2010年高考文科数学(广东卷)全解析

合集下载

2010广东高考数学试题及答案

2010广东高考数学试题及答案

2010广东高考数学试题及答案2010年广东高考数学试题及答案【试题部分】一、选择题(共10小题,每小题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(3无限循环)B. πC. √2D. 0.52. 已知函数f(x)=2x-3,求f(5)的值。

3. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。

4. 已知等差数列的首项为3,公差为2,求第10项的值。

5. 已知直线y=3x+2与x轴的交点坐标。

6. 已知抛物线方程为y=x^2-4x+4,求其顶点坐标。

7. 已知向量a=(3, 4),b=(-1, 2),求向量a与b的点积。

8. 已知圆的方程为(x-2)^2+(y-3)^2=25,求圆心坐标和半径。

9. 已知正弦函数y=sin(x)的周期。

10. 已知复数z=2+3i,求其共轭复数。

二、填空题(共5小题,每小题4分,共20分)11. 求二次方程x^2-4x+3=0的根。

12. 求等比数列1, 3, 9, …的第5项。

13. 已知正方体的边长为a,求其对角线的长度。

14. 已知函数y=x^3-2x^2+x,求其导数。

15. 已知椭圆的长半轴为a,短半轴为b,求其焦点到中心的距离。

三、解答题(共5小题,每小题10分,共50分)16. 解不等式:|x-2|+|x-3|≤4。

17. 已知三角形ABC,AB=5,AC=7,BC=6,求角A的余弦值。

18. 已知函数f(x)=x^3-6x^2+11x-6,求其极值点。

19. 已知矩阵A=\[\begin{array}{cc} 4 & 1 \\ 1 & 3\end{array}\],求矩阵A的特征值。

20. 已知平面直角坐标系中点A(2, 3),B(-1, -2),求直线AB的斜率和方程。

【答案部分】一、选择题答案1. C2. 73. {1, 2, 3, 4}4. 235. (-2/3, 0)6. (2, 0)7. 68. 圆心(2, 3),半径59. 2π10. 2-3i二、填空题答案11. x1=1,x2=312. 24313. a√214. 3x^2-4x+115. √(a^2-b^2)三、解答题答案16. 解:由绝对值不等式的性质,我们可以得到x的取值范围为[1, 4]。

2010广东高考文科数学 (4)

2010广东高考文科数学 (4)

2010广东高考文科数学一、概述2010年广东高考文科数学试卷是广东省教育厅于2010年组织的一次高中毕业生综合评价考试。

本文将对该试卷的题目进行详细分析和解答。

二、试题分析1. 选填题选填题是广东高考文科数学试卷中的一部分,共有若干道题目。

这些题目的特点是答案具有多样性,考生可以根据自己的方法和计算结果进行填写。

举例来说,试题可能是给出了一个方程,考生需要求出方程的根或解。

对于这类题目,考生可以采用因式分解、配方法、求根公式等不同的方法进行计算,最终填写答案。

2. 解答题解答题是广东高考文科数学试卷中的主要部分,包括选择题、填空题和证明题。

2.1 选择题选择题是广东高考文科数学试卷中一道典型的题目。

该类型的题目给出了一些选项,考生需要选择符合要求的选项作为答案。

通常情况下,选择题包括单选题和多选题。

对于选择题,考生需要认真阅读题干和选项,并结合自己的数学知识进行推理和判断,最终选择正确的答案。

2.2 填空题填空题是广东高考文科数学试卷中的一类题目。

该类型的题目通常给出了一些未知数或变量,考生需要根据所给的条件进行计算,并填写答案。

填空题对考生的计算能力和逻辑思维能力有一定的要求,考生需要熟练掌握数学计算方法,并能够合理推理和运用所学知识。

2.3 证明题证明题是广东高考文科数学试卷中的一类题目。

该类型的题目要求考生根据所给的条件和已知的数学知识进行推理和证明,最终得出结论。

对于证明题,考生需要熟悉各种证明方法和数学定理,并能够运用这些知识进行推理和证明。

证明题对考生的逻辑思维能力、分析问题的能力和数学知识的整合能力有较高的要求。

三、题目解答1. 选填题题目一已知方程x2−2x+1=0的两个解之和是?解析:这是一个二次方程求解的问题,考生可以采用求根公式进行计算。

根据求根公式,对于二次方程xx2+xx+x=0,其解为 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$。

2010广东省高考试卷含解析最新版本图文

2010广东省高考试卷含解析最新版本图文

1、下列各句中,没有语病的一句是(3分)A.“地坛书市”曾经是北京市民非常喜爱的一个文化品牌,去年更名为“北京书市”并落户朝阳公园后,依旧热情不减。

B.“丝绸之路经济带”横跨亚、非、欧三大洲,其形成与繁荣必将深刻影响世界政治、经济格局,促进全球的和平与发展。

C.在那个民族独立和民族解放斗争风起云涌的时代,能激发人们的爱国热情是评判一部文学作品好坏的非常重要的标准。

D.父亲住院期间,梅兰每天晚上都陪伴在他身旁,听他讲述一生中经历的种种苦难和幸福,她就算再忙再累,也不例外。

2、下列各句中加点词语的使用,不恰当的一项是A.“2015年度中国文化跨界论坛”日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。

B.对于那些熟稔互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。

C.这家民用小型无人机公司一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为“十大科技产品”“2014年杰出高科技产品”。

D.近年来,广袤蜀地的新村建设全面推进,大巴山区漂亮民居星罗棋布,大凉山上彝家新寨鳞次栉比,西部高原羌寨碉楼拔地而起。

3、阅读下面的作品,完成14—16题。

(8分)镜湖女(南宋)陆游湖中居人事舟楫,家家以舟作生业。

女儿妆面花样红,小伞翻翻乱荷叶。

日暮归来月色新,菱歌缥缈泛烟津。

到家更约西邻女,明日湖桥看赛神。

14、从体裁上看,本作品属于()(1分)A、古体诗B、近体诗C、歌行D、诗余15、对本作品分析不恰当的一项是()(3分)A、“事舟楫”写湖边的人家日常靠船为生。

B、“乱荷叶”写女子摆动的伞把荷叶搅乱。

C、“月色新”写傍晚景色,暗示时间转换。

D、“泛烟津”写若有若无的歌声随波荡漾。

16、结合作品,对作者塑造的“镜湖女”形象加以赏析。

(4分)4、写作 70分27、根据以下材料,自选角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌)。

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版

2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

da2010年高考数学广东(文)

da2010年高考数学广东(文)

π 3 . 6 2
π , 2
2π 4. π 2
π . 5
∴ f ( x) 3sin 4 x
(3)由 f ∴ cos
π π 9 π 3sin 3cos , 3 6 5 4 12
3 . 5
x ≥ 0,y ≥ 0, x ≥ 0,y ≥ 0, 12 x 8 y ≥ 64, 3 x 2 y ≥ 16, 即 6 x 6 y ≥ 42, x y ≥ 7, 6 x 10 y ≥ 54. 3 x 5 y ≥ 27.
0) , B(4, 3) , C (2, 5) , D(0, 8) 处的值分别是 z 在可行域的四个顶点 A(9,
设 A 表示随机事件“5 名观众中任取 2 名,恰有 1 名观众年龄为 20 至 40 岁” ,则 A 中的基 本事件有 6 种:
Y1 A1,Y1 A2,Y1 A3,Y2 A1,Y2 A2,Y2 A3 ,
故所求概率为 P ( A)
6 3 . 10 5
F
18. (本小题满分 14 分) (1)证明: ∵点 E 为 AC 的中点,且 AB BC,AC 为直径, ∴ EB ⊥ AC . ∵ EC ⊥ 平面 BED ,且 BE 平面 BED , ∴ FC ⊥ EB . ∵ FC∩ AC C , A ∴ EB ⊥ 平面 BDF . ∵ FD 平面 BDF , ∴ EB ⊥ FD . (2)解:∵ FC ⊥ 平面 BED ,且 BD 平面 BED , ∴ FC ⊥ BD . 又∵ BC DC , ∴ FD FB 5a . ∴ VE FBD
2
∴ sin 1 cos
4 . 5
17. (本小题满分 12 分) 解: (1)因为在 20 至 40 岁的 58 名观众中有 18 名观众收看新闻节目,而大于 40 岁的 42

广东高考文科数学试题及答案

广东高考文科数学试题及答案

绝密★启用前
试卷类型:B
2010 年普通高等学校招生全国统一考试(广东卷)
数学(文科)
本试卷共 4 页,21 小题,满分 150 分。考试用时 120 分钟。 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号
填写在答题卡上。用 2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在 答题卡右上角“条形码粘贴处”。
2010 广东高考数学(文科)试卷第 - 3 -页 共 8 页
5
名观众的年龄为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年高考数学广东卷试题和答卷分析

2010年高考数学广东卷试题和答卷分析

重基础重能力重应用重创新--- 2010年高考数学广东卷试题和答卷分析及若干建议通过高考阅卷和对高考试题的的深入分析,我们可以看到,2010年普通高考数学广东卷(以下简称广东卷)的命题严格遵循了《考试大纲》和《考试说明》的要求,充分体现了数学新课程标准的核心理念,对中学数学教学实施素质教育起到了很好的引导作用。

本文在对今年广东高考数学试卷和试题进行全面分析的基础上,结合考生在答卷中暴露出的主要问题,对中学数学教学提出一些建议。

1.试卷综述1.1 实行文理分科命题,尊重学生的个性选择,符合中学数学教学的实际。

For personal use only in study and research; not for commercial use2010年普通高考数学广东卷继续实行文理分科命题和制卷,根据文科与理科考生在数学教学上的不同要求,在知识与能力的考查上有所区别。

今年的广东文、理卷,除了少量试题相同或相似外,绝大部分试题都是不同的。

相同的题目有:文理科的第3题(函数的奇偶性)、第4题(数列)、文科的第9题和理科的第6题(三视图),文理科的第19题(线性规划);相似的问题有:文理科的第1题(集合运算),文科的第2题与理科的第9题(对数函数的定义域),文科的第5题与理科的第10题(向量的坐标表示及运算),文科的第6题与理科的第12题(解析几何中圆的切线),文科的第8题与理科的第5题(充要条件的判断),文科的第11题与理科的第13题(算法与程序框图),文科的第13题与理科的第11题(用正弦定理和余弦定理解三角形),文理科中的第18题(立体几何中垂直关系的证明、角与距离的计算)。

在类似问题中,一般而言,文科题目比理科题目容易一些。

这样的命题方式,既符合中学数学教学的实际,又便于对文理科学生的数学水平进行科学评价。

1.2注重对数学基础知识的考查,引导学生从概念和原理出发解题,符合数学教学的基本规律。

试卷紧密结合广东实施新课程标准实验的教学实际和课程标准的基础性要求,重视对中学数学基本概念和基本原理的考查。

2010年广东高考数学试卷评析

2010年广东高考数学试卷评析

是 ,函数 定义域 的表 示有两种 形式: 一是集合 ,二是 区间. 不规范的表 示 ,肯定是不能得 分的. 例 2 理科第 9题 :已知圆心 在 轴上 ,半 径为 .
x 2 的 圆 0位于 轴 Y左侧 ,且与 直线 x y O相 切 , / += 则 圆 0的方程是 — — .
无论多 么新颖 的试卷 ,一定存在着 常规题 ,高考 卷更不例外 ,关键是这些试题 以什么样 的 “ 容颜”呈
现在考生面前?今年 的试题个性突 出,请看 : 例 3 理科第 9题 已知 { . a}为等 比数列 , 是 它 的前 n项和. o・ = n,且 a 与 2 7 若 '∞ 2 2 n a 的等差 中项为
设 出公 比 g ,很 容 易将 条件 转化 为 a、q的方程 组 , 解方程产生 a、q的值 ,再代入前 5项和的公式 即可
产生结论. 看计算吧 ! 看
f l ・ l Z2 l aq aq= a , - f 1x 2 。q - ,
理 科卷 中第 l 、3 、1 、2 、9 0、1 ( ) 2 6 1 ( )等 ; 文科 卷 中第 1 、3 、7 、1 、2 、5 、8 2都是基 础题 ,这
分 ;2 题平均得分 2 9分. 1 . 0 这些枯燥的数字能说 明什么?大 的方面 ,可 以看
出全省对于相应知识与技能的教学情况 、考生的掌握 情况 ;小的方面 ,可 以让 同学们 了解对相应知识 的掌 握是 否可 以达 到全省 的平均水平 . 一个 全省 的基 准 有
线 ,随 时 可 以 参 照 .
二 、试 题 特 点
今 年高考题 的个性 突出 、特点鲜明 ,下 面针对试 题特点谈谈个 人浅 见.
1 基 础 题 ,推 陈 出新 . .

2010广东高考文科数学 (2)

2010广东高考文科数学 (2)

2010广东高考文科数学引言文科数学是广东高考中的一门重要科目,对于考生来说,掌握好文科数学的基本知识和解题方法对于取得好成绩至关重要。

本文将对2010广东高考文科数学试卷进行分析和解答,以帮助考生更好地备考和应对考试。

试卷概述2010广东高考文科数学试卷共分为两个部分,分别为选择题和非选择题。

选择题占据了试卷的大部分内容,共有30小题,每题4分,共计120分;非选择题共有5道大题,每题20分,共计100分。

试卷总分为220分。

下面将对试卷各部分进行详细的讲解。

选择题分析选择题是广东高考数学试卷的重要组成部分,对考生的基本知识和解题能力有着综合性的考查。

以下是对2010年广东高考文科数学选择题的分析和解答。

1.第一题2.第二题3.…4.第30题针对以上的每一小题,我们将给出详细的解答和解题思路,帮助考生更好地理解和掌握解题方法。

非选择题分析非选择题是广东高考数学试卷中的重要部分,对考生的思维能力和解题能力有较高的要求。

以下是对2010年广东高考文科数学非选择题的分析和解答。

1.第一大题2.第二大题3.…4.第五大题对于每一大题,我们将给出详细的解答步骤和解题思路,以帮助考生更好地应对考试。

总结通过对2010广东高考文科数学试卷的分析和解答,我们可以看出,该试卷对考生的基本知识和解题能力有较高的要求。

考生在备考过程中,应注重掌握数学的基本知识和解题方法,多做一些相关的练习题,加强对数学的理解和应用。

希望本文对考生备考和应对2010广东高考文科数学试卷有所帮助,祝愿广大考生取得优异的成绩!。

2010年广东文科高考试卷

2010年广东文科高考试卷

2010年普通高等学校招生全国统一考试(广东卷)参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B = A .{0,1,2,3,4}B .{1,2,3,4} C .{1,2} D .{0} 2.函数)1lg()(-=x x f 的定义域是A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)3.若函数x x x x x g x f ---=+=33)(33)(与的定义域均为R ,则 A .)(x f 与)(x g 均为偶函数 B .)(x f 为奇函数,)(x g 为偶函数C .)(x f 与)(x g 均为奇函数D .)(x f 为偶函数,)(x g 为奇函数4.已知数列{a n }为等比数列,S n 是它的前n 项和. 若741322,2a a a a a 与且=⋅的等差中项为5,45S 则=A .35B .33C .31D .295.若向量),3(),5,2(),1,1(x ===满足条件==⋅-x 则,30)8(A .6B .5C .4D .36.若圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x +2y=0相切,则圆O 的方程是 A .5)5(22=+-y x B .5)5(22=++y xC .5)5(22=+-y xD .5)5(22=++y x7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A .54 B .53 C .52 D .51 8.“x >0”是“032>x ”成立的 A .充分非必要条件 B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=23BB ′= CC ′=AB ,则多面体ABC —A ′B ′C ′的正视图(也称主视图)是10.在集合{a ,b ,c ,d }上定义两种运算○+和○×如下:那么d ○×(a ○+c )= A .a B .b C .c D .d二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)11.某城市缺水问题比较突出,为了制定节水管理办法, 对全市居民某年的月均用水量进行了抽样调查,其中 4位居民的月均用水量分别为x 1,…,x 4(单位:吨). 根据图2所示的程序框图,若x 1,x 2,x 3,x 4分别为1, 1.5,1.5,2,则输出的结果s 为 .12.某市居民2005~2009年家庭年平均收入x (单位:万元)根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b=3,A +C =2B ,则sin A = . (二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD=a ,CD =2a,点E ,F 分别为 线段AB ,AD 的中点,则EF = .15.(坐标系与参数方程选做题)在极坐标系(θρ,)()20πθ<≤中,曲线1)sin (cos 1)sin (cos =-=+θθρθθρ与的交点的极坐标为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分14分)设函数2),,(,0),6sin(3)(πωπω且以+∞-∞∈>+=x x x f 为最小正周期.(1)求)0(f ;(2)求)(x f 的解析式; (3)已知απαsin ,59)124(求=+f 的值. 17.(本小题满分12分) 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.如图4,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=5a.(1)证明:EB⊥FD;(2)求点B到平面FED的距离.19.(本小题满分12分)某营养师要为某人儿童预订午餐和晚餐. 已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C. 另外,该儿童两餐需要的营养中至少含64个单位的碳水化俣物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?已知函数)(x f 对任意实数x 均有)2()(+=x kf x f ,其中常数k 为负数,且)(x f 在区间[0,2]上有表达式).2()(-=x x x f (1)求)5.2(),1(f f -的值;(2)写出)(x f 在[-3,3]上的表达式,并讨论函数)(x f 在[-3,3]上的单调性; (3)求出)(x f 在[-3,3]上的最小值与最大值,并求出相应的自变量的取值. 21.(本小题满分14分)已知曲线)0,0)(,(,:2>>=n n n n n n y x y x P nx y C 点是曲线C n 上的点(n=1,2,…).(1)试写出曲线C n 在点P n 处的切线l n 的方程,并求出l n 与y 轴的交点Q n 的坐标;(2)若原点O (0,0)到l n 的距离与线段P n Q n 的长度之比取得最大值,试求点P n 的坐标(n n y x ,); (3)设m 与k 为两个给定的不同的正整数,x n 与y n 是满足(2)中条件的点P n 的坐标,证明:).,2,1(|||)1(2)1(|1=-<+-+∑=s ks ms y k x m nn n n。

2010广东高考文科数学

2010广东高考文科数学

2010广东高考文科数学一、考试概述2010广东高考文科数学考试是广东省高考文科数学科目的一次考试,主要面向广东省的高中毕业生。

该次考试在2010年进行,是一次具有重要意义的考试。

二、考试内容2010广东高考文科数学考试的内容主要包括以下几个方面:1.代数与函数–一次函数、二次函数–幂函数、指数函数、对数函数–复合函数、反函数–函数的研究–等差数列、等比数列2.平面几何–直线与圆的性质–三角形的性质与相关定理–圆的切线与切圆–二次曲线的基本性质3.空间几何–空间中的直线与平面–空间中的平面与平面–空间中直线与直线的位置关系–空间中的向量运算4.概率与统计–随机事件与概率–条件概率与乘法定理–排列与组合–随机变量与概率分布–抽样与统计三、考试难度及评价根据学生的反馈和专家的评价,2010广东高考文科数学考试整体难度适中。

试卷的出题方式注重考查学生的运算能力、推理能力和应用能力。

试题涵盖了基础知识和拓展知识,要求学生熟练掌握基本概念和方法,并能够灵活运用于解决实际问题。

考试中涉及的代数与函数、平面几何、空间几何和概率与统计知识点都是高中数学教学的重点内容,对学生的数学综合能力有很大考验。

因此,考生需要在备考过程中注重知识的理解和掌握,并提高解题能力和应用能力。

四、备考建议针对2010广东高考文科数学考试,给出以下备考建议:1.理解基本概念和方法:重点掌握各个知识点的基本概念和方法,建立牢固的数学基础。

2.熟练运用解题技巧:通过大量的练习,熟练掌握解题技巧,提高解题速度和准确性。

3.注重知识点的整合和应用:在解题过程中,注重不同知识点的整合和应用,培养解决实际问题的能力。

4.做好知识点的总结和归纳:及时总结和归纳每个知识点的关键内容和解题思路,方便复习和巩固。

5.进行模拟考试和真题训练:通过模拟考试和做真题,了解考试要求和题型特点,提高应试能力。

五、备考注意事项在备考过程中,需要注意以下几点事项:1.合理安排时间:合理安排每天的学习时间,不拖延学习进度,保证知识的系统性和完整性。

2010年高考试题——数学文科(全国新课标卷)(解析版)真题

2010年高考试题——数学文科(全国新课标卷)(解析版)真题

2010年普通高等学校招生全国统一考试文科数学参考公式: 样本数据12,n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(1)D 【解析】[2,2]A =-,{}0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16B =,所以{}0,1,2A B ⋂=,选D.【方法指导】由所求A B ⋂可知,应分别求出集合A 和集合B ,在求集合B 时要注意x Z ∈这个条件,否则容易出错.(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665- (2)C【解析】(2)2(3,18)2(4,3)(5,12)b a b a =+-=-=-,所以216cos ,65||||4a b a b a b ⋅〈〉===+,选C.【方法小结】根据向量a =(4,3),2a +b =(3,18)的关系及向量的代数运算求向量b ,然后利用公式cos ,||||a ba b a b ⋅〈〉=求两向量夹角余弦.(3)已知复数z =z = (A)14 (B )12(C )1 (D )2(3) B 【解析】z ==21844i i ===-+-,14z i =-,所以1||2z ==,选B. 【方法技巧】先利用平方运算,然后分子、分母同时乘以分母的共轭复数,化复数z a bi =+形式,然后利用||z =.(4)曲线3y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ (4) A 【解析】32y x '=-,所以1|1x y ='=,即切线斜率为1,由直线点斜式得直线方程为01y x -=-,整理得1y x =-,选A.【规律总结】求曲线上某一点处的切线方程,通常利用导数求曲线在该点处的导数值,即切线斜率,然后利用点斜式求直线方程.(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B (C )2 (D )2(5) D 【解析】设双曲线方程为22221x y a b -=,则其一条渐近线b y x a =过点(4,2),所以24ba=⋅,12b a =,12a =,2222114c a e a -=-=,所以e = D. 【方法技巧】根据已知条件建立双曲线中两个参量,a b 之间的关系,然后利用222b c a =-,把式子转化为,a c 的关系,得ca的大小,即斜率的大小.(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(6)C 【解析】由题意知,当0t =时,P 在0P 位置,2d =,质点P 在圆上按逆时针方向旋转,d 逐渐变小,当4t π=时,min 0d =,结合图像可知选C.【方法技巧】解决这类问题通常利用数形结合的方法,本题借助单位圆,把动点P 由0P 位置开始逆时针方向旋转,由图形可以看出点P 到x 轴距离d 在[0,]4t π∈变化时由2减少到0,结合图像可知结论.(7) 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为 (A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(7) B 【解析】由题意值长方体的对角线长等于球的直径.所以22222(2)(2)6r a a a a =++=,所以2232r a =,球的表面积为2246S r a ππ==,选B. 【方法小结】要求球的表面积需要求球的半径或半径的平方,又根据长方体的顶点都在一个球面上可知球的直径即为长方体对角线长,球的直径的平方为长方体同一顶点出发的三条棱长的平方和.(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54 (B )45(C )65(D )56(8) D 【解析】由框图中的判断条件可知k 的最大值为5,根据框图中的运算公式可知111111223344556S =++++⨯⨯⨯⨯⨯ 111111111151122334455666=-+-+-+-+-=-=,选D.【技巧点拨】有5N =,结合框图中的限制条件k N ≥时,输出S ,知k 的最大值为5,再根据框图知k 每次增加1,1(1)S S s k =++,得111111223344556S =++++⨯⨯⨯⨯⨯,然后利用裂项法111(1)1n n n n =-++得出结论.(9)设偶函数f (x )满足f (x )=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (9) B 【解析】若20x -≥,2(2)240x f x --=->,得4x >;若20x -<,因()f x 为偶函数,(2)(2)f x f x -=-,2(2)240x f x --=->,得0x <.所以{|(2)0}x f x ->={|04}x x x <>或.选B.【方法小结】根据偶函数()f x 满足()24(0)xf x x =-≥,在求解不等式(2)0f x ->时要分20x -≥和20x -<两种情况来解.(10)若sin a =-45,a 是第三象限的角,则sin()4a π+=(A )-10 (B )10 (C ) -10 (D )10(10) A 【解析】因为sin a =-45,a 是第三象限的角,所以3cos 5α==-,所以7sin()(sin cos )()422510a παα+=+=-=-,选A. 【解题小结】要求sin()4a π+的值,需要求cos α的值,根据sin a =-45,a 是第三象限的角,及22sin cos 1αα+=,求cos α的值,然后利用两角和的正弦公式把sin()4a π+展开,代入,即可得结论.(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) (11)B 【解析】ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),根据中点坐标公式得D (0,-4),当目标函数过点B (3,4)时,min 14z =-,当目标函数过点D (0,-4)时,max 20z =,所以z=2x-5y 的取值范围是(-14,20).【规律总结】根据题意必须求D点的坐标,根据平行四边形对角线互相平分,得D点坐标,然后把平行四边形四个顶点坐标代入z=2x-5y,得目标函数的最大值与最小值,得范围.(12)已知函数|lg|,010, ()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc 的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)C 【解析】如图,根据题意()f x m=有三个解,则01m<<,若lg a m=,则10ma=,若lg b m=-,则10mb-=,若162b m-+=,则122b m=-,由01m<<,得1012212m<-<,即1012b<<,所以1010m mabc b b-=⋅⋅=,所以1012abc<<,选C.【方法技巧】数形结合可知,若,,a b c互不相等,且()()(),f a f b f c==则()f x m=有三个解,则有01m<<,若令()()()f a f b f c m===,则有10ma=,10mb-=,162b m-+=,分别求出,,a b c,用m表示abc,根据m的范围,得abc的范围.第Ⅱ卷本卷包括必考题和选考题两部分。

2010广东高考文科数学

2010广东高考文科数学

2010广东高考文科数学引言文科数学是广东高考中的一门重要科目,考查学生在数学方面的基础知识和解题能力。

本篇文档将对2010年广东高考文科数学试题进行分析和解答,帮助考生更好地理解和应对考试。

题目解析题目一题目:已知函数f(x) = sin(x),g(x) = cos(x),h(x) =f(x)·g(x),求h(x)在[0, π]上的最大值和最小值。

解析:首先,我们需要计算h(x)在[0, π]上的导数。

利用链式法则,我们可以得到h’(x) = f’(x)g(x) + f(x)g’(x) = cos^2(x) - sin^2(x)。

因为h’(x) = 0时,h(x)取得极值,所以我们需要求解方程cos^2(x) - sin^2(x) = 0。

化简得到cos(2x) = 0,即2x = π/2或2x = 3π/2。

由于x的范围是[0, π],所以当x = π/4或x = 3π/4时,h(x)取得最小值0。

当x = π/2时,h(x)取得最大值1。

题目二题目:一元二次方程x^2 - (a + 3)x + 2a = 0有两个实数解x1和x2。

已知x1 + x2 = 7,求a的值。

解析:根据一元二次方程的基本知识,我们知道二次方程的两个根的和等于系数b的相反数除以系数a。

所以,根据题目给出的信息,我们可以得到下列等式:x1 + x2 = a + 3 = 7。

解方程得到a = 4。

解答步骤问题一解答步骤1.计算h(x)在[0, π]上的导数。

h’(x) = cos^2(x) - sin^2(x)2.求解方程cos^2(x) - sin^2(x) = 0。

化简得到cos(2x) = 0,即2x = π/2或2x = 3π/2。

3.计算h(x)在[0, π]上的最大值和最小值。

当x = π/4或x = 3π/4时,h(x)取得最小值0。

当x = π/2时,h(x)取得最大值1。

问题二解答步骤1.根据一元二次方程的基本知识,我们知道二次方程的两个根的和等于系数b的相反数除以系数a。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (文科)(解析版)(word版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (文科)(解析版)(word版)

2010年普通高等学校招生全国统一考试文科数学参考公式:样本数据12,L n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B =I ( )(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2 解析:{}|22,{0,1,2}A x x B =-≤≤=,{}0,1,2A B =I ,选D 命题意图:本题考查集合的运算及不等式解法(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( )(A )865 (B )865- (C )1665 (D )1665- 解析:16(4,3),(5,12),cos ,65a b a b a b a b ⋅==-<>==,选C 命题意图:本题考查向量数量积运算与夹角(3)已知复数z =z =( ) (A)14 (B )12(C )1 (D )2解析:z ====12z ==,选B 命题意图:本题考查复数的代数运算及模的定义(4)曲线3y 21x x =-+在点(1,0)处的切线方程为( )(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 解析:'2y 32,1,1x k y x =-∴==-切线方程为,选A 命题意图:本题考查导数的几何意义(5)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()(A)6(B)5(C)62(D)52解析:由双曲线的几何性质可得2222221552,242b c a ba b e ea a a+==∴====即,,选D命题意图:本题考查双曲线的几何性质(6)如图,质点p在半径为2的圆周上逆时针运动,其初始位置为0p(2,2-),角速度为1,那么点p到x轴距离d关于时间t的函数图像大致为()解析:法一:排除法取点0,2t d==时,排除A、D,又当点P刚从t=0开始运动,d是关于t的减函数,所以排除B,选C法二:构建关系式 x轴非负半轴到OP的角4tπθ=-,由三角函数的定义可知2sin()4py tπ=-,所以2sin()4d tπ=-,选C命题意图:考察三角函数的定义及图像(7) 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()(A)3πa2 (B)6πa2 (C)12πa2 (D) 24πa2(8)解析:球心在长方体对角线交点处,球半径R为对角线长一半长方体中,由对角线定理知对角线长为6a,6aR=球表面积2246S R aππ==,选B命题意图:本题以球与多面体的接切为载体考查球的表面积公式(8)如果执行右面的框图,输入N=5,则输出的数等于()(A)54(B)45(C)65(D)56解析:1111112233445561111111115(1)()()()()2233445566S=++++⨯⨯⨯⨯⨯=-+-+-+-+-=所以选D命题意图:以算法为背景考察裂项相消求和(9)设偶函数f(x)满足f(x)=2x-4 (x ≥0),则(){}20x f x ->=( )(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或 (D ){}22 x x x <->或解析:0()2402x x f x x ≥=->>当时,由得()()022f x f x x x ∴>><-又为偶函数,时或 (2)02222,40f x x x x x ∴->⇔->-<-><或即或,选B命题意图:利用函数性质解不等式(10)若cos a = -45,a 是第三象限的角,则sin()4a π+=( )(A )-7210 (B )7210 (C )2 -10 (D )210解析:a Q 是第三象限的角,23sin 1cos 5a α∴=--=-则272sin()(sin cos )4210a παα+=+=-,选A命题意图:本题考查同角三角函数关系及和角正弦公式(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD的内部,则z=2x-5y 的取值范围是( ) (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) 解析:当直线z=2x-5y 过点B 时,min 14z =-当直线z=2x-5y 过点D (0,-4)时,max 20z = 所以z=2x-5y 的取值范围为(-14,20),选B 点D 的坐标亦可利用AB DC =u u u r u u u r求得,进一步做出可行域命题意图:本题考查线性规划(12)已知函数f(x)=lg ,01016,102x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 解析: ,,a b c 互不相等,不妨设a b c <<()(),lg lg f a f b a b =-=由得,即ab=1 abc c ∴=,显然1012c <<所以选C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。

2010年广东高考数学

2010年广东高考数学

2010年广东高考数学一、绪论2010年广东高考数学考试是广东省公办高中毕业生的一门必考科目。

数学作为一门综合性的学科,对于培养学生的逻辑思维、分析问题和解决问题的能力起着重要作用。

本文将对2010年广东高考数学试卷进行分析和解答,并对其中的重点知识点进行详细介绍。

二、试题分析1. 难度分析2010年广东高考数学试卷共分为选择题和非选择题两部分,试题难度适中,考查的知识点涵盖了高中数学课程的各个方面。

整体难度与往年相比较为平均,没有出现特别难的题目。

2. 知识点分布试卷中的知识点分布较为均匀,主要包括代数、函数、几何、概率与统计等。

其中,代数和函数是考点比较集中的部分,所占比例较大。

同时,概率与统计的考查也有所增加,反映了这一知识点在高中数学教学中的重要性。

3. 题型和题量根据试卷的题型和题量分布情况,选择题占据了试卷的大部分,非选择题则相对较少。

这与广东高考数学试卷的特点相符,选择题更适合大规模考试,并且能够全面考查学生的基础知识掌握程度。

但是,非选择题的数量仍然保持了一定的比例,以考察学生的分析和解决问题的能力。

三、重点知识点解析1. 代数代数是高中数学的基础知识,也是广东高考数学试卷的重点考察内容之一。

在2010年的试卷中,代数部分主要涉及方程与不等式的求解、函数与方程的应用、概率与统计等知识点。

这些知识点的掌握对于理解和解答试卷中的相关题目至关重要。

2. 函数函数是高中数学中的核心知识点,也是广东高考数学试卷中经常出现的考点之一。

2010年的试卷中,函数部分主要考查了函数的性质与图象、函数的应用、函数的极限等内容。

学生需要掌握函数的基本概念和相关的运算规则,能够准确地绘制函数图象,并能够根据函数的性质解答相关问题。

3. 几何几何是数学中的一门重要学科,也是广东高考数学试卷中的重点内容之一。

2010年的试卷中,几何部分主要考查了平面几何和立体几何的相关知识。

学生需要熟练掌握几何的基本概念、定理和证明方法,能够灵活地运用几何知识解答试卷中的相关题目。

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于( )A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一. 3.(5分)已知复数Z=,则|z|=( )A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为( )A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=( )A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的. 11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是( )A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为 x2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= 2+ .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年全国统一高考数学试卷(文科)(新课标)(含解析版)

2010年全国统一高考数学试卷(文科)(新课标)(含解析版)

的值.
∵S=
=1﹣ =
故选:D. 【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的
题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码) 中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数 据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第 一步分析的结果,选择恰当的数学模型③解模.
第 7页(共 25页)
【解答】解:设 =(x,y), ∵a=(4,3),2a+b=(3,18), ∴
∴cosθ=
=, 故选:C. 【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:
①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.
3.(5 分)已知复数 Z=
A.
4.(5 分)曲线 y=x3﹣2x+1 在点(1,0)处的切线方程为( )
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2
第 8页(共 25页)
【考点】6H:利用导数研究曲线上某点切线方程. 菁优 网版权所有
【专题】1:常规题型;11:计算题. 【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用
有一项是符合题目要求的.
1.(5 分)已知集合 A={x||x|≤2,x∈R},B={x| ≤4,x∈Z},则 A∩B=( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
【考点】1E:交集及其运算. 菁优 网 版权 所有
【专题】11:计算题. 【分析】由题意可得 A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:B
2010年普通高等学校招生全国统一考试(广东卷)
数学(文科)
本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的
姓名和考生号、试室、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选作题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh
V 31 ,其中S 是锥体的底面积,h 是锥
体的高.
{}
0一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若集合{}3,2,1,0=A ,{}4,2,1=B 则集合=⋃B A
A. {}4,3,2,1,0
B. {}4,3,2,1
C. {}2,1
D. 解:并集,选A.
2.函数)1lg()(-=x x f 的定义域是 A.),2(+∞ B. ),1(+∞ C. ),1[+∞ D. )
,2[+∞
解:01>-x ,得1>x
,选B.
3.若函数x
x
x f -+=3
3)(与x
x
x g --=3
3)(的定义域均为R ,则
A. )(x f 与)(x g 与均为偶函数
B.)(x f 为奇函数,)(x g 为偶函数
C. )(x f 与)(x g 与均为奇函数
D.)(x f 为偶函数,)(x g 为奇函数 解:由于)(3
3)()
(x f x f x x
=+=----,故)(x f 是偶函数,排除B 、C
由题意知,圆心在y 轴左侧,排除A 、C 在AO Rt 0∆,
2
10=
=k A
OA ,故
505
10500=⇒=
=
O O
O
A ,选D
7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
A.5
4
B.5
3
C. 5
2
D. 5
1
10.在集合{}d c b a ,,,上定义两种运算○+和○*如下
那么d ○*a (○+=)c
A.a
B.b
C.c
D.d 解:由上表可知:a (○+c c =),故d ○*a (○+=)c d

*a c =,选A
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

(一)必做题(11~13题)
11.某城市缺水问题比较突出,为了制定节水管 理办法,对全市居民某年的月均用水量进行了 抽样调查,其中4位居民的月均用水量分别为 (单位:吨)。

根据图2所示的程序框图,若分 别为1,1.5,1.5,2,则输出的结果s 为 23
.
第一(1=i )步:11011=+=+=i x s s 第二(2=i )步:5.25.1111=+=+=i x s s 第三(3=i )步:45.15.211=+=+=i x s s 第四(4=i )步:62411
=+=+=i x s s ,2
3641=
⨯=
s
第五(5=i )步:45>
=i ,输出2
3=
s
(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,在直角 梯形ABCD 中,DC ∥AB,CB AB
⊥,AB=AD=a ,CD=2
a
,
点E,F 分别为线段AB,AD 的中点,则EF= 2a
解:连结DE ,可知AED ∆为直角三角形。

则EF 是DEA Rt ∆斜边上的中线,等于斜边的一半,为2a
.
15.(坐标系与参数方程选做题)在极坐标系),(θρ)20(πθ≤≤中,
曲线1)sin (cos =+θθρ与1)sin (cos =-θθρ的交点的极坐标为 .
17.(本小题满分12分)
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
18.(本小题满分14分)
如图4,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a5
(1)证明:EB⊥FD
(2)求点B到平面FED的距离.
(1)证明: 点E为弧AC的中点
19.(本题满分12分)
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;
一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
解:设为该儿童分别预订x 个单位的午餐和y 个单位的晚餐,设费用为F ,则F y x 45.2+=,由题意知:
64812≥+y x
42
66≥+y x 54106≥+y x
0,0>>y x
画出可行域:
变换目标函数:4
8
5F x y
+
-
=
(2)当32≤≤x 时,120≤-≤x
)32()
4)(2()
2()(≤≤--=-=
x k x x k x f x f 当02≤≤-x 时,220≤+≤x
)02)(2()2()(≤≤-+=+=x x kx x kf x f
当23-≤≤-x 时,021≤+≤-x
)23)(4)(2()4)(2()2()(2-≤≤-++=++⋅=+=x x x k x x k k x kf x f
)23(),4)(2(2-≤≤-++x x x k
)02)(2(≤≤-+x x kx
)20)(2(≤≤
-x x x )32()
4)(2(≤≤--x k x x
c. 当1-<k 时12-<-k ,k k 1
->-
此时:2min max )3()(,)1()(k f x f k f x f -=-=-=-=
21.(本小题满分14分) 已知曲线2:nx y C
n =,点),(n n n y x P )0,0(>>n n y x 是曲线n C 上的点
,...)2,1(=n ,。

相关文档
最新文档