益。所以,开发铝合金结构代替传统的钢结构就显得十分有必要了。 1 铝及铝合金材料的特点及应用 1.1铝及铝合金 铝是一种轻金属物体,银白色,密度比较小而且比较软。铝具有较好的导电性,但却不如银、铜的导电性,而且铝也具有很好的导光性。铝在自然中储存较多,由于铝硬度较高,抗腐蚀能力强,在工业生产中应用范围较广。然而它仍有自身的缺陷,因此应用不及铝合金。铝合金具有比铝更好的性能。铝合金是在铝的基础上加上一些合金元素,铝合金比较容易加工,具有持久性,有很广泛的应用,铝合金能够用来装饰,而且具有很好的效果。门窗的制作也使用了铝合金,可以对门窗进行装饰,达到美观的效果。铝合金具有隔热效果,所以铝合金可以作为隔热材料使用。铝合金中虽然有合金的成分,但是它仍然比较轻,在许多工业中有广泛的应用,特别是在汽车产业中。在汽车工业中应用铝合金可以减轻汽车的重量,是汽车变轻,提高汽车的机械能,减轻耗油量,节约资源,同时还能达到保护环境的效果。 1.2铝合金的特点及应用 铝合金具有质轻、密度小、耐腐蚀、美观等特点,同时铝合金还可回收、可表面处理,这些在汽车工业中有广泛应用。铝合金具有很高的强度,有的强度甚至高于钢。铝合金广泛的应

金属镁工艺操作规程

第1 页共50 页

第 2 页 共 50 页 金属镁工艺操作规程 金属镁是当前一种新型工业材料,而冶炼镁业是一项高温、高压、 高转速,易燃、易爆、易中毒的行业,了解与掌握炼镁工艺规程,规 范操作、熟练操作是冶炼镁业的关键所在。冶炼镁业由白云石经煅白、 配料压球、还原、精炼最后成为镁块,其每一环节都关系到镁的产出 率。 从第一环节煅白开始,煅烧温度过高,煅白会过烧,虽然煅白的 灼减量低,但其水化活性度也低。煅烧温度偏低,煅白残留的CO 2量 大,即碳酸盐未分解彻底,灼减量就高。对于耐磨指大,热强低的白 云石其煅烧时间相应缩短,否则煅烧出的白云石不是过烧就是生烧。 因此灵活调节温度,根据石质把握煅烧时间非常重要。 煅烧白云石的吸湿和二氧化碳(CO 2)全相同,而且时间越长, 吸湿越大,氢氧化钙[Ca (OH )2]和碳酸钙[CaCO 3]不仅能氧化还原析 出的镁,生成氧化镁和氧化钙,而且还能氧化还原剂硅铁中的硅(Si ), 同时吸湿后的煅烧白云石在真空和比较低的温度一并发生离解,使反 应区的剩余压力增大,减慢镁的升华速度。因此,煅烧白云石不宜长 期存放,应尽快投入到下一道工序。 竖窑要求白云石粒度较小(50—200MM ),炉料要均匀,竖窑操作 简单,煅烧活性度高,灼减量低,并且无论白云石是何种结构,只要 控制好工艺条件,料满预热好,其煅烧效果均很好,因此,煅烧出口 的煅白温度控制在300—400℃之间,有利于还原反应。

第 3 页 共 50 页 硅热法炼镁采用的还原剂应具有足够的还原能力,钙、硅、碳化 钙及炭质材料等均能将镁从氧化镁[MgO]中还原出来,还原剂的还原 能力按AL 、Si 、CaC 2的顺序递减的,从经验观点出发,在硅热法炼 镁中,通常是用硅铁作还原剂。 硅铁还原剂对于硅热法炼镁的还原过程是十分重要的,硅铁的反 应性与硅铁中的Si 、 Fe 、SiO 2、 FeSi 等组分有关,还原性能最好 的是Si ,其它的Fe —Si 化合物反应速度较小,而且随着铁含量的增 加,还原反应不易进行,含硅量高的硅铁脆而硬,易碎,易氧化。在 硅铁中含硅量85%以上的硅铁几乎全是Si 存在,含硅量75%的硅铁, 由Si 和Fe 、 SiO 2组成,其硅铁不适合硅热法炼镁,先用含硅量最高 的硅铁作还原剂,不仅其反应好,而且硅的利用率也高,但是工业生 产中,仍选用75%Si 的SiFe ,故常用Si 量75%的Si 作业硅热法的还 原剂。 硅热法炼镁的还原过程属于固相反应过程。对固相反应来说,要 求炉料有较细的粒度,并具有较大的比表面,即炉料越细越好,但是 炉料太细,压形时压缩比小,又难于成形,故炉料的细度必须控制在 一定的范围内,炉料的细度对镁的还原效率,硅的利用率有较大的影 响,炉料的粒度比不恰当,不仅影响还原效率,还影响团块的抗压强 度,所以炉料中的粒度比是非常重要的。 煅白的强度不大,一般比较易磨,白云石矿物结构不同,所以锻 白也呈现不同性质,网状结构的白云石其煅白成六方菱形结构的块

镁合金热处理工艺及研究现状

镁合金热处理工艺及研究现状 摘要:镁合金具有较高的比刚度、比强度、良好的电磁屏蔽性、减振性能和散热性能,是最轻的结构金属材料之一,在航空航天领域具有广泛的应用前景。本文综述了镁合金热处理工艺及其研究现状。 关键词:镁合金热处理研究现状 多数镁合金都可通过热处理来改善或调整材料的力学性能和加工性能。镁合金能否通过热处理强化完全取决于合金元素的固溶度是否随温度变化。当合金元素的固溶度随温度变化时,镁合金可以进行热处理强化。镁合金的常规热处理工艺分为退火和固溶时效两大类。 镁合金热处理强化的特点是:合金元素的扩散和合金相的分解过程极其缓慢,因此固溶和时效处理时需要保持较长的时间。另外,镁合金在加热炉中应保持中性气氛或通入保护气体以防燃烧。 一、退火 退火可以显著降低镁合金制品的抗拉强度并增加其塑性,对某些后续加工有利。变形镁合金根据使用要求和合金性质,可采用高温完全退火(O)和低温去应力退火(T2)。 完全退火可以消除镁合金在塑性变形过程中产生的加工硬化效应,恢复和提高其塑性,以便进行后续变形加工。完全退火时一般会发生再结晶和晶粒长大,所以温度不能过高,时间不能太长。当镁合金含稀土时,其再结晶温度升高。AM60、AZ31、AZ61、AZ60 合金经热轧或热挤压退火后组织得到改善。去应力退火既可以减小或消除变形镁合金制品在冷热加工、成形、校正和焊接过程中产生的残余应力,也可以消除铸件或铸锭中的残余应力。 二、固溶和时效 1、固溶处理 要获得时效强化的有利条件,前提是有一个过饱和固溶体。先加热到单相固溶体相区内的适当温度,保温适当时间,使原组织中的合金元素完全溶入基体金属中,形成过饱和固溶体,这个过程就称为固溶热处理。由于合金元素和基体元素的原子半径和弹性模量的差异,使基体产生点阵畸变。由此产生的应力场将阻碍位错运动,从而使基体得到强化。固溶后屈服强度的增加将与加入溶质元素的浓度成二分之一次方比。 根据Hmue-Rothery规则,如果溶剂与溶质原子的半径之差超过14%~15%,该种溶剂在此种溶质中的固溶度不会很大。而Mg的原子直径为3.2nm,则Li,Al,Ti,Cr,Zn,Ge,Yt,Zr,Nb,Mo,Pd,Ti,Pb,Bi等元素可能在Mg中会有显著的固溶度。另外,若给定元素与Mg的负电性相差很大,例如当Gordy定义的负电性值相差0.4以上(即∣xMg-x∣>0.4)时,也不可能有显著的固溶度。因为此时Mg和该元素易形成稳定的化合物,而非固溶体。 2、人工时效 沉淀强化是镁合金强化(尤指室温强度)的一个重要机制。在合金中,当合金元素的固溶度随着温度的下降而减少时,便可能产生时效强化。将具有这种特征的合金在高温下进行固溶处理,得到不稳定的过饱和固溶体,然后在较低的温度下进行时效处理,即可产生弥散的沉淀相。滑动位错与沉淀相相互作用,使屈服强度提高,镁合金得到强化: Tyield=(2aGb)/L+τ a (1) 式中Tyield为沉淀强化合金的屈服强度;τa为没有沉淀的基体的屈服强度;(2aGb/L)为在沉淀之间弯出位错所需的应力。 由于具有较低的扩散激活能,绝大多数镁合金对自然时效不敏感,淬火后能在室温下长期保持淬火状态。部分镁合金经过铸造或加工成形后不进行固溶处理而是直接进行人工时效。这种工艺很简单,可以消除工件的应力,略微提高其抗拉强度。对Mg-Zn系合金就常在热变

航空航天镁及镁合金应用

“航空航天、交通运输用高强镁合金加工材”类中,关键领域“航空航天”此方向下,具体产品(技术)名称中3类铸件锻件、挤压变形材、板带材,我公司是否有能力按照“产品(技术)要求”进行生产,并按照产品(技术)要求中的指标能生产的具体产品名称或方向各是哪些。 一.镁合金锻件运用领域 在大多数工程应用中,通常要求零件拉伸性能具有各向同性。因此,必须对镁合金铸锭坯进行不同方向的镦粗。使用三轴锻造可以控制镁合金三个方向上的镦粗过程,能有效避免各向异性。采用上述工艺可制备出的镁合金锻件,已成功地应用于航空、汽车等工业领域。比如,直升机及赛车发动机用镁合金锻件、直升机用镁合金锻件、箱罩用镁合金锻件,镁合金轮毂这些部件能承受极高的静态和动态交变载荷,并长期服役高温环境中。 二.锻造用典型镁合金 1.几种常用变形镁合金牌号和机械性能及其在航空领域的应用

锻造常用镁合金是Mg-Al-Zn、Mg-Zn-Zr和Mg-Mn 系,其他的还有Mg-Th、Mg -Re -Zn -Zr 和Mg-Al-Li 系等。 Mg-Al-Zn系合金一般属于中等强度、塑性较高的变形材料。按照ASTM标准,该系中常用的镁合金有AZ31B、AZ61A、AZ80A,我国与此相当的牌号分别是MB2、MB5、MB7。但是,Mg-A1-Zn系合金铸锭的实际晶粒尺寸不适于铸造后直接锻造,因此锻造前有必要对铸锭进行预挤压,以获得合乎要求的细晶组织,提高合金的可锻性。早在上世纪90年代李相容基于MB2制订出了镁合金的合理锻造工艺规范,随后国内很少有利用该系镁合金研制或生产镁锻件的报道。据悉俄罗斯已拥有用成套镁合金熔炼锻造生产线专利及专有技术,进行MA2—1(相当于我国牌号的MB3)镁合金锻造汽车轮毂和摩托车轮毂生产。 MB2是Mg-Al-Zn系不可热处理强化的变形镁合金。合金在室温下工艺塑性差,高温时塑性好,因此合金的压力加工工序必须在加热状态下进行。合金的切削加工性能、焊接性能良好,应力腐蚀倾向小,耐蚀性能较好。该合金可加工成形状复杂的锻件和模锻件,

铝锂合金

锂 1发现历史 第一块锂矿石,透锂长石(LiAlSi?O??)是由巴西人Jozé Bonifácio de Andralda e Silva 在名为Ut?的瑞典小岛上发现的,在18世纪90年代。当把它扔到火里时会发出浓烈的深红色火焰,1817年由瑞典科学家阿弗韦聪分析了它并推断它含有以前未知的金属,他把它称作锂。他意识到这是一种新的碱金属元素。然而,不同于钠的是,他没能用电解法分离它。1821年William Brande电解出了微量的锂,但这不足以做实验用。直到1855年德国化学家Robert Bunsen和英国化学家Augustus Matthiessen电解氯化锂获才得了大块的锂。锂在地壳中的含量比钾和钠少得多,它的化合物不多见,是它比钾和钠发现的晚的必然因素。 锂,原子序数3,原子量6.941,是最轻的碱金属元素。自然界中主要的锂矿物为锂辉石、锂云母、透锂长石和磷铝石等。在人和动物机体、土壤和矿泉水、可可粉、烟叶、海藻中都能找到锂。天然锂有两种同位素:锂6和锂7。 金属锂为一种银白色的轻金属;熔点为180.54°C,沸点1342°C,密度0.534克/厘米3,硬度0.6。金属锂可溶于液氨。 锂与其它碱金属不同,在室温下与水反应比较慢,但能与氮气反应生成黑色的一氮化三锂晶体。锂的弱酸盐都难溶于水。在碱金属氯化物中,只有氯化锂易溶于有机溶剂。锂的挥发性盐的火焰呈深红色,可用此来鉴定锂。 锂很容易与氧、氮、硫等化合,在冶金工业中可用做脱氧剂。锂也可以做铅基合金和铍、镁、铝等轻质合金的成分。锂在原子能工业中有重要用途。

2含量分布 在自然界中,主要以锂辉石、锂云母及磷铝石矿的形式存在。 锂在地壳中的自然储量为1100万吨,可开采储量410万吨。2004年,世界锂开采量为20200吨,其中,智利开采7990吨,澳大利亚3930吨,中国2630吨,俄罗斯2200吨,阿根廷1970吨。 锂号称“稀有金属”,其实它在地壳中的含量不算“稀有”,地壳中约有0.0065%的锂,其丰富度居第二十七位。已知含锂的矿物有150多种,其中主要有锂辉石、锂云母、透锂长石等。海水中锂的含量不算少,总储量达2600亿吨,可惜浓度太小,提炼实在困难。某些矿泉水和植物机体里,含有丰富的锂。如有些红色、黄色的海藻和烟草中,往往含有较多的锂化合物,可供开发利用。中国的锂矿资源丰富,以中国的锂盐产量计算,仅江西云母锂矿就可供开采上百年。 3物理性质 银白色金属。质较软,可用刀切割。是最轻的金属,比所有的油和液态烃都小,故应存放于液体石蜡、固体石蜡或或白凡士林中(在液体石蜡中锂也会浮起)。 锂的密度非常小,仅有0.534g/cm3,为非气态单质中最小的一个。 因为锂原子半径小,故其比起其他的碱金属,压缩性最小,硬度最大,熔点最高。 温度高于-117℃时,金属锂是典型的体心立方结构,但当温度降至-201℃时,开始转变为面心立方结构,温度越低,转变程度越大,但是转变不完全。在20℃时,锂的晶格常数为3.50?,电导约为银的五分之一。锂容易的与铁以外的任意一种金属熔合。锂的焰色反应为紫红色。 同位素 锂共有七个同位素,其中有两个是稳定的,分别是Li-6和Li-7,除了稳定的之外,半衰期最长的就是Li-8,它的半衰期有838毫秒,接下来是Li-9,有187.3毫秒,之后其他的同位素半衰期都在8.6毫秒以下。而Li-4是所有同位素里面半衰期最短的同位素,只有 7.58043×10-23秒。

相关文档
最新文档