浅层地热能利用技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅层地热能利用技术
浅层地热能利用技术
1前言
地热能是地球内部贮存的热能,它包括地球深层由地球本身放射性元素衰变产生的热
能及地球浅层由接收太阳能而产生的热能。前者以地下热水和水蒸气的形式出现,温度较高,主要用于发电、供暖等生产生活目的,其技术已基本成熟,欧美国家有很多用于发电,我国则多用来直接供热,这种地热能品位较高,但受地理环境及开采技术与成本的影响因而受限较大;后者由太阳能转换而来,蕴藏在地球表面浅层的土壤中,温度较低,但开采成本和技术相对也低,且不受地理环境的影响,特别适合于建筑物的供暖与制冷,因而受到了暖通空
调及
节能行业越来越多的关注。
地球表面是一座巨大的天然太阳能集热器和储热库。到达地球表面的太阳能相当于全世界能源消耗量的2000倍,只是由于太阳能能流密度低,地球表面的温度变化大,使得对这部分热能的直接利用困难较多。但实际上,温度受天气变化影响较大的部分主要集中在地
表面至地下10m之间的区域内,从10m深度再往下,大地温度就稳定在当地全年的平均气温上了。我国大部分地区这个温度都在15℃左右,如果把这样的温度搬运到地面上来稍做处理,
就可成为很好的空调系统,这就是目前浅层地热能利用的主要方式。
浅层地热能利用通常需借助于热泵,它是一项新兴绿色节能技术。在冬天它以大地为
低温位热源,从大地中提取热量,经过地面上热泵的转换,提高温位向房屋供暖;在夏天则以大地为高温位热源,将房屋内的热量输送到大地土壤中。由于地下温度十分稳定且很接近
房屋居住所需的温度,因此,相对于以大气环境为热源的热泵和燃煤、燃油的供暖供冷系统,以大地为提取热量或排放热量的热源的热泵效率大大提高,同时还减少了燃烧产物的排放
和制
冷剂的用量,对环保十分有利。
从大地土壤中提取热量用于房屋的供暖早在20世纪30年代就已提出,只是由于长期
以来石化燃料价格低廉,供应充足,它才没有得到重视,导致其进展缓慢。到20世纪80年
代以后,由于全球性能源紧张和环境污染日趋严峻,这项技术才逐渐受到青睐,目前已趋于
成熟,正在欧洲、北美和日本得到推广应用。在我国则还处于实验研究阶段,目前国内几家科研院所和高校正在开展这方面的研究,要进入商业化的实际工程应用尚需进行长期不懈
的努力。
2浅层地热能利用系统及其特点
浅层地热能属于低品位热能,直接使用达不到一般要求的温度,通常需设置一套热泵,组成地热能热泵利用系统,将地下热能的温度进行一定的提高或降低。因此,地热能利用系统主
要由热泵、地热换热器及用户端组成,而其中地热换热器是关键。
2.1地热能热泵地热能热泵的工作原理与通常的热泵相同,都是由压缩机、蒸发器、冷凝器、节流装置组成。通过消耗一部分高品质能源即电能,吸收低温物体的热能排放给高温
物体,实现供热和制冷的目的,其热泵示意图如图1所示。只不过,通常的热泵以大气环境为其吸热或放热的热源,大气温度的剧烈变化导致常规的热泵效率低下,不仅消耗大量高质能
源,而且恶化了周围的环境温度,使得夏天更热,冬天更冷。
与常规热泵不同,浅层地热能热泵以近地表层土壤为其吸收热量或排放热量的热源。在冬天,地热能热泵从土壤中吸取热量,供给热泵的蒸发器,经压缩机提高温度后,传到热泵的冷凝器,向房屋供热;在夏天,地热能热泵通过其蒸发器从房屋内吸收热量,经压缩机、冷凝器而排放到土壤中。因为土壤温度全年基本维持不变,热泵系统的操作可以设计得十分精
确,使得工作稳定而高效。
地热能热泵可以很小,单个住户只需一套热泵;也可以很大,商业上可采用多套或多级热泵,唯一的要求是需要足够的土地,使热交换能够充分进行,最节约的方式是在建筑施工的起始阶段就安装地热能热泵,这样,房屋结构就不会阻碍热泵与地下热源的联系。地热能热泵以大地为吸收或排放热量的热源,在有地下水源的地方,不需要专门的地下换热器,可以直接抽取地下水,经过去除杂质的处理后,根据供暖或制冷的目的,送给热泵的蒸发器或冷凝器,完成热量交换后回灌到地下或排放到别的地方。在没有水源的地方,热泵要与土壤交换热量,就需要设置专门的地下换热器。所以,在结构上它与常规热泵最大的不同就
是需要一套地热换热器。
2.2地热换热器
地热换热器的性能与当地土壤的性能密切相关,它设计得合理与否直接影响地热利用效率和投资成本,是地热泵成功应用的前提,也是当前浅层地热利用技术推广的难点。浅层地热能热泵所用地热换热器就是在地面下埋设的封闭管道回路,这些管路通常由高密度聚氯乙烯或聚丁烯塑料管组成,用泵将换热介质送入这些地下管道与地下土壤进行热量交换,然后回到地面与热泵进行换热,换热介质通常为水的盐溶液,封闭在管路系统,在地面
上的热泵与地下换热器之间循环流动,完成换热任务。
地下管道埋设方式有水平式和垂直式两种形式。水平埋管式通常浅层埋设,工程量大
而开挖技术要求不高,初投资低于竖直埋管式;缺点是占地面积大,温度稳定性也较差,现在
已很少采用。竖直埋管式工程量小,占地面积少,恒温效果好,维护费用少,适合于用地紧张
的
城市;缺点是技术要求较高,初投资较大。
竖直埋管式地热换热器目前应用较多,发展较快。它是在地面下竖直钻孔,在孔内埋入
换热管,换热管的形式又有两种:U型管式(见图2)和套管式,目前以U型管应用较多。地下
钻孔的孔径一般为100~150mm,孔间距和深度取决于土壤的热性质和气象条件并随地理位
置而变。孔深一般为100~300m,孔间距为4~10m,钻孔总长度由建筑面积的大小而定,一
般
是每平米建筑面积钻孔长度1m左右。
每一竖直钻孔内可放入一组或两组U型塑料管,管径25~35mm,塑料管下端用U型接头接好,形成一个U型封闭管路。然后将钻孔与管道之间的空间填埋夯实,填埋材料可以采用
当地土壤,也可以选用与当地土壤性质接近的混凝土。各钻孔内,管道之间的连接方式有串联和并联两种形式。
串联形式就是换热介质依次流过每个钻孔内的U型换热管路之后再回到地面与热泵的
制冷剂进行热量交换。并联形式就是换热介质同时分配到地下各个钻孔内的换热管路,与
土壤交换热量后,同时流回地面进入地面上的热泵与制冷剂交换热量,这两种方式各有利弊。串联系统的优点是:单一流程和管径;管道的线性长度有较高的热性能;系统的空气和废渣
易于排除。缺点是:需要较大的流体体积和较多的抗冻剂;管道费用和安装费用较高;长度
压
降特性限制了系统的能力。
并联系统的优点是:管径较小因而管道费用较少;抗冻剂用量较少;安装费用较低。缺
点是:一定要保证系统的空气和废渣的排除;在保证等长度环路下,每个并联线路之间流量
要
保持平衡。
2.3经济性及环保性地热能热泵的能源利用效率比通常的热泵提高45%~70%,通常每
消耗1kW的功率可得到4kW的热量或冷量。地热能热泵的投资回收期依赖于热泵系统的大小、运行时间的长短和当地的能源价格,因设置地热能热泵而多投资的费用的回收期通常
为5年
左右,总的投资回收期为10~14年。