汽轮机发展历史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机发展历史
一、国际上汽轮机发展状况
1、1883年瑞典工程师拉瓦尔设计制造出了第一台单级冲动式汽轮机,随后在1884年英国工程师帕森斯设计制造了第一台单级反动式汽轮机,虽然当时的汽轮机和我们现在的汽轮机相比结构非常简单,但是从此推动了汽轮机在世界范围内的应用,被广泛应用在电站、航海和大型工业中。
2、在60年代,世界工业发达的国家生产的汽轮机已经达到500—600MW等级水平。
1972年瑞士BBC公司制造的1300MW双轴全速汽轮机在美国投入运行,设计参数达到24Mpa,蒸汽温度538°C,3600rpm;1974年西德KWU公司制造的1300MW单轴半速(1500 rpm)饱和蒸汽参数汽轮机投入运行,;1982年世界上最大的1200MW单轴全速汽轮机在前苏联投入运行,压力24 Mpa,蒸汽温度540°C。
3、目前世界各国都在研究大容量、高参数汽轮机的研究和开发,如俄罗斯正在研究2000MW汽轮机。
主要是大容量汽轮机有如下特点:
1)降低单位功率投资成本。
如800MW机组比500MW汽轮机的千瓦造价低17%;
1200MW机组比800MW机组的千瓦造价低15%—20%。
2)提高运行经济性。
如法国的600MW机组比国产的125MW机组的热耗率低276kj/kW.h,每年可节约燃煤4万吨。
3)加快电网建设速度,满足经济发展需要。
4)提高电网的调峰能力。
4、汽轮机按照工作原理分为冲动式汽轮机和反动式汽轮机。
汽轮机是一种以蒸汽为动力,并将蒸气的热能转化为机械功的旋转机械,是现代火力发电厂中应用最广泛的原动机。
汽轮机具有单机功率大、效率高、寿命长等优点。
——冲动式汽轮机蒸汽主要在静叶中膨胀,在动叶中只有少量的膨胀。
——反动式汽轮机蒸汽在静叶和动叶中膨胀,而且膨胀程度相同。
由于反动级不能作成部分进汽,因此第一级调节级通常采用单列冲动级或双列速度级。
如我国引进美国西屋(WH)技术生产的300MW、600MW机组。
目前世界上生产冲动式汽轮机的企业有:美国通用公司(GE)、英国通用公司(GEC)、日本的东芝(TOSHIBA)和日立、俄罗斯的列宁格勒金属工厂等。
制造反动式汽轮机的有美国西屋公司(WH)、日本三菱、英国帕森斯公司、法国电器机械公司(CMR)等,德国(SIEMENS)。
冲动式汽轮机为隔板型,如国产的300MW高中压合缸汽轮机;反动式汽轮机为转鼓型(或筒型),如上海汽轮机厂引进的300MW、600MW汽轮机。
5、汽轮机按照蒸汽参数(压力和温度)分为:
——低压汽轮机:主蒸汽压力小于1.47Mpa;
——中压汽轮机:主蒸汽压力在1.96—3.92Mpa;
——高压汽轮机:主蒸汽压力在5.88—9.8Mpa;
——超高压汽轮机:主蒸汽压力在11.77—13.93Mpa;
——亚临界压力汽轮机:主蒸汽压力在15.69—17.65Mpa;
——超临界压力汽轮机:主蒸汽压力大于22.15Mpa;
——超超临界压力汽轮机:主蒸汽压力大于32Mpa;
6、由于冶金技术的不断发展,使得汽轮机结构也有了很大改进。
目前的大机组
普遍采用了高中压合缸的双层结构,高中压转子采用一根转子结构,高、中、低压转子全部采用整锻结构,轴承较多地采用了可倾瓦结构。
目前各国都在进行大容量、高参数机组的开发和设计,如俄罗斯正在开发的2000MW汽轮机。
日本正在开发一种新的合金材料,将使高中、低压转子一体化成为可能。
二、我国汽轮机发展状况
1、我国汽轮机发展起步比较晚。
1955年上海汽轮机厂制造出第一台6MW汽轮机。
1964年哈尔滨汽轮机厂第一台100MW机组在高井电厂投入运行;1972年第一台200MW汽轮机在朝阳电厂投入运行;1974年第一台300MW机组在望亭电厂投入运行。
70年代进口了10台200—320MW机组,分别安装在了陡河、元宝山、大港、清河电厂。
70年代末国产机组占到总容量70%。
2、1987年采用引进技术生产的300MW机组在石横电厂投入运行;1989年采用引进技术生产的600MW机组在平圩电厂投入运行;2000年从俄罗斯引进两台超临界800MW机组在绥中电厂投入运行。
3、上海汽轮机厂是中国第一家汽轮机厂,在1995年开始与美国西屋电气公司合作成立了现在的STC,1999 年德国西门子公司收购了西屋电气公司发电部,STC 相应股份转移给西门子。
哈尔滨汽轮机厂1956年建厂,先后设计制造了我国第一台25MW、50MW、100MW和200MW汽轮机,80年代从美国西屋公司引进了300MW和600MW亚临界汽轮机的全套设计和制造技术,于1986年制造成功了我国第一台600MW汽轮机,目前自主研制的三缸超临界600MW汽轮机已经投入生产。
东方汽轮机厂1965年开始兴建,1971年制造出第一台汽轮机,目前的主力机型为600MW汽轮机。
北京北重汽轮电机有限责任公司做为后起之秀,以300MW机组为主导产品,它是由始建于1958年的北京重型电机厂通过资产转型
在2000年10月份成立的又一大动力厂,目前2台600MW汽轮机也已经在今年投入生产。
4、目前中国四大动力厂以300MW和600MW机组为主导产品。
汽轮机检修
第一部分汽轮机检修准备
1、机组检修等级划分
按照检修规模和停用时间将机组检修划分为:
1.1 A级检修
对汽轮发电机组进行全面的解体检查和修理,属于机组性能恢复性检修。
1.2 B级检修
针对机组存在的问题,对某些设备有针对性地进行解体检查和修理,属于部分设备性能恢复性检修。
经过评估,可以有针对性地实施部分A级检修项目或定期滚动检修项目。
1.3 C级检修
根据设备的磨损、老化规律,有重点地对机组进行检查、评估、修理和清扫,属于消缺性检修。
根据设备状况可以实施部分A级检修项目或定期滚动检修项目。
1.4 D级检修
在机组运行状况良好的情况下,根据季节特点对主要附属系统和设备进行的消缺。
可以安排部分C级检修项目。
发电厂设备检修从计划检修、预防性定期检修、优化检修、状态检修四个阶段,但是由于汽轮机作为高温高压高转速的主机,目前比较多的电厂还沿用了预防性的定期检修模式。
2、机组检修周期
2.1 新投产的机组在制造厂没有明确的规定情况下,一般在投产后一年左右,根据运行情况安排一次A/B级检修。
2.2 其它运行机组参照下表执行
西门子公司制造的350MW机组,高中压合缸结构的汽轮机在蒸汽品质保证的前提下检修间隔为12年,最新设计的产品为24年,是目前世界上检修间隔最长的机组,该汽轮机为两轴三支点结构,转子和汽缸同向膨胀(以#1轴承箱的推力支持联合轴承
3、汽轮机资料和信息收集
该阶段主要是为检修项目的确定和检修技术准备工作收集资料和提供依据。
3.1 图纸收集整理
收集整理汽轮机的如下图纸:
⏹汽轮机安装和检修技术说明书;
⏹汽轮机结构说明书;
⏹汽轮机总结结构图;
⏹汽轮机轴瓦图;
⏹汽轮机转子图;
⏹汽轮机通流图;
⏹汽轮机滑销系统图;
⏹汽轮机对轮连接图。
3.2 汽轮机安装和历次检修技术文件
⏹安装技术文件,包括安装技术记录、缺陷处理单、制造厂建议书、相
关的变更文件等。
技术记录卡包括的主要内容有:
解体阶段的检修记录:轴瓦间隙记录、轴承紧力(间隙)记录、油档间隙记录、对轮同心度记录、对轮晃度记录、对轮和推力盘瓢偏记录、汽缸与转子径向和轴向相对位置记录、汽缸负荷分配记录、汽缸支撑转换记录、推力间隙记录、推缸记录、转子弯曲度记录、转子轴径扬度记录、通流记录。
检修阶段的检修记录:滑销间隙记录、汽缸轴承座水平记录、隔板(汽封)支撑和定位键间隙记录、汽缸支撑和定位键间隙记录、汽缸合缸记录、隔板变形记录、汽封块膨胀间隙记录、发现的缺陷及处理记录、主要部件调整记录、通流间隙记录、轴承检修记录、主要部件更换记录。
回装阶段的检修记录:螺栓紧固记录、转子轴向定位记录、轴串记录、推力间隙记录、汽缸管道内部检查记录、汽缸与转子定位记录、汽缸和隔板支撑垫片记录、汽缸与转子定位尺寸记录、汽缸负荷分配记录、汽缸支撑转换记录、防提升装置间隙记录、转子中心调整记录、对轮同心度记录、对轮连接记录、轴瓦间隙记录、油档间隙记录、轴承紧力(间隙)记录、轴系扬度记录、桥规记录、汽缸扣盖签证、轴承箱扣盖前检查记录。
技术记录卡应根据现场检修各阶段的数据测量情况印制足够份数,并发到项目负责人,并向其交代记录卡的使用注意事项,如汽流方向、测量位置、测量工具、需要记录的内容包括测量状态、测量数值、测量工具编号、测量人、测量时间等。
如轴瓦间隙记录至少应分为解体阶段和回装阶段,至少要交给项目负责人两份。
4、工器具准备
工器具准备是主机检修准备中的一项主要内容,汽轮机检修的专用工具比较多,需要的高技术工具和精密测量工具也比较多,因此把工器具准备做为一项主要内容单列。
汽轮机检修工器具包括以下几方面:
——随机专用工具;
——通用性专用工具;
——测量工具;
——起重工具;
——电动工具;
——手动工具;
——运输工具。
此外还要联系有相应加工能力的机加工车间,准备好检修过程中一些部件的加工机械,如螺栓加工、调整垫板磨削、
汽轮机的主要工具包括:
——吊装工具:临时吊车、吊汽缸专用工具、吊轴承座专用工具、吊隔板(套—)专用工具、吊轴承座专用工具、转子抬轴专用工具、吊转子专用工具、吊轴承专用工具、吊导汽管专用工具、汽缸导杆、转子限位导柱、千斤顶。
——螺栓拆装工具:螺栓长度测量专用工具、电动液压力矩扳手、手动力矩扳手、力矩放大器、专用扳手、法兰螺栓加热装置和加热棒、液压拉伸器、绞刀。
——加工工具:角相、电磨、无齿锯、手枪钻、磁力钻、电动磨孔机、汽封块加工机床。
——测量工具:电子楔形塞尺、内外径千分尺、研磨平板、合像水平仪、铅丝
厚度测量工具、百分表、内径百分表、量块、刀口尺、测力计、激光准值仪、天平、桥规、测量环、深度尺(包括专用)。
——其它:汽缸顶丝、轴承箱顶丝、汽缸(隔板套)支撑转换顶丝或转换垫块、假瓦。
第二部分检修工艺
一、解体阶段
本部分主要结合检修解体过程对汽轮机的结构形式、检修工艺等进行讲解。
1、解体阶段检修工序
——在检修前应充分了解该汽轮机拆除保温的要求条件,主要是高压缸进汽室金属温度的要求。
——由于汽轮机结构和材质不同,对汽缸温度的要求也不尽相同,一般在150℃~120℃之间停盘车,温度在120℃~100℃之间可以拆除汽缸和导汽管保温,金属温度在80℃以下可以拆除导汽管和汽缸螺栓。
但也有高于此温度要求的,如日本三菱350MW机组要求调速级温度小于180℃即可进行拆除保温工作;上汽600MW汽轮机要求调节级金属温度降到160即可进行拆除保温工作;德国ABB200MW汽轮机要求调节级金属温度降到150℃(或汽缸表面温度降到100℃)时可以进行保温拆除工作。
——在汽缸温度较高时拆除保温和导汽管道,会造成汽缸变形、汽缸裂纹、通流和汽缸定位键槽卡涩、转子弯曲、导汽管螺栓咬扣等事故。
2 支持轴承的结构
2.1支持轴承的分类及结构特点
(1)圆筒形轴承
圆筒形(或称圆柱形)轴承是最早用于汽轮
发电机上的老式结构的滑动轴承,其轴瓦内孔呈
圆形,内孔等于轴颈直径Ф加顶部间隙,而顶部
间隙а为轴颈的1.5/1000—2/1000,两侧间隙ь各
为顶部间隙的一半,如图。
轴承下瓦与轴颈的接
触角按轴瓦长度L与轴颈ф之比(长颈比)及轴瓦负荷大小而定。
一般取600左右,当轴瓦长度与直径之比小于0.8—1或轴瓦负荷大于0.8~1MPа时,接触角可达到750左右。
常用的圆筒形轴承在下瓦中分面附近位置(轴颈旋转方向的上游)处有进油口,轴颈旋转时只能形成下部一个油楔,这种轴承称为单油楔圆筒形轴承,这种轴承结构简单,润滑油的消耗量小,摩擦损失少,但是该结构的轴承在高速轻载的工作条件下,油膜刚度差,容易发生失稳现象,目前应用广泛的是自位式圆筒形轴承,主要用在汽轮机低压转子和发电机转子上,为了保证轴承在运行中能自由滑动,又不至于发生振动,轴承一般在冷态下要求有0.03~0.08mm的紧力。
(2)椭圆形轴承
椭圆形轴瓦是随着汽轮机单机容量不断增大和转速不断升高,在圆筒形轴瓦的基础上发展起来的。
它被用于功率较
大的机组上。
椭圆形轴瓦的顶部间隙约
为轴径直径的1/1000,两侧间隙各为轴
径直径的1/1000左右,即内孔上下直径
为(ф+0.001ф),左右直径为(ф+0.002
ф)。
所以,椭圆轴承实际上是由两个不
完全的半圆合成的,加工时在水平中分
面两侧,按设计的椭圆度加垫片,加工结束后取去垫片,即成椭圆轴承。
在上瓦设有油槽,宽度为轴承有效宽度的一半,深度在5mm左右,为便于进油和排油,在中间结合面开有圆滑过渡的缺口,为减少漏油间隙,把在端部回油槽部位的乌金加工成了圆形。
其垂直方向的短径略小于水平方向的长径,在下瓦中分面附近
位置(轴颈旋转方向的上游)处有进油口。
轴颈旋转时能形成两个油楔,两个油楔相互作用可得到较好的油膜刚度,使转子在垂直方向不易发生振动,但是椭圆形轴承的油耗和摩擦损失都比圆筒形轴承大,这种轴承也有可能发生失稳现象。
上述两种轴瓦的另一结构特点为润滑油进油是顺着转动方向供给的,如图5—3所示。
润滑油进入轴瓦后,顺转动方向到达轴颈上部,冷却轴颈,再流到下部起润滑作用。
同时为了减少摩擦及使油易于循环,一般轴瓦上部车有油槽,其宽度约为轴瓦长度的1/3,该油槽到接合面附近就向两端扩大,以保证润滑油在轴瓦全长分布均匀。
(3)三油楔轴承
三油楔轴承是在乌金面上加工出了三个油囊,在其下瓦偏垂直位置两侧都有进油口,在上瓦还有一个进油口,轴颈旋转时能形成三个油楔,故称为三油楔轴承。
这种结构的轴承提高了抗震性能和承载能力。
70年代初,在国产125MW、200MW、300MW汽轮发电机组上应用了三油楔轴承。
(4)可倾瓦轴承
可倾瓦轴承也称密切尔式径向轴承或称自动调整中心式轴承,其轴瓦由若干可绕其支点在一定角度范围内倾斜的弧形瓦块组成。
每一个瓦块之间的间隙作为轴瓦的进油口。
瓦块在工作时随着转速、载荷及油温的不同而自由摆动,每一个轴瓦形成一个油楔,在轴颈四周形成多个油楔,每个瓦块作用到轴颈上的油膜作用力总是通过轴颈中心,因此具有较高的自动对中性和稳定性,能有效的避免油膜自激振荡及间隙振荡,同时对于不平衡振动也有很好的限制作用。
可倾瓦的摩擦损失较小,其缺点是制造复杂,价格较贵。
目前越来越多地被大功率机组所采用。
可倾瓦轴承的瓦块数量选择主要取决于轴承的参数结构和制造厂的传统习惯,一般为3~6块。
如对于同样的350MW汽轮机,日本三菱选择的是四瓦块结构,美国GE公司则采用了六瓦块结构,还有的厂家选用了三瓦块结构。
三瓦块结构的轴承比较特殊,从外表看属于三块可倾瓦,但是其上半是圆筒瓦。
日本三菱350MW及国产上汽600MW汽轮机高中压转子的轴承,均采用如图5—6所示的可倾瓦。
该轴瓦是一种小瓦块式结构,轴瓦2在圆周上分成4块,每块瓦块均由在锻钢件上浇铸轴承合金而构成。
瓦块自由的放置在支持环1内,由球面支点块7支持,球面支点块与瓦块间有内垫片6,球面支点块与支持环间有外垫片8,内垫片与球面支点块呈球面接触。
因此,瓦块在球面支点块上,能使在圆周方向上自由倾斜而形成油楔。
四个瓦块均有球面支点块,因此形成四个油楔。
调整球面支点块的厚度,可保持轴承的规定间隙。
为保证拆装后的装配正
确,必须将轴承瓦块内垫片、球面支点块及外垫片,标之同一序号,并在支持环上打好对应的钢印号码。
这样能在拆装时不弄错,并能保证装配在同样的相对位置上。
润滑油从轴承下面的孔进入,通过调整块中的孔,从支持环两端的环形槽流到轴瓦内部,油被分布到轴颈表面,然后由轴颈两侧流经油挡,从油挡板底部排油孔排出流回油箱。
轴承两端装有浮动式内油挡,油挡环5固定在油挡支持板3、4上,整个油挡分成上下两半用螺栓直接固定在支持环上。
(5)压力式轴承
压力式轴承是在圆筒形轴承上瓦中央开有油槽,此油槽可以使润滑油的动能变成压力能,把轴心向下压,降低了轴心位置。
轴心位置的抬高是发生轴承油膜自激振荡的因素,所以这种轴承可防止油膜自激振荡的发生。
但是,它对油中杂质特别敏感。
如果杂质积聚在油槽处,不但会降低防止油膜自激振荡的效果,而且会加速轴瓦磨损。
N300-16.67/537/537和TC2F-33.5型汽轮机低压转子两端采用这种轴承,其结构如图5-7所示。
轴承本体分上下两块组成,它由铸钢制成,在内层浇铸轴承合金,并在轴承合金上开有间断槽形的润滑油通路。
这对避免产生油膜自激振荡带来一定的好处。
轴承本体由三个球面调整块固定,并由调整块来调整轴承中心位置。
三个球面调整块的布置,有两个在轴承的下半部,装在与水平面成450的中心线上,另一个在上半轴承的垂直中心线上,通过改变调整垫片7的厚度,可调整轴承水平的垂直方向的位置。
在轴承上下接合面有安装销5,使上下合成整体,为了防止轴承本体的转动,在轴承水平接合面的下部,用防转销12嵌入轴承座的凹口。
润滑油通过轴承座的孔和调整块中心孔流至轴承,如图5-7所示。
油进入轴承本体后,流向上半轴承中央的凹处,然后流向轴承两端的圆周槽,沿排油孔流回轴承室。
压力式轴承的间隙一般为(0.002Φ+0.10)mm或(0.002Φ-0.10)mm。
(6)袋式轴承
袋式轴承是瑞士ABB公司在对大型机组轴承结构进行深入研究后制造出的一种类似椭圆轴承结构的袋式轴承。
加工方法:首先根据轴承的顶部油隙和轴颈
尺寸,将两半轴承合在一起加工成圆筒轴承;然后在两半轴瓦中分面加垫片(厚
度为a),用轴颈φ+a 以圆心上移0.2mm左右为新园心再车一个圆,在轴瓦两端各留40mm不车作为阻油边,去掉垫片组装后就成为袋式轴承。
垫片а的厚度由油袋弧长确定,一般弧长夹角取350,油袋深度d一般取0.7mm 。
圆心上移0.20 mm 左右,主要考虑油膜厚度,即运行时转子与轴承在垂直方向的中心保持一致。
轴承两端的阻流边,能减慢润滑油排泄速度,保证轴承有足够的冷却和润滑油量。
袋式轴承在静态特性方面,具有摩擦耗功小,油流量小,承载能力大等优点;在动态特性方面,具有汽轮机所遇到的全部转速范围内没有不稳定区,阻尼大,油膜厚,轴承温度低等优点。
2.2 支持轴承的检修特点
(1)三油楔轴承的检修特点
三油楔轴承的检修特点是轴承合金不可修刮,装配时需翻砖350角,并放好防转销,严防装反装错,以免运行中因三个油楔位置改变,而导致轴瓦烧毁。
由于轴瓦在工作状态中分面不在水平面上,所以顶部间隙均在组合状态下用内径千分尺分前、后、垂直、水平方向测量轴瓦内孔直径,内孔直径与轴颈直径之差,即为所求,实际上测出的间隙为阻油边间隙。
油楔本身,一般情况下不予测量和研刮,只在轴瓦合金磨损严重时,才进行测量和处理。
(2)椭圆轴承的检修特点
椭圆轴承的检修特点是对装配位置的准确性要求高,尤其是轴瓦的水平位置,必须做到前后左右四角间隙基本相等,不可有前后倾斜和左右歪斜现象。
为了达到这点要求,除了用水平仪测量轴瓦中分面水平和用塞尺检查四角间隙外,还应在轴瓦全部装好后,开顶轴油泵做抬轴试验。
当顶轴油压大于10Mpa 时,轴应抬起0.05-0.10mm,方算轴瓦装配合格。
如果轴瓦前后不平,低的一端底部间隙较大,顶轴油将从该处泄掉,从而使轴顶不起来,运行时将发生轴承振动和合金熔化事故。
(3)可倾瓦检修特点
由于可倾瓦在支持环内可自由摆动,因此在揭去轴瓦大盖和松去支持环水平结合面螺栓后,应在上半支持环的专用螺孔内用专用长螺栓旋入可倾瓦块的螺孔,把上部的瓦块吊牢,并仔细检查瓦块是否吊牢固,防止瓦块落下而摔坏。
翻转的下瓦应用同样方法吊出。
解体瓦块应认清前后左右的记号,并做好记录,以防装复时搞错。
检查瓦块及支持环应光滑无毛刺,无裂纹等异常,接触
良好。
由于可倾瓦由几块可自由摆
动的瓦块组合而成,所以其间隙的
测量只能在组合状态下进行。
测量
时在转子轴颈处和轴瓦支持环外
圆上各架一只百分表,然后用抬轴
架将轴略微提升。
同时监视两只百
分表,当支持环上百分表指针开始
移动时,读出轴颈上的百分表读
数,最后将读数减去原始读数,两者之差除以1.414(对四瓦块式可倾瓦),即为轴瓦的油隙。
另一种测量方法是:测量时先将上瓦块专用吊瓦螺栓松掉,使瓦块紧贴轴颈,用深度千分尺测量瓦块到支承环的深度;然后用专用专用吊瓦螺栓将瓦块吊起,使瓦块支点与支承环紧密接触,再用深度千分尺测量瓦块到支承环的深度。
两次深度之差,即为轴瓦的油隙。
两种方法测量的结果应基本相同,否则应查明原因或重新测量。
一般情况下,可倾瓦油隙不必调整,轴瓦乌金不必研刮。
3. 推力轴承的结构
3.1推力瓦块的型式
固定瓦块推力轴承1
整圈刚性固定推力瓦块每个扇形固定瓦块由斜面—
平面组成。
运行时,由斜面与转子
推力盘的旋转平面构成油楔,使扇
形瓦块上都形成动压油膜力,以与
轴向载荷相平衡。
这种型式的推力
轴承承载能力0.5~1Mpa,通常用
于小功率汽轮机
2
弹性固定推力瓦块运行时,在动压作用下使瓦块
入口处倾斜,形成楔形油膜。
承载
能力略高于刚性固定推力瓦块推
力轴承。
固定瓦块推力轴承3
球座式推力轴承在球面体的两端面上装有固
定斜面瓦块止推板,它由铜合金制
成,具有良好的导热性能,表面浇
以巴氏合金。
瓦面上设有均布的8
条径向油槽。
这种结构也在
300MW等级汽轮机中应用。
3.2推力轴承的结构型式
1径
向推力联合轴承
径向推力联合轴承(摆动线式瓦块)
1.轴瓦体
2.轴承套
3.固定环
4.调整垫块
5.支持环
6.
支持弹簧7.工作瓦块8.挡油环9.非工作瓦块
径向和推力轴承置于一
体内,轴瓦体与轴承套
之间为球面配合。
使轴
承随轴的挠度变形而自
动调整,达到瓦面与转
子上推力盘表面之间有
较好接触,适用于挠性
转子并轴向载荷不太大
的机组。
径向推力联合轴承(弹性均衡式瓦块)
1.轴承体
2.径向瓦3、4.推力瓦块5.弹性支持环
6.调整垫片
7.径向调整块
推力瓦块搁置在弹性
圈上,承载时弹性圈产
生弹性变形,以达到各
块瓦面与推力盘平面有
良好接触的要求。
这种
结构运用于刚性转子并
且轴向载荷不太大的机
组。