乳状液和泡沫

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 乳状液与泡沫
4.1.7微乳状液
1950年,舒尔曼(Schulman)发现, 在由水、油和乳化剂所形成的乳状液中加 入第四种物质(乳化助剂),当用量适当 时可以形成一种外观透明均匀的液-液分 散体系,这就是微乳状液(或微乳液)。
定义:两种互不相溶液体在表面活性剂界面 膜作用下形成的热力学稳定的、各向同性的、 低粘度的、透明的、均相的分散体系。
W/O型: 油剂青霉素注射液、原油等。
第三章 乳状液与泡沫
W/O型和O/W型两类乳状液通常可用以下 几种方法鉴别:
1.稀释法
水加到O/W乳状液中,乳状液被稀 释;若水加到W/O型乳状液中,乳状液 变稠甚至被破坏。
如牛奶能被水稀释所以它是O/W型乳状液。
第三章 乳状液与泡沫
2.染色法 将极微量的油溶性染料加到乳状液中, 若整个乳状液带有染料颜色的是W/O型乳 状液,如果只有液滴带色的是O/W型乳状 液。若用水溶性染料其结果恰好相反。
第三章 乳状液与泡沫
3.过滤破乳
当乳状液经过一个多孔性介质时,由于 油和水对固体润湿性的差别,也可引起破乳。
4.化学破乳
化学破乳的原则是破坏吸附在界面上的 乳化剂,使其失去乳化能力。常用的是使用 破乳剂。破乳剂也是一种表面活性剂,有很 高的表面活性,能将界面上原来存在的乳化 剂顶替走;但破乳剂分子一般具有分支结构, 不能在界面上紧密排列成牢固的界面膜,从 而使乳状液的稳定性大大降低。
乳化作用(乳化):乳化剂使乳状液稳定的作用。
乳化剂一般可分为四大类:表面活性剂 类乳化剂、高分子类乳化剂、天然产物类乳 化剂以及固体粉末乳化剂。常用的乳化剂是 一些表面活性物质,如肥皂、蛋白质、磷脂、 胆固醇等。
对于表面活性剂类的乳化剂,HLB值 (HLB值是表面活性剂的亲水-亲油平衡值) 是有参考价值的。
第三章 乳状液与泡沫Leabharlann Baidu
4.1.2 影响乳状液类型的因素
4.1.2.1相体积
乳状液的分散相被称为内相,分散介 质被称为外相。
在1910年,Ostward根据立体几何的观 点提出“相体积理论”,他指出:如果分散 相均为大小一致的,根据液珠不变型的球型 立体几何计算,任何大小的球形最紧密堆积 的液珠体积只能占总体积的74.02%。
4.1.4.4界面复合物生成法
在油相中加入一种易溶于油的乳化剂, 在水相中加入一种易溶于水的乳化剂。当油 和水相互混合,并剧烈搅拌时,两种乳化剂 在界面上相互作用并形成稳定的复合物。
第三章 乳状液与泡沫
4.1.4.5轮流加液法
将水和油轮流加入乳化剂中,每次少 量加入。
制备某些食品乳状液就用此法。
第三章 乳状液与泡沫


第三章 乳状液与泡沫
4.1.2.4聚结速度
1957年Davies提出了一个关于乳状液 类型的定量理论:
在乳化剂、油、水一起摇荡时,油相 与水相都破裂成液滴,形成图(a)与(b)中 左半边所示的情形。
第三章 乳状液与泡沫
4.1.2.4聚结速度
乳化剂吸附在液滴的界面上,以后发展 成何种乳状液,则取决于两类液滴的聚结 速度:
第三章 乳状液与泡沫
5.电解质破乳
对于稀的乳状液,起稳定作用的是 扩散双电层,加入电解质可破坏双电层, 也能使乳状液聚沉
第三章 乳状液与泡沫
4.1.6 乳状液的应用
4.1.6.1控制反应
许多放热反应,反应时温度急剧上升, 能促进副反应的发生,从而影响产品质量。 若将反应物制成乳状液后再反应,即可避免 上述缺点。因为反应物分散成小液滴后,在 每个液滴中反应物数量较少,产生热量也少, 并且乳状液对象界面面积大,散热快,容易 控制温度。高分子化学中常使用乳液聚合反 应,以制得较高质量的反应。
第三章 乳状液与泡沫
第四章 乳状液与泡沫
第三章 乳状液与泡沫
4.1 乳状液 4.2 泡沫
第三章 乳状液与泡沫
4.1 乳状液
4.1.1乳状液的类型 4.1.2 影响乳状液类型的因素 4.1.3 乳状液的稳定性与乳化 4.1.4 乳状液的制备 4.1.5 乳状液的转型与破坏 4.1.6 乳状液的应用 4.1.7微乳状液
4.1.2.1相体积 一些乳状液的内相浓度可以超过0.74 很多,却并不发生变型。
(a) 不均匀液珠形成的密堆积乳状液示意图 (b) 形成多面体后密堆积乳状液示意图
第三章 乳状液与泡沫
4.1.2.2乳化剂分子构型
乳化剂分子的空间构型(分子中极性基 团和非极性基团截面积之比)对乳状液的类 型起重要作用。
第三章 乳状液与泡沫
微乳液也可分为不同的类型,除了 O/W型和W/O型外,还有双连续型,O/W 型和W/O型结构已有实验证明是球形,双 连续型有各种模式。


第三章 乳状液与泡沫
4.2 泡沫
4.2.1 泡沫液膜的特点 4.2.2 泡沫的稳定性 4.2.3 泡沫的破坏
第三章 乳状液与泡沫
4.2 泡沫
第三章 乳状液与泡沫
4.1.2.3乳化剂溶解度
以固体粉末为乳化剂时,若要使固体微 粒在分散相周围排列成紧密固体膜,固体粒 子大部分应当在分散介质中。
容易被水润湿的固 体,如粘土、Al2O3 ,可形成O/W乳状 液。
油 水
第三章 乳状液与泡沫
4.1.2.3乳化剂溶解度
容易被油润湿的炭黑、石墨粉等,可作 为W/O型乳状液的稳定剂。
将乳化剂比喻为两头大小不等的楔子, 若要楔子排列的紧密且稳定,截面积小的 一头总是指向分散相,截面积大的一头留 在分散介质中,此即为楔子理论。
例外:一价银肥皂,作为乳化剂形成W/O型乳状液
第三章 乳状液与泡沫
4.1.2.2乳化剂分子构型
一价碱金属皂类,形 状是:


亲水端为大头, 作为乳化剂时,容易形
第三章 乳状液与泡沫
3.液滴双电层的排斥作用
乳状液的液珠上所带电荷的来源有: 电离、吸附以及液珠与介质之间的摩擦, 其主要来源是液珠表面上吸附了电离的 乳化剂离子。
在乳状液中,水的介电常数远比常见的 其它液体高。故O/W型乳状液中的油珠多数 是带负电的,而W/O型乳状液中的水珠则往 往带正电。反离子形成扩散双电层,热力学 电势及较厚的双电层使乳状液稳定。
4.1.5 乳状液的转型与破坏
4.1.5.1乳状液的转型
1.乳化剂类型的变更
按楔子理论,乳化剂的构型是决定乳 状液类型的重要因素,乳化剂构型转变就 会导致乳状液的转型。
2.相体积的影响 乳状液的内相体积占总体积26%以下
的体系是稳定的,如果不断加入内相液体, 其体积超过74.02%,内相有可能转变为外 相,乳状液就发生转型。
第三章 乳状液与泡沫
4.1.4 乳状液的制备
4.1.4.1转相乳化法 (1)将乳化剂先溶于油中加热,在剧烈 搅拌下慢慢加入温水,加入的水开始以细 小的粒子分散在油中,是W/O型乳状液, 再继续加水,随着水的增加,乳状液变稠, 最后转相变成O/W型乳状液。
(2)将乳化剂直接加于水中,在剧烈搅 拌下将油加入,可直接得到O/W型乳状液, 若欲制得W/O型,则可继续加油直到发生 变型。
表面活性剂的起泡作用
第三章 乳状液与泡沫
4.2.1 泡沫液膜的特点
B部分为两个气 泡的交界处,界面是 平坦的,A是三个气 泡的交界处,界面时 弯曲的。
三个气泡的液膜分界面的示意图
由拉普拉斯公式可知,B处的压力比A 处高,所以B部分液体总是向A部分流动, 使液膜不断变薄,最终可能导致破裂。
染色法微观示意图(以苏丹Ⅲ为例)
第三章 乳状液与泡沫
3.电导法
通常O/W型乳状液有较好的导电性 能,而W/O型乳状液的导电性能却很差。 (但若乳状液中有离子型乳化剂,也有 较好导电性)。
4.滤纸润湿法 由于滤纸容易被水所润湿,将O/W型 乳状液滴在滤纸上后会立即辅展开来,而 在中心留下一滴油;如果不能立即辅展开 来,则为W/O,对于易在滤纸上铺展的油 如苯、环己烷等,不宜采用此法鉴别。
第三章 乳状液与泡沫
2.界面膜的性质
界面膜的机械强度是决定乳状液稳定性 的主要因素。大量实验事实说明:
(1)要有足够量的乳化剂才能有良好的乳 化效果 (2)直链结构的乳化剂的乳化效果一般优 于支链结构的。
为提高界面膜的机械强度有时使用混 合乳化剂,不同乳化剂分子间相互作用可 以使界面膜更坚固,乳状液更稳定。
成O/w型乳状液。
二价碱金属皂类,极
性基团为:
亲水端为小头,作为乳 化剂,容易形成W/O型
水 油
乳状液
第三章 乳状液与泡沫
4.1.2.3乳化剂溶解度
Bancroft提出,油水两相中,对乳化 剂溶度大的一相成为外相。
例如:碱金属的皂类是水溶性的,故形成 O/W型乳状液,二价与三价金属皂足油溶 性的,它们都形成W/O型乳状液。
第三章 乳状液与泡沫
4.1 乳状液
4.1.1乳状液的类型
乳状液是一种液体以直径大 于100nm 的细小液滴(分散相)在另 一种互不相溶的 液体(分散介质)中 所形成的粗粒分散系。
如牛奶,含水石油,乳化农药等。
仅仅两种不相容的纯液体(如油和水) 并不能形成乳状液,它们必须在乳化剂 (如肥皂)的作用下才能稳定。
第三章 乳状液与泡沫
4.1.1乳状液的类型
乳状液 可分为
水包油,O/W,油分散在水中
两大类型
油包水,W/O,水分散在油中
O/W (水包油型)
W/O (油包水型)
第三章 乳状液与泡沫
4.1.1乳状液的类型
在适当的乳化剂条件下,可形成O/W (水包油型)或W/O (油包水型)乳状液。
O/W型: 牛奶、鱼肝油乳剂、农药乳剂等;
第三章 乳状液与泡沫
4.1.6.2 农药乳剂 将杀虫药,灭菌剂制成O/W型乳剂使 用,不但药物用量少,而且能均匀地在植 物叶上铺展,提高杀虫、灭菌效率
4.1.6.3 沥青乳状液 沥青的黏度很大,不便于在室温下直 接用于铺路面。若用阳离子型乳化剂将其 制成O/W型乳状液,则表观黏度大大降低, 并改善了对砂石的润湿性。
第三章 乳状液与泡沫
4.1.2.1相体积
若分散相相体积大于74.02%, 乳状液 就会变型。
如水的体积占总体积的26~74.02%时 O/W型、W/O型两种乳状液都有形成的可 能性。若小于26%只能形成W/O型乳状液, 若大于74.02%只能形成O/W型乳状液。此 理论有一定的实验基础。
第三章 乳状液与泡沫
第三章 乳状液与泡沫
4.1.4.2自然乳化分散法
把乳化剂加到油中,制成溶液直接投 入水中,可制成O/W型乳状液,有时需稍 加搅拌。
农药乳状液如敌敌畏乳剂就以此法制得。
第三章 乳状液与泡沫
4.1.4.3瞬间成皂法
将脂肪酸溶于油中,碱溶于水中,然后 在剧烈搅拌下将两相混合,在混合瞬间界面 上形成了脂肪酸钠,这就是O/W型乳化剂。
第三章 乳状液与泡沫
4.1.5.2 乳状液的破坏
1.加热破乳
升温加速乳状液液珠的布朗运动使絮 凝速率加快,同时使界面粘度迅速降低, 使聚结速率加快,有利于膜的破裂。
2.高压电破乳 高压电场的破乳较复杂不能只看作扩
散双电层的破坏,在电场下液珠质点可排 成一行,呈珍珠项链式,当电压升到某一 值时,聚结过程在瞬间完成。
(1)如果水滴的聚结速度远大于油滴的, 则形成O/W型乳状液;
(2)如果油滴的聚结速度远大于水滴的, 则形成W/O型乳状液;如果二者的聚结速 度相近,则相体积大者构成外相。
第三章 乳状液与泡沫
4.1.3 乳状液的稳定性与乳化
4.1.3.1乳状液不稳定性的表现
第三章 乳状液与泡沫
4.1.3.2 乳化剂与乳化作用
第三章 乳状液与泡沫
4.1.3.2 乳化剂与乳化作用
HLB范围
3~6 7~9 8~18 13~15 15~18
应用类型
W/O乳化剂 润湿剂 O/W乳化剂 洗涤剂 加溶剂
第三章 乳状液与泡沫
4.1.3.3影响乳状液稳定性的主要因素 1.界面张力
乳状液是相界面很大的多相体系,液 珠有自发聚结,以降低体系总界面能的倾 向。显然,可以加入表面活性剂降低表面 张力,以增强乳状液的稳定性。
第三章 乳状液与泡沫
3. 温度的影响
有些使用非离子型表面活性剂作为乳 化剂的乳状液,当温度升高时乳化剂分子 的亲水性变差,亲油性增强。在某一温度 时,由非离子型表面活性剂所稳定的O/W 型乳状液将转变成为W/O型乳状液,这一 温度称为转型温度(简称PIT)。
第三章 乳状液与泡沫
4. 电解质
大量电解质的加入可能使乳状液变型。 以油酸钠为乳化剂的苯在水中的乳状液为 例,加入0.5mol•dm-3NaCl时可变为W/O 型的。这是因为电解质浓度很大时,离子 型皂的离解度大大下降,亲水性也因此而 降低,甚至会以固体皂的形式析出,乳化 剂亲水亲油性质的这种变化最终导致乳状 液的变型。
相关文档
最新文档