三角函数的定义域、值域

合集下载

三角函数定义域和值域

三角函数定义域和值域

三角函数定义域和值域sinx,cosx的定义域为R,值域为〔-1,1〕;tanx的定义域为x不等于π/2+kπ,值域为R;cotx的定义域为x不等于kπ,值域为R;y=a·sinx+b·cosx+c的值域为[c-√a²+b²,c+√a²+b²)]。

三角函数(也叫做“圆函数”)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

sinx,cosx的定义域为R,值域为〔-1,1〕tanx的定义域为x不等于π/2+kπ,值域为Rcotx的定义域为x不等于kπ,值域为Ry=a·sinx+b·cosx+c的值域为[c-√a²+b²,c+√a²+b²)]三角函数是函数,象限符号坐标注。

函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。

向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

三角函数值域的求法及例题

三角函数值域的求法及例题

标题:三角函数值域的求法及其应用
一、基本概念:
三角函数是描述周期性现象的关键工具,特别是一元函数微积分中的基本函数。

它们的值域,即能够表示的函数的取值范围,对于理解函数的性质和图形至关重要。

二、求值域的方法:
1. 观察法:根据三角函数的定义,我们知道正弦、余弦和正切函数的值域分别是-1 到1(包括-1,但不包括0),0 到正无穷(包括0),以及-π/2 到π/2(包括0,但不包括π/2 和-π/2)。

当已知函数的表达式时,可以通过观察函数的定义域和函数自身的性质来求值域。

2. 三角函数不等式法:可以利用三角函数的不等式来求值域,例如:对于正弦函数,有0 <= sin(x) <= 1。

3. 反函数法:对于反三角函数,如arcsin(x) 和arctan(x),可以通过求其反函数的定义域来得到值域。

4. 换元法:对于某些复杂的三角函数,可以通过换元法将问题简化。

5. 判别式法:对于二次或高次方程的解,可以通过判别式小于或等于零来求出函数的值域。

三、例题解析:
【例题】求函数f(x) = 3sin(2x + π/6) 的值域。

解:首先,我们可以看出函数的定义域为R(即所有实数),且函数的周期性表现为sin(x) 的形式。

由于正弦函数的值域为-1 到1(包括-1,但不包括0),因此我们可以得出f(x) 的值域为[-3, 3]。

四、总结:
求三角函数值域的方法多种多样,观察法、三角函数不等式法、反函数法、换元法以及判别式法都是常见的方法。

理解这些方法并灵活运用,可以帮助我们更好地解决实际问题。

以上就是关于三角函数值域求法的介绍以及例题解析,希望对你有所帮助。

三角函数定义域值域的求法(共10张PPT)

三角函数定义域值域的求法(共10张PPT)

反表示法
两边平方
四)二合一
五) 其他形式:
y
1
2
0
2x
六:应用题求最值
D
C
A
B
值域
最值 周期
[1,1]
T2
一. 求三角函定义域:
例1.求下列函数的定义域;
点拨:1.列出三角不等式 2.根据图象写出不等式的解集
二.求 三角函值域的几种典型形式
一)一次型
直接代入法
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
总结:形如y=asinx+b的函数的最大值是
最小值是
二)二次型
二次函数法
点拨:1.换元(注明新元取值)
2.运用二次函数图象性质(一看对称轴,二看区间端点)
2.
y
写出y=sinx和y=cosx的定义域,值域,最值,周期
y= sinx和 y= cosx, x [0, 2 ]的简图:
最小值是
2.
根据图象写出不等式的解集
y=cosx,x [0, 2 ]
y=cosx,x [0, 2 ]
总结:形如y=asinx+b的函数的最大值是
求 三角函值域的几种典型形式
在同一坐标系内,用五点法分别画出函数 三角函数定义域值域的求法
-1
0
1 2
1
t
练习:口答下列函数的值域
总结:形如y=asinx+b的函数的最大值是
求 三角函值域的几种典型形式
点拨:统一函数名
三) 分式型 点拨: 1.反表示
三角函数定义域值域的求法

高中数学函数的定义域及值域

高中数学函数的定义域及值域

高中数学函数的定义域及值域1500字函数是数学中常用的概念,它描述了两个集合之间的对应关系。

函数的定义域是指输入的值的集合,而值域是函数输出的值的集合。

在高中数学中,我们经常需要确定函数的定义域和值域,以便了解函数的性质和行为。

为了确定一个函数的定义域,我们需要考虑两个因素:函数的解析式和函数的定义限制。

函数的解析式告诉我们函数如何计算输出值,而定义限制告诉我们输入值可以是哪些数。

首先,让我们考虑一些常见的函数类型及其定义域和值域。

1. 线性函数:线性函数的解析式可以写为y = mx + c,其中m是斜率,c是截距。

线性函数的定义域是所有实数集合,值域也是所有实数集合。

2. 幂函数:幂函数的解析式可以写为y = x^n,其中n是一个实数。

幂函数的定义域是所有实数集合,但值域取决于指数n的值。

例如,如果n是正偶数,那么幂函数的值域是非负实数集合;如果n是负偶数,那么幂函数的值域是正实数集合;如果n是奇数,那么幂函数的值域是所有实数集合。

3. 指数函数:指数函数的解析式可以写为y = a^x,其中a是一个正实数且不等于1。

指数函数的定义域是所有实数集合,值域是正实数集合。

4. 对数函数:对数函数的解析式可以写为y = log_a(x),其中a是一个正实数且不等于1。

对数函数的定义域是正实数集合,值域是所有实数集合。

5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

三角函数的定义域是所有实数集合,值域取决于具体的函数类型。

例如,正弦函数的值域是[-1, 1];余弦函数的值域也是[-1, 1];正切函数的值域是所有实数集合。

除了上述函数类型外,还有其他函数类型的定义域和值域也需要特别注意。

例如,有理函数的定义域由分母的零点确定,值域取决于分子的次数和分母的次数;反比例函数的定义域是除了零的所有实数,值域也是除了零的所有实数。

在确定函数的定义域和值域时,我们还需要注意一些常见的限制,如根式的奇次指数、分母不能为零、对数的底不能为1等。

三角函数定义域

三角函数定义域

三角函数定义域反三角函数是数学学科中的一个重要知识点,反三角函数的定义域是经常考的。

以下是相关内容,请大家过来复习!三角函数定义域 11、反正弦函数y=arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。

定义域[-1,1] 。

2、反余弦函数y=arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。

定义域[-1,1] 。

3、反正切函数y=arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。

定义域R。

4、反余切函数y=arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。

定义域R。

5、反正割函数y=arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。

定义域(-∞,-1]U[1,+∞)。

6、反余割函数y=arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。

定义域(-∞,-1]U[1,+∞)。

三角函数定义域 2反三角函数是一种基本初等函数。

它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。

为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);3、为了使研究方便,常要求所选择的区间包含0到π/2的角;4、所确定的区间上的函数值域应与整函数的定义域相同。

这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

三角函数的图象与性质(自制)

三角函数的图象与性质(自制)

x
R 最大值与最小值点恰好都在x 2 y 2 R 2上, 则f ( x ) 的最小正周期为 A.1 B.2 C .3 D.4
的图象上, 相邻的一个
析 : 本题主要考查三角函数的图象的性质 : 对称 中心与对称轴及最大值与最小值之间的关系.
依题意知 : 函数f ( x )的周期T f ( x )的最大值为 3.
f ( x )max 0
当x 0时分子为 1, 分母为1, 最小值为 1.
析 : f ( x) =-
sin x 1 3 2cos x 2sin x 1 1( 1 cos x 2 ) 1 sin x .

sin x 1 (1 sin x )2 (1 cos x )2
1 cos x 2 ) 表示点(1, 1)与单位圆上的点连线的斜率 1 sin x 的平方,为(0, ) (
故f ( x ) [1,0]
例4 : 对于函数f ( x ) a sin x bx c(其中a , b R, c z ), 选取a , b, c的一组值计算f (1)与f ( 1), 所得出的正确 结果一定不正确的是( 2011福建) A.4, 6 B.3,1 C .2, 4 D.1, 2
| t | 2
必须的哟!
故f ( t )在[ 2, 2]上为减函数, f ( x )min
9 9 2 2; f ( x )max 2 2. 2 2
练1.(2011上海理8)函数y sin(

2

2
x )cos(

6
x )的最大值为
.
析 : y sin(
x )cos(
1 积化和差 : sin sin [sin( ) sin( )] 2

三角函数知识点归纳

三角函数知识点归纳
单调增区间可由2k - ≤x+≤2k + ,k∈z解得;
单调减区间可由2k + ≤x+≤2k + ,k∈z解得。
在求 的单调区间时,要特别注意A和 的符号,通过诱导公式先将 化正。
如函数 的递减区间是______
(答:
解析:y= ,所以求y的递减区间即是求 的递增区间,由 得
,所以y的递减区间是
四、函数 的图像和三角函数模型的简单应用
终边在 轴上的角的集合为
终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
(2)终边与角α相同的角可写成α+k·360°(k∈Z).终边与角 相同的角的集合为
(3)弧度制
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②弧度与角度的换算:360°=2π弧度;180°=π弧度.
③半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是
公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tanα.
公式三:sin(π-α)=sinα,cos(π-α)=-cos_α, .
公式四:sin(-α)=-sin_α,cos(-α)=cos_α, .
公式五:sin =cos_α,cos =sinα.
公式六:sin =cos_α,cos =-sin_α.
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的异角,可根据角与角之间的和差,倍半,互补,互余的关系,寻找条件与结论中角的关系,运用角的变换,使问题获解,对角的变形如:
① 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍;
② ;问: ; ;
③ ;④ ;⑤ ;等等.
如[1] . (答案: )
④若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .

三角函数的定义域和值域

三角函数的定义域和值域

三角函数的定义域和值域三角函数是数学中的一类重要函数,包括正弦函数、余弦函数、正切函数等。

在进行三角函数的研究和应用时,了解其定义域和值域是非常重要的。

一、正弦函数的定义域和值域正弦函数是以角度(或弧度)为自变量,输出对应的正弦值。

其定义域是实数集。

根据正弦函数的特点,我们知道正弦值的范围在-1到1之间,即其值域为[-1, 1]。

二、余弦函数的定义域和值域余弦函数也是以角度(或弧度)为自变量,输出对应的余弦值。

与正弦函数类似,余弦函数的定义域也是实数集,而其值域同样为[-1, 1]。

三、正切函数的定义域和值域正切函数是以角度(或弧度)为自变量,输出对应的正切值。

正切函数的定义域为除去其奇数倍的π的实数集,即R - {(2n + 1)π/2 |n∈Z}。

值域为全体实数,即整个实数集R。

四、其它三角函数的定义域和值域除了正弦函数、余弦函数、正切函数之外,还有诸如余切函数、正割函数、余割函数等三角函数。

这些函数的定义域和值域如下:1. 余切函数(cotx)的定义域为除去其奇数倍的π的实数集,即R - {nπ | n∈Z}。

值域也为全体实数。

2. 正割函数(secx)的定义域为除去π/2 + nπ的实数集,即R - {(2n + 1)π/2 | n∈Z}。

值域为正数和负数的并集,即R - {0}。

3. 余割函数(cscx)的定义域为除去nπ的实数集,即R - {nπ |n∈Z}。

值域同样为正数和负数的并集,即R - {0}。

五、总结三角函数的定义域和值域是根据函数的特点和性质决定的。

正弦函数和余弦函数的定义域为实数集,值域都是[-1, 1];正切函数的定义域为除去其奇数倍的π的实数集,值域为全体实数;余切函数、正割函数、余割函数的定义域分别为R - {nπ | n∈Z},值域为正数和负数的并集。

在实际应用中,对三角函数的定义域和值域的了解有助于我们分析和计算相关问题,并且在解决实际问题时能够更加准确地进行数值的转换和计算。

函数的定义域值域和最值

函数的定义域值域和最值

函数的定义域、值域和最值一、函数的定义域: (一)常见函数定义域:对数函数()10log ≠>=a a y xa 且定义域为),0(+∞。

三角函数x y sin =定义域为R ;x y cos =定义域为R ;x y tan =定义域为},2{Z k k x x ∈+≠ππ。

(二)基本题型:1.已知解析式求定义域: (1)()122log 43++--=x xx x y (2))4323ln(1)(22+--++-=x x x x x x f 2.同一对应法则两个函数定义域问题:(1)已知()2x f 的定义域为[-1,1],求()x f 2的定义域。

(2)已知()x f 2的定义域为[-1,1],求()xf 2log 的定义域。

(3)已知()x f 的定义域为[0,2],求()()12-=x x f x g 的定义域。

3.与参数有关的函数定义域的求法: (1)已知86)(2++-=m mx mx x f 的定义域为R ,求实数m 的取值范围。

(2)已知x x m x f 421)(⋅++=的定义域为R ,求实数m 的取值范围。

(3)已知函数()()6131)(22+-+-=x a xa x f①若()x f 的定义域为R ,求实数a 的取值范围;②若()x f 的定义域为[-2,1],求实数a 的值。

二、函数的值域及最值: (一)常见函数值域:一次函数)0(≠+=k b kx y 的值域为R 。

二次函数)0(2≠++=a c bx ax y ,当0>a 时,值域为),44[2+∞-a b ac ;当0<a 时,值域为]44,(2ab ac --∞。

反比例函数()0≠=k xky 的值域为 )0,(-∞),0(+∞。

指数函数xa y =的值域为),0(+∞。

对数函数()10log ≠>=a a y xa 且值域为R 。

正弦函数、余弦函数的值域为[-1,1];正切函数x y tan =的值域为R 。

三角函数是几年级的知识内容-概述说明以及解释

三角函数是几年级的知识内容-概述说明以及解释

三角函数是几年级的知识内容-概述说明以及解释1.引言1.1 概述三角函数是数学中的重要内容之一,广泛应用于几何学、物理学、工程学等领域。

它主要研究在单位圆上各点的坐标与它们所夹角的关系,是描述角度大小和角度关系的一种有效工具。

三角函数包括正弦函数、余弦函数和正切函数等,通过对三角函数的定义和性质的学习,可以帮助我们理解角度的概念,掌握角度的计算方法,以及解决与角度相关的问题。

在教育体系中,三角函数的学习通常安排在高中数学课程中。

具体来说,正弦函数和余弦函数的学习常常在高一下学期进行,而正切函数的学习则安排在高二的下学期。

三角函数的学习需要基本的代数和几何知识作为前提,所以在掌握了初等代数和平面几何的基础上,学生才能比较顺利地理解和应用三角函数的相关知识。

通过学习和应用三角函数,学生可以进一步理解三角形的性质、比例关系以及相关的计算方法。

在物理学中,三角函数还能帮助学生理解力学、波动、电磁波等课程中的各种现象和问题。

总之,三角函数作为数学的一个重要分支,对于学生的发展和学习具有重要的影响和作用。

掌握三角函数的基本概念和应用方法,有助于培养学生的逻辑思维能力、解决问题的能力,以及拓宽他们的科学视野。

在未来的教育中,我们应不断改进和创新三角函数的教学方法,使学生更好地理解和应用这一知识内容,为他们的未来学习和发展打下坚实的基础。

1.2文章结构文章结构部分应该包括以下内容:在文章结构部分,我们将会详细讨论本文的组织架构和内容安排。

通过清晰的文章结构,读者可以更好地理解和掌握本文的主旨。

本文共分为三个主要部分,分别是引言、正文和结论。

下面将对每个部分的内容进行简要介绍。

引言部分是文章的开端,通过引言,我们会给读者一个整体的概述。

首先,我们将简要介绍三角函数的概念和背景,包括定义、性质和应用等方面的基本知识。

然后,我们将展示整篇文章的结构,列举各个部分的主要内容。

正文部分是文章的主体,也是最重要的部分。

在这一部分,我们将围绕三角函数的定义、性质和应用展开详细的讨论。

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值讲解

三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。

通过配方,结合sinx的取值范围,得到函数的值域。

sinx换为cosx也可以。

③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。

④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。

⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。

cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。

或者转化成两点连线的斜率。

以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。

二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。

三角函数的图像与性质知识点归纳

三角函数的图像与性质知识点归纳

1●高考明方向1.能画出y =sin x ,y =cos x ,y =tan x 的图象, 了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、 最大值和最小值,图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.★备考知考情三角函数的周期性、单调性、最值等是高考的热点,题型既有选择题、填空题、又有解答题,难度属中低档,如2014课标全国Ⅱ14、北京14等;常与三角恒等变换交汇命题,在考查三角函数性质的同时,又考查三角恒等变换的方法与技巧,注重考查函数方程、转化化归等思想方法.《名师一号》P552二、例题分析: (一)三角函数的定义域和值域 例1.(1)《名师一号》P56 对点自测3函数y =lg(sin x )+ cos x -12的定义域为____________解析 要使函数有意义必须有⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π (k ∈Z).∴2k π<x ≤π3+2k π,k ∈Z.∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.3例1.(2)《名师一号》P56 高频考点 例1(1) 函数y =sin x -cos x 的定义域为________.解:(1)要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示.结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+54π,k ∈Z .注意:《名师一号》P56 高频考点 例1 规律方法 (1)求三角函数的定义域实质就是解三角不等式(组). 一般可用三角函数的图象或三角函数线确定 三角不等式的解.4例2.(1)《名师一号》P56 对点自测4函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1-3解:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6.∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3. 注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之一: 利用sin x 和cos x 的值域(图像)直接求;例2.(2)8月月考第17题(1)17.(满分12分)已知函数22()3cos 2cos sin sin f x x x x x =++.5(I )当[0,]2x π∈时,求()f x 的值域;222()3cos 2cos sin sin 12cos sin 2f x x x x x x x =++=++………2分)2x =++ …………3分……4分即()f x 的值域为2]+. …………………6分注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之二: 化为求sin()=++y A x b ωϕ的值域 如:①sin cos y a x b x =+合一变换6sin()y A x ϕ=+②22sin sin cos cos y a x b x x c x =++sin 2cos2y d x e x f =++sin(2)y A x b ϕ=++ 注意弦函数的有界性!变式:《名师一号》P58 特色专题 典例1若函数f (x )=a sin x -b cos x 在x =π3处有最小值-2,则常数a ,b 的值是( )A .a =-1,b = 3B .a =1,b =-3C .a =3,b =-1D .a =-3,b =1解:函数f (x )=a sin x -b cos x 的最小值为-a 2+b 2. f (x )=a 2+b 2sin(x -φ)⎝⎛⎭⎪⎫其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,降幂 合一变换7则⎩⎨⎧-a 2+b 2=-2,f ⎝ ⎛⎭⎪⎫π3=32a -12b =-2,解得⎩⎨⎧a =-3,b =1.【名师点评】 解答本题的两个关键:①引进辅助角,将原式化为三角函数的基本形式; ②利用正弦函数取最值的方法建立方程组.例2.(3)《名师一号》P56 高频考点 例1(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解:∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝ ⎛⎭⎪⎫sin x -142+78. ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.8注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之三:把sin x 或cos x 看作一个整体,转换成二次函数求值域.练习: (补充)(1)求函数22tan 1()tan 1x f x x -=+的值域【答案】[)1,1-(2)求函数22sin 1()0,sin 22x f x x x π+⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭的值域【答案】)+∞92222sin 13sin cos ()sin 22sin cos 3tan 1113tan 2tan 2tan 0,tan 0211()23tan 32tan x x x f x x x xx x x x x x f x x xπ++==+⎛⎫==+ ⎪⎝⎭⎛⎫∈∴> ⎪⎝⎭≥=注意:求三角函数的值域的常用方法之三:求三角函数的值域的常用方法: 化为求代数函数的值域注意约束条件----三角函数自身的值域!例2.(4)(补充)求函数()sin cos sin cos =+-f x x x x x 的值域【答案】12⎡⎤-+⎢⎥⎣⎦注意:求三角函数的值域的常用方法之四:10《名师一号》P56 问题探究 问题3 如何求三角函数的值域或最值?③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(或最值). 利用22sin cos 1x x +=转化为二次函数在指定区间 上的值域问题变式:求函数()sin cos sin cos +=+f x x x x x 的值域例2.(5)详见 第一章 第二讲函数值域 7.数形结合法: 例7(2)《名师一号》P14 问题探究 问题(6)当一个函数图象可作时,通过图象可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域.(补充)如两点间距离、直线斜率等等求函数4sin 12cos 4+=-x y x 的值域11解:()114sin sin 4422cos 2cos 2⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭==--x x y x x 可视作单位圆外一点12,4⎛⎫- ⎪⎝⎭P 与圆221+=x y 上的点()cos ,sin x x 所连线段斜率的2倍,设过点12,4⎛⎫- ⎪⎝⎭P 的点的直线方程为()12+=-y k x 即1204---=kx y k1=解得34=-k 或512=k答案:35,26⎡⎤-⎢⎥⎣⎦注意:求三角函数的值域的常用方法之五: 数形结合法练习:求函数[]cos 10,sin 2-=∈-x y x x π的值域12答案:40,3⎡⎤⎢⎥⎣⎦变式:求函数cos 1,sin 222-⎡⎤=∈-⎢⎥-⎣⎦x y x x ππ的值域答案:10,2⎡⎤⎢⎥⎣⎦拓展:8月月考第16题函数22)24()2cos x x xf x x xπ+++=+的最大值是M ,最小值是m ,则M m +的值是 .22222)2sin cos 2sin 4()12cos 2cos 2cos x x xx x x x x x f x x x x x x x π+++++++===++++,记2sin ()2cos x xg x x x+=+,则()g x 是奇函数且()1()f x g x =+,所以()f x 的最大值是max 1()M g x =+,13 最小值是min 1()m g x =+,因为()g x 是奇函数, 所以max min ()()0g x g x +=,所以max min 1()1()2M m g x g x +=+++=.(三)三角函数的周期性、奇偶性、对称性 例1.(1)《名师一号》P56 对点自测5设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数答案 B例1.(2)《名师一号》P57 高频考点 例3(2)(2014·新课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:由于y =cos|2x |=cos2x ,所以该函数的周期为2π2=π;由函14数y =|cos x |的图象易知其周期为π;函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π;函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③,故选A.注意:《名师一号》P56 问题探究 问题1 如何求三角函数的周期? (1)利用周期函数的定义. (2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|, y =tan(ωx +φ)的最小正周期为π|ω|.例1.(3)《名师一号》P58 特色专题 典例2函数f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx(ω>0)相邻两对称轴之间的距离为2,则ω=________【规范解答】 相邻两对称轴之间的距离为2,即T =4.f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx15+32cos ωx =3sin ⎝⎛⎭⎫ωx +π6,又因为f(x)相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.注意:【名师点评】 函数f(x)=A sin (ωx +φ),f(x)=A cos (ωx +φ)图象上一个最高点和它相邻的最低点的横坐标之差的绝对值是函数的半周期π|ω|,纵坐标之差的绝对值是2A .在解决由三角函数图象确定函数解析式的问题时,要注意使用好函数图象显示出来的函数性质、函数图象上特殊点的坐标及两个坐标轴交点的坐标等.练习:《加加练》P3 第11题例2.(1)《名师一号》P57 高频考点 例3(1)(1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3解: (1)∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.16∴sin φ3=±1,∴φ3=k π+π2(k ∈Z).∴φ=3k π+3π2(k ∈Z).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.变式:若函数f (x )=sin x +φ3(φ∈[0,2π])是奇函数,则φ=?例2.(2)《名师一号》P57 高频考点 例3(3)(3)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2解:(3)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z. ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.注意:【规律方法】(1)若f(x)=A sin(ωx+φ)为偶函数,则当x=0时,f(x)取得最大或最小值,若f(x)=A sin(ωx+φ)为奇函数,则当x=0时,f(x)=0.(2)对于函数y=A sin(ωx+φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数的对称轴或对称中心时,可通过检验f(x0)的值进行判断.《名师一号》P56 问题探究问题4如何确定三角函数的对称轴与对称中心?若f(x)=A sin(ωx+φ)为偶函数,则当x=0时,f(x)取得最大值或最小值.若f(x)=A sin(ωx+φ)为奇函数,则当x=0时,f(x)=0.如果求f(x)的对称轴,只需令ωx+φ=π2+kπ(k∈Z),求x.(补充)结果写成直线方程!如果求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.(补充)结果写点坐标!同理对于y=A cos(ωx+φ),可求其对称轴与对称中心,对于y=A tan(ωx+φ)可求出对称中心.1718练习1:《名师一号》P58 特色专题 典例3已知f(x)=sin x +3cos x(x ∈R),函数y =f (x +φ)⎝⎛⎭⎫|φ|≤π2为偶函数,则φ的值为________.【规范解答】 先求出f (x +φ)的解析式,然后求解.∵f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3. ∴f (x +φ)=2sin ⎝⎛⎭⎫x +φ+π3. ∵函数f (x +φ)为偶函数,∴φ+π3=π2+k π,k ∈Z ,即φ=π6+k π(k ∈Z).又∵|φ|≤π2,∴φ=π6.练习2:《计时双基练》P247 第3题(四)三角函数的单调性 例1.(1)《名师一号》P56 对点自测6下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )19A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2解析 由函数的周期为π,可排除C ,D.又函数在⎣⎡⎦⎤π4,π2上为减函数,排除B ,故选A.练习1:《计时双基练》P247 第7题函数y cos x π⎛⎫=- ⎪⎝⎭24的单调递减区间为练习2:《加加练》P1 第11题(2)《名师一号》P57 高频考点 例2已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性.20解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.注意:《名师一号》P56 问题探究 问题2 如何求三角函数的单调区间?(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式21求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.例2.《名师一号》P58 特色专题 典例4(2014·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则a 的取值范围是________.【规范解答】 先化简,再用换元法求解.f (x )=cos2x +a sin x =1-2sin 2x +a sin x .令t =sin x ,∵x ∈⎝⎛⎭⎫π6,π2,∴t ∈⎝⎛⎭⎫12,1.∴g (t )=1-2t 2+at =-2t 2+at +1⎝⎛⎭⎫12<t <1,由题意知-a 2×(-2)≤12,∴a ≤2. ∴a 的取值范围为(-∞,2].22 课后作业一、计时双基练P247 基础1-11、课本P56变式思考1二、计时双基练P247培优1-4课本P56变式思考2、3预习 第五节练习:1、设函数f (x )=2sin(2πx +5π).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1 D. 12分析:∵f (x )的最大值为2,最小值为-2,∴对∀x ∈R ,-2≤f (x )≤2.取到最值时x =2π+k π,|x 1-x 2|取最小值,即f (x 1)为最小值,f (x 2)为最大值且(x 1,f (x 1)),(x 2,f (x 2))为相邻的最小(大)值点,即半个周期.解析:f (x )的周期T =4,|x 1-x 2|min =2T =2. 故选B.232、为了使函数)0(sin >=ωωx y 在区间]1,0[上至少出现50次最大值,求ω的最小值。

三角函数和反三角函数的定义域和值域

三角函数和反三角函数的定义域和值域

三角函数和反三角函数的定义域和值域文章标题:深入理解三角函数和反三角函数的定义域和值域一、引言三角函数和反三角函数是数学中重要的概念,它们在数学和物理等领域有着广泛的应用。

理解三角函数和反三角函数的定义域和值域对于深入理解它们的性质和应用至关重要。

本文将从简单到复杂,由浅入深地探讨三角函数和反三角函数的定义域和值域,帮助读者更深入地理解这一主题。

二、三角函数的定义域和值域1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的三角函数之一,它们的定义域是整个实数集,即(-∞, +∞),而值域是闭区间[-1, 1]。

这意味着正弦函数和余弦函数的取值范围在-1到1之间。

2. 正切函数正切函数的定义域是所有实数,但它的值域是整个实数集,即(-∞, +∞)。

正切函数的取值范围是整个实数集。

3. 反正弦、反余弦和反正切函数反三角函数是三角函数的反函数,它们的定义域和值域与相应的三角函数相反。

反正弦函数的定义域是闭区间[-1, 1],而值域是闭区间[-π/2, π/2]。

这意味着反正弦函数的取值范围在-π/2到π/2之间。

三、深入理解三角函数和反三角函数的定义域和值域1. 定义域和值域的意义三角函数的定义域和值域决定了函数的取值范围和性质,它们对于解决三角函数的问题和应用具有重要的指导意义。

在求解三角方程和证明三角不等式时,对三角函数的定义域和值域有清晰的认识能够帮助我们更好地理解和处理问题。

2. 图形和性质三角函数的定义域和值域也反映在其图形和性质上。

通过分析三角函数的图形,我们可以直观地感受到其定义域和值域对函数图像的影响,从而更深入地理解三角函数的性质和特点。

四、总结与展望通过本文的探讨,我们对三角函数和反三角函数的定义域和值域有了更深入的理解。

理解三角函数和反三角函数的定义域和值域不仅有助于掌握它们的性质和特点,还能对解决实际问题和应用提供有力的支持。

未来,我们可以进一步探讨三角函数和反三角函数的性质以及它们在不同领域的具体应用,以丰富我们对这一主题的理解。

三角函数 定义域

三角函数 定义域

三角函数定义域三角函数是数学中的重要概念,它们具有广泛的应用领域。

在本文中,我们将探讨三角函数的定义域,以及它们在实际问题中的应用。

一、正弦函数的定义域正弦函数是三角函数中的一种,它用sin(x)表示。

正弦函数的定义域是所有实数,即负无穷到正无穷。

这是因为正弦函数是周期性的,它的图像在整个实数轴上重复出现。

正弦函数在物理学、工程学和天文学中有广泛的应用。

例如,在声音的传播中,正弦函数可以描述声波的周期性振动。

在机械工程中,正弦函数可以用于描述物体的振动状态。

在天文学中,正弦函数可以用于描述天体的周期性运动。

二、余弦函数的定义域余弦函数是三角函数中的另一种,它用cos(x)表示。

余弦函数的定义域也是所有实数。

与正弦函数类似,余弦函数也具有周期性。

余弦函数在物理学、工程学和电路分析中有重要的应用。

例如,在电路中,余弦函数可以用于描述交流电的变化情况。

在物理学中,余弦函数可以用于描述物体的周期性运动。

三、正切函数的定义域正切函数是三角函数中的另一种,它用tan(x)表示。

正切函数的定义域是所有实数,但在某些点上有不可定义的情况。

当角度为90度的倍数时,正切函数的值为无穷大。

正切函数在物理学、工程学和几何学中有广泛的应用。

例如,在工程学中,正切函数可以用于描述斜坡的倾斜程度。

在几何学中,正切函数可以用于计算三角形的边长和角度。

三角函数的定义域是所有实数,它们在物理学、工程学和数学中有广泛的应用。

通过了解三角函数的定义域,我们可以更好地理解它们在实际问题中的应用。

三角函数的反函数与域的限制

三角函数的反函数与域的限制

三角函数的反函数与域的限制三角函数是数学中常见的一类函数,包括正弦函数、余弦函数和正切函数等。

在解决实际问题时,我们经常需要求解三角函数的反函数。

本文将探讨三角函数的反函数以及相关的域的限制。

一、正弦函数的反函数正弦函数是一种周期函数,其定义域为实数集,值域为[-1, 1]。

当我们需要求解正弦函数的反函数时,需要限制函数的定义域在[-π/2, π/2]范围内。

这是因为在这个范围内,正弦函数是单调递增的,可以确保反函数的存在性。

二、余弦函数的反函数余弦函数也是一种周期函数,其定义域为实数集,值域为[-1, 1]。

与正弦函数类似,求解余弦函数的反函数时,需要限制函数的定义域在[0, π]范围内。

在这个范围内,余弦函数是单调递减的,反函数存在且唯一。

三、正切函数的反函数正切函数是一种奇函数,其定义域为实数集,值域为(-∞, +∞)。

然而,正切函数并不是一个双射函数,即不是一个一一对应的函数。

因此,我们无法直接定义正切函数的反函数。

为了解决这个问题,我们可以对正切函数进行限制,使其成为一个一一对应的函数。

通常,我们将正切函数的定义域限制在(-π/2,π/2)范围内,这样可以确保正切函数在这个范围内是单调递增的。

然后,我们可以定义正切函数在这个范围内的反函数,通常称为反正切函数或者切函数。

这个函数的定义域为(-∞, +∞),值域为(-π/2, π/2)。

四、其他三角函数的反函数除了正弦函数、余弦函数和正切函数外,其他三角函数如余割、正割和余切等也存在反函数。

这些函数的定义域和值域的限制方式与正弦函数、余弦函数和正切函数类似,通过限制定义域使得函数成为一一对应的函数,从而定义其反函数。

总结:三角函数的反函数与域的限制密切相关。

通过限制函数的定义域,我们可以确保函数是一一对应的,从而定义其反函数。

在求解三角函数的反函数时,需要注意函数的单调性,确保反函数的存在性和唯一性。

通过本文的讨论,我们了解了三角函数的反函数与域的限制的相关知识。

cos函数的定义域

cos函数的定义域

cos函数的定义域
cos函数是三角函数中的一种,它代表余弦值。

它的定义域是实数集合,而它的值域是[-1,1]。

cos函数在数学和科学中有着广泛的应用,如计
算机图形、信号处理、物理学等等。

余弦函数的定义为f(x)=cos(x),其中x为弧度。

在欧几里得平面中,x 表示的是一个射线与x轴正向之间的夹角,这个夹角的顶点为原点。

在三角函数中,cos函数代表的是一个直角三角形的相邻边与斜边之比。

在三角形中,这个相邻边是三角形与该角度相关的直角边上与该角度
相邻的那个边,而斜边则是三角形的斜边。

因为cos函数的定义域是实数集合,所以cos函数可以取任意实数值。

不同的x值对应着不同的cos函数值,这些值在一个以原点为中心,
半径为1的圆上可以找到。

这个圆被称为单位圆。

总之,cos函数的定义域是实数集合,它代表余弦值,其值域为[-1,1]。

它在三角函数中具有重要的地位,在数学和科学中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
要使y 1 sin z有最小值- 1,
必须
2
z
2
2k ,k z
2
要使y 1 sin z有最大值 1,
1 x 2k
必须
2
z
2
2k ,k z
1
x
2
2k
x
4k
2 x
35
2
4k
3
使原函数取得最小值的集合是
2 32
3
y sin x
x
|
x
5
3
4k ,k
Z
y sin x

练习 求函数 y=cos2x+4sin x 的最值及取到最大值和最小值 时的 x 的集合.
解 y=cos2x+4sin x=1-sin2x+4sin x =-sin2x+4sin x+1=-(sin x-2)2+5.
∴当 sin x=1,即 x=2kπ+2π,k∈Z 时,ymax=4; 当 sin x=-1 时,即 x=2kπ-2π,k∈Z 时,ymin=-4. 所以 ymax=4,此时 x 的取值集合是{x|x=2kπ+π2,k∈Z}; ymin=-4,此时 x 的取值集合是{x|x=2kπ-π2,k∈Z}.
2
所以结论要相反 y sin z 最小
3.二次函数的某些知识点
例 求函数 y=sin2x-sin x+1,x∈R 的值域.
解 设 t=sin x,t∈[-1,1],f(t)=t2-t+1. ∵f(t)=t2-t+1=t-122+34. ∵-1≤t≤1, ∴当 t=-1,即 sin x=-1 时,ymax=f(t)max=3;
x x sinx
忘掉的同学再去看看课本, 后面的老师还会讲到
课堂小结
1. 定义域 2.
1. 2. 值域 3. 4.
备选题1
备选题2.
备选题3
备选题 4
函数 y=sin x+23π ,x∈ 0,π2 的值域是
()
- 3,1 A. 2 2
-1, 3 B. 2 2
C. 23,1
D. 12,1
解:
∵0≤x≤π, 2
∴23π≤x+23π≤76π.
∴sin
7π≤sin
x+2π 3
≤sin
2π,
6
3
∴-12≤y≤ 23.故选 B.
总结:
y sinx 的值域求法如下:
练习
求使函数 y 3cos(2x ) 取得最大值、最小值的
2
自变量的集合,并写出最大值、最小值。
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
分析:令 z 2x
2 则 y 3sin z
化未知为已知
练习
求函数
y
3 2
sin
1 2
x
6
的最大值
因为有负号,
y 3 sin z 最大
三角函数的定义域、值域
回忆一下
1.正、余弦函数的定义域y和值域
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
正弦函数 y sin x 定义域:R 值域:[-1,1]
y
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
余弦函数 y cos x 定义域:R 值域:[-1,1]
| sin x |≤1 | cos x |≤1
2.正切函数 y tan x 的性质:
定义域: {x | x k , k Z}
2
值域: R
y
y tan x
值得注意
2
2
o 2
x 2

y sin x
y sinx 角
练习
1.已知函数y tan(2x )
4
则定义域:
x
x
8
k
2
,
kzຫໍສະໝຸດ 例(sin x 1 )
练习 函数 y log2 2 的定义域为:
当 t=12,即 sin x=12时,ymin=f(t)min=34. ∴函数 y=sin2x-sin x+1,x∈R 的值域为34,3.
小结 形如 f(x)=asin2x+bsin x+c(a≠0)的函数值域问题,可
以通过换元转化为二次函数 g(t)=at2+bt+c 在闭区间[-1,1]上 的最值问题.要注意,正、余弦函数值域的有界性,即当 x∈R 时,-1≤sin x≤1,-1≤cos x≤1 对值域的影响.
y sin x
1
O
x
2
2
1
(2k ,2k 5 )k Z
6
6
关于三角函数的定义域:
1.正切函数的定义域 ; 2.与常见函数相结合,要解三角函数不等式

练习
例 求函数的最大值
使原函数取得最大值的集合是
和最小值
x
|
x
3
4k
,k
Z
y
1 2
sin
1 2
x
3
解:令z 1 x
相关文档
最新文档