机器学习之特征提取 VS 特征选择
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器学习之特征提取VS 特征选择
1. 特征提取V.S 特征选择
特征提取和特征选择是DimensionalityReduction(降维)的两种方法,针对于the curse of dimensionality(维灾难),都可以达到降维的目的。但是这两个有所不同。
特征提取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射。
特征选择(Feature Selection):choosing a subset of all the features(the ones more informative)。也就是说,特征选择后的特征是原来特征的一个子集。
2. PCA V.S LDA
主成分分析(Principle Components Analysis ,PCA)和线性评判分析(Linear Discri mi nant Analysis,LDA)是特征提取的两种主要经典方法。
对于特征提取,有两种类别:
(1)Signal representation(信号表示): The goal of the feature extraction mapping is to represent the samples accurately in a low-dimensional space. 也就是说,特征抽取后的特征要能够精确地表示样本信息,使得信息丢失很小。对应的方法是PCA.
(2)Signal classification(信号分类): The goal of the feature extraction mapping is toenhance the class-discriminatory information in a low-dimensional space. 也就是说,特征抽取后的特征,要使得分类后的准确率很高,不能比原来特征进行分类的准确率低。对与线性来说,对应的方法是LDA . 非线性这里暂时不考虑。
可见,PCA和LDA两种方法的目标不一样,因此导致他们的方法也不一样。PCA得到的投影空间是协方差矩阵的特征向量,而LDA则是通过求得一个变换W,使得变换之后的新均值之差最大、方差最大(也就是最大化类间距离和最小化类内距离),变换W就是特征的投影方向。