(系列教案1)25.3利用频率估计概率
学案1:25.3用频率估计概率

25.3 用频率估计概率学习目标.1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.重点、难点:1.重点:利用频率估计概率2.难点:理解频率与概率的区别与联系学习过程一、复习,引入新课:概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),那么0<P(A)<1.用列举法求概率的条件是什么?(1)(2)当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?二、新课讲解:问题1:某林业部门要考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?问题2:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?总结:瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率。
一般地,需要注意的是:概率是针对大量重复的试验而言的,大量试验反映的规律并非在每一次试验中出现.更一般地,即使试验的所有可能的结果不是有限个,或各种可能的结果发生的可能性不相等,也可以通过试验的方法去估计一个随机事件发生的概率.只要试验次数是足够大的,频率就可以作为概率的估计值.练习:某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:探究问题1:国家在明年将继续实施山川秀美工程,各地将大力开展植树造林活动.为此林业部要考查幼树在一定条件下的移植成活率,应采用什么具体做法?(填表格并完成表后的填空.)例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:1、从表中可以发现,A类幼树移植成活的频率在_____左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计A类幼树移植成活的概率为____,估计B类幼树移植成活的概率为___.2、张小明选择A类树苗,还是B类树苗呢?_____,若他的荒山需要10000株树苗,则他实际需要进树苗________株?3、如果每株树苗9元,则小明买树苗共需________元.探究问题2、某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率“统计,并把获得的数据记录在下表中了问题1:完好柑橘的实际成本为______元/千克问题2:在出售柑橘(已去掉损坏的柑橘)时,希望获利5000元,每千克大约定价为多少元比较合适?例2.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻.练习三、归纳总结:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.四、布置作业:。
人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计

3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。
人教版九年级上册 25.3用频率估计概率(1) 教学设计

人教版九年级上册 25.3用频率估计概率(1)教学设计《25.3用频率估计概率》第一课时教学设计一、教学内容解析《用频率估计概率》是人教版新教材九年级上册第二十五章第三节,前两节已经学习了概率的古典定义,并利用列举法求一些有限等可能事件的概率,本节将从统计试验结果的角度去研究概率,即通过频率研究概率。
教材在讨论完设置的掷硬币试验后,归纳得出用频率估计概率的方法,此方法可以看成概率的第二种定义------统计定义,用频率估计概率将不受试验结果个数有限和等可能条件的限制,因此适用范围比用概率的古典定义更广。
教材设置了一个投币实验,一方面让学生亲自动手试验获得数据,另一方面给出历史上投币实验的数据,为学生发现规律提供帮助,通过亲手试验和历史数据,学生能够用自己在统计中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小,大量试验得出的稳定性数据0.5和我们用列举法求出的概率是同一个数值,从另外一个方面佐证了只要试验重复次数足够多,可以用频率去估计概率。
于是教材给出了概率的统计定义,这将有利于学生从整体上更好的把握概率的内涵,与前节学习的概率的古典定义达到统一。
二、教学目标解析根据学生已有的认知结构和生活经验,制定以下教学目标:1、从频率稳定性的角度了解概率的意义;【设计目的】让学生感知在试验过程中频数的发生是一个随机事件,用质地均匀的硬币投掷又是等可能事件,计算出的频率只能作为概率发生的估计值。
2、经历试验、统计整理、分析、归纳、确认等数学活动进而了解并感受概率意义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界,进一步发展学生合作交流的意识和能力;【设计目的】让学生经历、感受数学是过程这一重大意义,把学生置于整个活动过程中,亲身体验频率的统计过程,深刻理解用频率估计概率的内涵,并在活动中进一步发展学生合作交流的意识和能力。
3、通过对问题的分析,理解用频率估计概率的方法,理解概率的思想,会用试验方法估计一些复杂的随机事件发生的概率。
人教版九年级数学上册25.3用频率估计概率优秀教学案例

1.教师可以布置相关的作业,让学生巩固所学的内容,并提高学生的应用能力。例如,教师可以让学生设计一个实验,用频率来估计某个事件的概率,并将实验结果写成报告。
2.教师可以鼓励学生在课后进行自主学习,进一步深入研究频率与概率的相关知识。例如,教师可以推荐一些相关的数学文章和书籍,让学生进行阅读和思考。
(四)反思与评价
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
4.培养情感态度与价值观:教师在教学过程中关注学生的情感态度与价值观,引导学生积极参与课堂活动,体验数学学习的乐趣,培养学生的自信心和坚持、勤奋的优良品质。
5.反馈与评价:教师在教学过程中注重学生的反馈与评价,通过课堂评价、自我反思等方式,对学生的学习情况进行及时反馈,鼓励学生的优点,并提出改进的建议,有助于学生的持续发展。
(四)总结归纳
1.教师可以引导学生进行自我反思,让学生思考自己在实验和解决问题中的优点和不足。例如,教师可以提问:“你在实验中发现了什么规律?你在解决问题时遇到了哪些困难?你是如何解决的?”
2.教师可以进行课堂评价,对学生的学习情况进行反馈,鼓励学生的优点,并提出改进的建议。例如,教师可以对学生的实验报告进行评价,对学生的团队合作和问题解决能力进行肯定,并提出进一步改进的建议。
(三)小组合作
1.教师可以将学生分成小组,让学生在小组内进行合作实验,共同探究频率与概率之间的关系。例如,教师可以让学生小组合作设计实验,收集数据,分析频率与概率之间的关系。
2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率

25.3 利用频率估计概率一、教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度与价值观】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.五、课前准备课件等.六、教学过程(一)导入新课教师问:抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?(出示课件2)学生答:出现“正面朝上”和“反面朝上”两种情况.教师问:它们的概率是多少呢?学生答:都是1.2教师问:在实际掷硬币时,会出现什么情况呢?(出示课件3)在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?用列举法可以求一些事件的概率.实际上,我们还可以利用多次重复试验,通过统计试验结果估计概率.(板书课题)(二)探索新知探究一用频率估计概率出示课件5-9:抛硬币实验(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.学生尝试画图:的直线,你发现了什么?(3)在上图中,用红笔画出表示频率为12的直线,并观察思考.学生画出表示频率为12教师强调:试验次数越多频率越接近0. 5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?学生答:支持.教师问:抛掷硬币试验有什么特点?学生答:1.可能出现的结果数有限;2.每种可能结果的可能性相等.教师问:如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?学生独立思考,交流.出示课件10-13:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表画出统计图表示“顶帽着地”的频率.学生尝试画图:(3)这个试验说明了什么问题?学生答:在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.出示课件14:教师归纳:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.出示课件15:知识拓展:人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.出示课件16:教师强调:一般地,在大量重复试验中,随机事件A发生的(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发频率mn生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即P(A)=P.练一练:判断正误(出示课件17)⑴连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1.(2)小明掷硬币10000次,则正面向上的频率在0.5附近.(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.学生思考后口答:⑴错误;⑵正确;⑶错误.出示课件18:例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);学生计算后并填表:(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?学生独立思考后口答:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.巩固练习:(出示课件19)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是4学生自主思考后口答:D.出示课件20,21:例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1)计算上表中合格品率的各频率(精确到0.001);(2)估计这种瓷砖的合格品率(精确到0.01);(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.学生计算思考后,师生共同解答.(出示课件22)解:(1)逐项计算,填表如下:稳定在0.962⑵观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率mn的附近,所以我们可取P=0.96作为该型号瓷砖的合格品率的估计.(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.出示课件23:教师归纳总结:频率与概率的关系在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与试验无关.巩固练习:(出示课件24)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1)学生自主思考后独立解答:⑴计算如下:⑵稳定在0.8附近;⑶0.8.(三)课堂练习(出示课件25-34)1.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.填表:由上表可知:柑橘损坏率是,完好率是.6.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?7.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案:1.D解析:由图知试验结果在0.33附近波动,因此概率约等于0.33.取到红球概率为0.6,故A错;骰子向上的面点数是偶数的概率为0.5,故B错;两次都出现反面的概率为0.25,故C错,骰子两次向上的面点数之和是7或超过9的概率≈0.33,故D正确.为132.310;2703.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.⑴0.6;⑵0.6.5.解:填表如下:由上表可知:柑橘损坏率是0.10,完好率是0.90.6.分析:根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.22(90009⨯≈元/千克),设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.7.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000×95%=240350(千克).(四)课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?七、课后作业配套练习册内容八、板书设计:九、教学反思:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.。
人教版九年级数学上册教案:第25章 用频率估计概率

25.3用频率估计概率一、基本目标【知识与技能】1.掌握用随机事件的频率估计事件发生的概率的方法.2.掌握设计试验来估计比较复杂的随机事件发生的概率,并灵活运用概率的有关知识解决实际问题.【过程与方法】经历“猜想——试验——收集数据——分析结果”的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型,理解频率与概率的关系.【情感态度与价值观】通过分组合作学习,积累数学活动经验,发展合作交流的意识与能力,逐步建立正确的随机观念,体验数学的价值与学习的乐趣,渗透辩证思想教育.二、重难点目标【教学重点】理解用频率估计概率的条件与方法.【教学难点】设计试验来估计比较复杂的随机事件发生的概率.环节1自学提纲,生成问题【5 min阅读】阅读教材P142~P146的内容,完成下面练习.【3 min反馈】1.抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性__相等__,这两个随机事件发生的概率都是__0.5__.通过试验可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在__0.5__附近摆动.一般地,随着抛掷次数的增加,频率呈现一定的__稳定__性:在__0.5__附近摆动的幅度会越来越__小__.2.教材P143“思考”的答案是“正面向上”的频率呈现出稳定性,稳定于__0.5__.3.用频率估计概率时必须做足够的试验才能使频率__稳定于__概率,并且每项试验必须在__相同条件__下进行,试验次数越__多__,得到的频率值就越接近概率,规律就越明显,此时可以用频率的__稳定值__估计事件发生的概率.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.(2)估计该麦种的发芽概率;(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100 kg麦种,则有多少千克的麦种可以成活为秧苗?【互动探索】(引发学生思考)计算出发芽频率,然后利用频率估计概率,用频率估计概率的条件是什么?【解答】(1)a=1900÷2000=0.95,b=2850÷3000=0.95.(2)观察发现,随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该麦种的发芽概率约为0.95.(3)100×0.95×87%=82.65(千克),故有82.65千克的麦种可以成活为秧苗.【互动总结】(学生总结,老师点评)在大量重复试验中,如果某个事件发生的频率呈现稳定性,此时可以用频率的稳定值估计事件发生的概率.【活动2】巩固练习(学生独学)1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是(B)A.12B.24C.36D.482.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:__0.6__(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为__0.6__.【活动3】拓展延伸(学生对学)【例2】均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4 出现的次数16201410(1)上述试验中“4朝下”的频率是__________;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13”的说法正确吗?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.【互动探索】(引发学生思考)结合频率和概率的相关知识,频率和概率有什么区别?(2)问中的说法正确吗?【解答】(1)16(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)列表如下:第一次第二次1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)由表可知,总共有16种结果,每种结果出现的可能性相同.两次朝下数字之和大于4的结果有10种,故P (两次朝下数字之和大于4)=1016=58.【互动总结】(学生总结,老师点评)试验得出的频率只是概率的近似值,试验次数越多,频率越趋向于概率.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
九年级数学 25.3利用频率估计概率 教案人教版

25.3.1利用频率估计概率教学目标:知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
教学重点:理解当试验次数较大时,试验频率稳定于理论概率。
教学难点:对概率的理解。
设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!二、合作游戏:1、实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出。
表格一:问题:(1)你认为哪种情况的概率最大?_________________红色________________________________________.(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?当试验次数较小时,统计出的频率不能估计概率.2、累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、五组(150次)。
的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。
表格二:频率试验次数30 60 90 120 150 180……问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?_________________________________________________.4、得出试验结论。
25.3用频率估计概率教案(人教版九年级上)

25.3 利用频率估计概率教学目标:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率mn(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为( )A.90个B.24个C.70个D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().A.110、110B.110、12C.12、110D.12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().A.10粒B.160粒C.450粒D.500粒二、填一填6.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.分)答案:1.D 2.B 3.B 4.A 5.C 6.3113,,102020;111,,424。
25.3用频率估计概率解决问题(教案)

在学生小组讨论环节,我尽量以引导者的身份参与其中,但在启发学生思考问题时,我发现自己提问的方式有时过于直接,可能限制了学生的思维。在今后的教学中,我应该尝试提出更多开放性的问题,激发学生的创新思维。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了频率与概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对用频率估计概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在完成“25.3用频率估计概率解决问题”这一章节的教学后,我对自己在课堂教学中的表现进行了深刻的反思。首先,我觉得在导入新课环节,通过提问方式引导学生思考日常生活中的概率问题,效果还是不错的,学生的兴趣和好奇心被充分调动起来。但在新课讲授过程中,我发现部分学生对频率与概率的概念理解不够深入,可能是我讲解得不够详细,也可能是我没有给学生提供足够的思考空间。
二、核心素养目标
本节课的核心素养目标主要包括:1.培养学生的数据分析观念,使其能够运用频率估计概率,理解数据背后的随机性,提高数据处理能力;2.培养学生的逻辑推理能力,使其在解决概率问题时,能够运用所学知识进行合理的推理;3.培养学生的数学建模素养,通过构建数学模型来描述和解决现实生活中的概率问题;4.培养学生的数学应用意识,让学生在实际问题中发现、提出、分析并解决概率问题,体会数学与现实生活的紧密联系。通过本节课的学习,使学生能够运用数学知识解决现实问题,提高其数学核心素养。
用频率估计概率(教案)

25.3 用频率估计概率教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.教学过程一、情境导入,初步认识问题1400个同学中,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗?有人说:“50个同学中,就很可能有2个同学的生日相同.”这话正确吗?调查全班同学,看看有无2个同学的生日相同.问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法.那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.二、思考探究,获取新知1.利用频率估计概率试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中:填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,…,10个组的数据之和填在第10行.如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上”出现的频率为m/n.【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许,组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律.请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史上,有些人曾做过成千上万次抛掷硬币的试验,试验结果如下:思考随着抛掷次数的增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳,使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性,在试验次数较少时,“正面向上”的频率起伏较大,而随着试验次数逐渐增加,一般地,频率会趋于稳定,“正面向上”的频率越来越接近0.5,也就是说,在0.5左右摆动的幅度越来越小.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.【归纳结论】一般地,在大量重复试验中,如果事件A发生的频率m/n稳定于某个常数P,那么事件A发生的概率P(A)=P.思考对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?答:都不可能,它们的值仍满足0≤P(A)≤1.2.利用频率估计概率的应用问题1某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?幼树移植成活率是实际问题中的一种概率,这种实际问题中的移植试验不属于各种结果可能性相等的类型.因而要考查成活率只能用频率去估计.在同样的条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率,若随着移植棵树n的越来越大,频率m/n越来越稳定于某个常数.则这个常数就可以作为成活率的近似值.上述问题可设计如下模拟统计表,补出表中空缺并完成表后填空.从表中可以发现,幼树移植成活的频率在左右摆动,且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的频率为:.答案:(1)表中空出依次填:0.940,0.923,0.883,0.897(2)0.9,0.9问题2某水果公司以2元/千克价格购进10000千克的水果,且希望这些水果能获得税前利润5000元,那么在出售这些水果(已去掉损坏的水果)时,每千克大约定价为多少元较合适?解:要定出合适的价格,必须考虑该水果的“完好率”或“损坏率”,如考查“损坏率”就需要从水果中随即抽取若干,进行损坏数量的统计,并把结果记录下来,为此可仿照上述问题制定如下表格:从表格可看出,水果损坏率在某个常数(例如0.1)左右摆动,并且随统计量的增加,这种规律逐渐明显,那么可以把水果损坏的概率估计为这个常数,如果估计这个概率为0.1,则水果完好的概率为0.9.∴在10000千克水果中完好水果的质量为10000×0.9=9000(千克)设每千克水果的销售价为x元,则有:9000x-2×10000=5000x≈2.8∴出售这批水果的定价大约为2.8元/千克,可获利5000元.思考为简单起见,能否直接把上表中500千克对应的损坏率作为损坏的概率?答:可以.【教学说明】用频率估计概率时,一般是通过观察所计算的各频率数值的变化趋势,即观察各数值主要集中在哪个常数的附近,这个常数就是所求概率的估计值.三、运用新知,深化理解1.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为()2.一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2、3、4的自然数x,试求x的值.【教学说明】第1题较简单,可由学生自主完成,第2题稍难,由师生共同完成.【答案】1.A2.(1)随着试验次数的增加,出现“和为7”的频率稳定在0.33附近摆动,因此可以知道当试验继续进行下去它的频率会稳定在0.33附近,故可估计“和为7”的概率为0.33.(2)甲、乙两人同时从袋中各摸出一个球所有可能的结果是(2,3)、(2,4)、(2,x)、(3,4)、(3,x)、(4,x)共6个,由于(3,4)这一结果的和为7,再根据“和为7”的概率为0.33≈1/3,所以其中(2,x)、(3,x)、(4,x)这三个结果中一定还有一个和为7,当2+x=7,则x=5,当3+x=7,则x=4,当4+x=7,x=3,显然后两种均不符合题意,故x=5.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善.课后作业1.布置作业:从教材“习题25.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.教学反思。
人教版九年级数学RJ上册精品教案 第25章 概率初步 25.3 用频率估计概率

25.3 用频率估计概率教师备课素材示例●归纳导入(1)我们知道,任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的试验,其中部分结果如下(2)两个同学一组多次抛硬币,计算出“正面向上”的频率;(3)归纳:试验次数越多,频率越接近概率.【教学与建议】教学:通过抛硬币试验的引入,体会频率与概率的关系.建议:让学生两个人合作抛硬币,记录并计算出频率.●复习导入通过前面知识的学习,请同学们回答下列问题:(1)用列举法求概率的条件和方法是什么?(2)列表法、画树状图法是不是列举法,它们在什么时候应用?(3)当列举法不能求出某事件的概率时,还有没有其他的方法?【教学与建议】教学:通过复习,使学生加深对列举法求概率的理解,同时产生探索其他方法求概率的兴趣.建议:问题3,教师可以直接点题.在做大量重复试验时,某事件发生的频率会稳定在概率值附近.【例1】(1)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算硬币正面朝上的概率,其试验次数分别为10,20,50,100次,其中试验相对科学的是(D)A.甲组B.乙组C.丙组D.丁组(2)做重复试验:抛掷一枚啤酒瓶盖1000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为(B)A.0.22B.0.42C.0.50D.0.58理解和巩固利用频率估计概率的方法,灵活解决问题.【例2】(1)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量为(A) A.1250条B.1750条C.2500条D.5000条(2)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有__9__张.(3)为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是__4__m2.让学生用数学知识和数学的思维方法去看待、分析、解决实际生活问题,加强应用统计与概率的意识.【例3】某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种,为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分(1)(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1∶3,估计参与度在0.4以下的共有多少人?解:(1)“直播”教学方式学生的参与度更高.理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40×100%=30%.答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生人数为800×11+3=200(人),“直播”总学生人数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).高效课堂 教学设计1.学会根据问题的特点,用统计频率来估计事件发生的概率.2.理解用频率估计概率的方法,渗透转化和估算的数学方法.▲重点对利用频率估计概率的理解和应用.▲难点比较用列举法求概率与用频率求概率的条件与方法.◆活动1 新课导入1.举例说明什么是确定事件,什么是不确定事件.答:确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛.2.什么是概率?答:在一定条件下,重复做n 次试验,m 为n 次试验中事件A 发生的次数,如果随着n 逐渐增大,频率m n逐渐稳定在某一数值p 附近,那么数值p 称为事件A 在该条件下发生的概率,记作P(A)=p.3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的?答:概率是0.5.4.当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?答:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.◆活动2 探究新知1.教材P 142~145.提出问题:(1)试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统__0.5__左右摆动;(3)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越__小__.这时,我们称“正面向上”的频率稳定于__0.5__.学生完成并交流展示.◆活动3 知识归纳一般地,在大量重复试验中,如果事件A 发生的__频率m n__稳定于某个常数p ,那么事件A 发生的概率P(A)=__p__.(注意:用频率估计概率的条件是大量重复试验)◆活动4 例题与练习例1 一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下__0.6__(2)假如你去摸一次,你摸到白球的概率是__0.6__,摸到黑球的概率是__0.4__;(3)试估算口袋中黑、白两种颜色的球各有多少个?解:白球:20×0.6=12(个),黑球:20×0.4=8(个).练习1.教材P147习题25.3第1,2题.2.小华练习射击,共射击600次,其中380次击中靶子,由此估计小华射击一次击中靶子的概率是( C )A.38%B.60%C.63%D.无法确定3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则布袋中红色球可能有( B )A.4个B.6个C.34个D.36个◆活动5 课堂小结频率与概率的关系:区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小;②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.联系:频率是概率的近似值,概率是频率的稳定值.1.作业布置(1)教材P147~148习题25.3第3,4,5题;(2)对应课时练习.2.教学反思[第(1)题图][第(2)题图]。
25.3用频率估计概率教学设计

25.3 用频率估计概率教学设计引言在概率论和统计学中,我们经常需要对概率进行估计。
而常用的一种估计方法是用频率来估计概率。
本文将介绍一个针对初学者的教学设计,旨在帮助学生理解和应用用频率估计概率的方法。
目标•了解频率估计概率的基本原理和方法•理解统计量和样本大小对频率估计的影响•能够通过样本数据进行概率的估计教学步骤步骤一:引入概念在开始教学之前,首先要引入概率的概念,包括基本概率原理和事件发生的可能性等内容。
可以通过举例子来说明概率的应用,帮助学生理解概率的概念和意义。
步骤二:介绍频率估计概率的原理在学生对概率的基本概念有一定了解后,我们可以引入频率估计概率的原理。
解释频率估计概率是通过观察事件发生的频率来估计概率的方法。
同时,需要强调样本的大小对估计结果的影响。
步骤三:示例演示为了帮助学生更好地理解频率估计概率的方法,我们可以进行一些示例演示。
以掷骰子为例,我们可以先让学生进行实际的掷骰子实验,记录每个点数出现的频率。
然后,我们可以让学生根据实验结果估计掷出每个点数的概率,并与理论概率进行比较。
步骤四:讨论限制和误差在示例演示后,我们可以引导学生讨论频率估计概率的限制和误差。
例如,样本大小越大,估计结果越接近真实概率;同时,样本的选择也可能对估计结果产生影响。
步骤五:练习和作业为了巩固学生对频率估计概率的理解和应用,可以设计一些练习和作业。
例如,让学生利用现有的样本数据,对某一事件的概率进行估计,并与真实概率进行比较。
步骤六:复习和总结在教学结束前,进行一次复习和总结。
回顾频率估计概率的原理和方法,强调样本大小和样本选择对估计结果的影响。
同时,可以提供一些额外的练习题,供学生继续巩固和应用所学知识。
结论本文介绍了一个针对初学者的用频率估计概率的教学设计。
通过引入概率的基本概念,介绍频率估计概率的原理,以及示例演示和讨论限制和误差等内容,帮助学生理解和应用用频率估计概率的方法。
通过逐步引导学生进行练习和作业,巩固和应用所学知识。
课件1:25.3用频率估计概率

因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
人教版九年级数学下册精品教案 用频率估计概率1

25.3 用频率估计概率教案11.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16.探究点二:用频率估计概率 【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】 频率估计概率的实际应用 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x 条鱼,则5∶200=30∶x ,解得:x =1200,故答案为:1200. 方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.25.3 用频率估计概率教案2【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
《25.3 用频率估计概率》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《用频率估计概率》教学设计方案(第一课时)一、教学目标:1. 理解频率稳定性,并理解概率和频率之间的关系。
2. 学会使用频率估计概率的方法。
3. 培养观察、分析和解决问题的能力。
二、教学重难点:教学重点:理解频率稳定性,掌握用频率估计概率的方法。
教学难点:如何根据实际情况,灵活运用频率估计概率。
三、教学准备:1. 准备教学PPT和相关图表。
2. 准备实验器材,如小球、骰子等。
3. 准备概率应用案例,以便在实际教学中使用。
四、教学过程:(一)导入新课通过一些简单的实例,引导学生体会频率与概率之间的关系,感受概率的意义。
例如:1. 抛一枚均匀的硬币,落地后正面朝上的概率为0.5,那么连续多次抛掷后,正面朝上的频率是否会一直稳定在0.5左右呢?2. 投掷两枚均匀的骰子,计算朝上一对骰子的点数和为偶数的概率。
每次试验这种事件都会发生吗?它的概率会改变吗?通过这些实例,让学生感受到频率与概率之间的关系,并引出课题。
(二)探索新知通过实验活动,让学生体验如何通过实验来估计概率。
例如:1. 设计一些简单的实验,如摸球、摸卡片、转盘等,让学生自己动手实验,感受实验的次数对估计概率的影响。
2. 讨论如何选择合适的实验方法来估计不同事件的概率。
3. 通过实例让学生了解随机事件发生的频率在多次试验中会有一定的稳定性,可以用来估计某个事件的概率。
4. 探究如何将一个必然事件或不可能事件转化为一个随机事件来估计它的概率。
(三)巩固提高通过一些练习题,让学生应用所学知识解决实际问题,加深对知识的理解。
例如:1. 一些简单的概率计算题。
2. 一些与生活实际相关的概率问题,如彩票中奖率、天气预报的准确率等。
(四)小结作业1. 总结本节课的主要内容,强调频率与概率之间的关系,以及如何通过实验来估计概率。
2. 布置作业,让学生通过作业进一步巩固所学知识,并可以自行设计一些简单的实验来感受概率的意义。
教学设计方案(第二课时)一、教学目标1. 学生能够理解频率稳定值的概率的意义。
人教版九年级数学上册《25.3利用频率估计概率(1)》教案

“自学互帮导学法”课堂教学设计第1课型课时理解当试验次数较大时,试验频率稳定于理论概率。
对概率的理解。
教学过程第1页共5页及补救措施1、问题情境:抛掷一枚硬币,“正面向上”的概率为 0.5.这是否意味着:抛掷 2 次,1 次正面向上”?“抛掷 50 次,25 次正面向上”?我们不妨用试验进行检验.1、任务1:考察频率与概率是否相同?活动:抛掷一枚硬币 50 次,统计“正面向上”出现的频数,计算频率,填写表格,思考.组员分工:1 号同学抛掷硬币,约达 1 臂高度,接住落下的硬币,报告试验结果;2 号同学用画记法记录试验结果;3 号同学监督,尽可能保证每次试验条件相同,确保试验的随机性,填写表格.2.任务1抛掷一枚硬币,“正面向上”的概为 0.5.意味着什么?如果重复试验次数增多,结果会如何?3.任务2观察随着重复试验次数的增加,“正面向上”的频率的变化趋势是什么?第2页共5页活动:逐步累加各小组试验获得的“正面向上”的频数,求频率,用Excel 表格生成频率的折线图,观察、思考.3.任务2历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些试验结果见下表:试验者抛掷次数n “正面向上”的次数m“正面向上”的频率棣莫弗布丰费勒皮尔逊皮尔逊2 0484 04010 00012 00024 0001 0612 0484 9796 01912 0120.5180.506 90.497 90.501 60.500 54.归纳方法:对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.5.运用方法:问题:抛掷一枚图钉,你能估计出“钉尖朝上”的概率吗?猜一猜:“钉尖朝上”可能性与“钉尖朝下”的可能性哪个更大?6.任务3任务3:抛掷一枚图钉,估计“钉尖朝上”的概率.活动:抛掷一枚图钉 50 次,统计“钉尖朝上”出现的频数,用 Excel第3页共5页逐步累加全班数据,观察频率变化折线图,估计“钉尖朝上”的概率.注意:水平拿图钉,如图,从视线高度松手,让图钉下落,尽可能保证每次试验条件相同,确保试验的随机性.(1)目前我们学习了哪几种求随机事件概率的方法?(2)结合你的生活经验,说说你对频率与概率之间关系的认识.第4页共5页。
九年级数学上册25.3.1用频率估计概率教案

“25.3.1 用频率估计概率(第1课时)”备课人:实验中学九年级备课组教学目标:能够通过试验探究随机事件的概率,了解大量重复试验的频率稳定值可用来估计概率,并能理解频率与概率的关系.目标解析:1、知识目标:①能够通过试验,获得事件发生的频率,知道大量重复试验时频率可作为事件发生概率的估计值;②理解频率与概率的区别与联系.2、能力目标:①经历用试验的方法获得概率的过程,培养学生试验操作能力及整理、描述、分析数据的能力;②发展学生根据频率的稳定性估计概率的能力.3、情感目标:①培养学生分析真实数据的实事求是的态度;②培养学生勇于探索的精神及交流与协作精神;③在对概率统计定义的领会中渗透辩证的思想.教学过程:问题引入:1、播放“NBA”(美国男子篮球职业联赛)08——09赛季火箭队VS奇才队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%.丙:80% 姚明很准的,大概估计有80%的可能性.师:同学们,你们同意谁的观点?学生回答时,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.屏幕上闪烁显示08——09赛季姚明罚篮命中率86.6%,继续发问:他的命中率从何而来?(统计结果)师:怎么统计的?(罚中个数与罚球总数的比值)师:这个比值叫什么?这实际上就是频率,这种方法实际上就是用频率估计概率.(板书课题)设计意图:从学生熟悉、感兴趣的事物和最喜欢的球星引入,激发学习兴趣的同时,得出姚明罚篮命中的可能性不相等,由此引发认知冲突,导入新课.试验探究(课前完成)1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法——通过统计很多掷硬币的结果来得到呢?设计意图:已知概率的情况下引入试验,基于以下原因:(1)抛掷硬币试验所需条件容易实现,可操作性强;(2)硬币试验历史上积累了大量数据,更有利于问题的说明;(3)用频率估计概率可以和前两节学习的概率的古典定义统一,两种不同的方法求得的是同一个概率,且概率的统计定义比古典定义更具一般性.2、掷硬币试验:全班共分8个小组,每小组5人,共抛50次,推荐组长一名,抛掷时请将书本文具收入课桌内.(1)组员职责:①两人一组合,一人抛一人画“正”记数,抛掷一次划记一次,“正面向上”一次划记一次;②抛的高度要达到自己坐姿的头顶高度,若硬币掉在地上,本次不作记录.(2)组长职责:①检查组员抛掷是否符合要求;②收集本组数据,把数据录入教师机中的抛掷情况表,与本组同学填写硬币抛掷统计表(表3),将第1组数据填在第一列,第1、2组的数据之和填在第二列,……8个组的数据之和填在第8列.设计意图:①“在相同条件下”使数据更真实有效;②合理分组,可以减少劳动强度,加快试验速度,同时在培养动手能力与探索精神中,培养团队协作精神.表1(个人抛掷情况统计表)姓名抛掷次数划记正面向上的次数划记25小组一二三四五六七八正面向上次数表3(硬币抛掷统计表)抛掷次数n 50 100 150 200 250 300 350 400 正面向上的频数m正面向上的频率(精确到0.001)图1设计意图:这几个图表的给出可以正确有效地引导学生在有限的课堂时间内高效率地得到相关的试验数据及整理描述数据,为分析数据作准备.同时,试验整个操作过程均由学生参与完成,教师只是作为组织者参与其中,关注学生的投入程度——能否积极、主动地从事各项活动,向同伴解释自己的想法,听取别人的建议与意见;关注学生在活动中表现出的实践能力、思维水平、团队意识.3、分析数据组长收集本组数据后,录入教师机中的小组抛掷统计表(表2),每位同学均参与填写硬币抛掷统计表(表3)和折线图(图1),教师根据学生计算结果在教师机上填写表3,并请一同学在黑板上绘制折线图(图1),完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.)“正面向上”频率()0.518引导学生关注数学家的严谨,师:还有一位数学家,还做了八万多次的试验.观察频率在0.5附近摆动幅度有何规律?观察折线图2:图2③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0.5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0.5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0.5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.设计意图:这六个问题的设置,循序渐进,促使学生更深入的分析数据,学生发现大量重复试验时频率稳定于概率,在头脑中再现了知识的形成过程,避免单纯地记忆,使学习成为一种再创造的过程.揭示新知师:其实,不仅仅是掷硬币这个事件有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出12位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.给出概率的统计定义.引导学生解读m、n、P、P(A)的含义,并与课本P129中的m、n、P (A)进行对比,并指出这是从统计的角度给出了概率的定义,后者仅限于试验结果有限个和等可能事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.师:由定义看:随机事件的概率P(A)有什么范围?思考对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?设计意图:引入瑞士数学家雅各布·伯努利的故事,增加学生学习数学的兴趣,同时,增加学习自信心,通过比较概率的统计定义与古典定义,引导学生发现用频率估计概率思想方法的重要作用.巩固练习①计算表中相应的“射击9环以上”的频率(精确到0.01);②这些频率具有什么样的稳定性?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1).师:为什么题目用“估计”,而不是计算得到?设计意图:巩固新知,知能升级.2、请你抢答(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星三肯定不下雨,你认为他说的对吗?(概率大的事件在一次试验中有可能不发生,概率小的事件在一次试验中,也有可能发生,随机事件不但具有规律性,还有随机性.)(2)抛掷硬币100次,一定有50次正面向上吗?抛掷2n次一定有n次正面向上吗?(概率是针对大量重复试验而言的,大量重复试验反映的规律并非意味着每一次试验中一定存在.只能说随着试验次数的增加,正面向上的次数越来越接近总数的一半.)(3)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(试验次数太少,不能估计概率)(4)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”(只有当购买的注数足够多时,中奖频率才接近中奖概率.)设计意图:通过生活中的实例进一步揭示概率的内涵——概率是针对大量重复试验而言,大量重复试验反映的规律并非在一次试验中反映出来.反过来,试验次数太少时,得到的频率不能做为概率的估计值.3、议一议频率与概率有什么区别与联系?学生思考、讨论后全班交流.(1)频率是一个变化的值,随着试验次数改变而改变的.(2)概率是一个确定的数,是某个随机事件固有的属性.(3)大量重复试验的频率具有稳定性,可以用频率来估计概率.设计意图:明晰频率与概率的联系与区别,渗透辩证思想,深化新知的同时,突破难点. 课堂检测:1、下列说法正确的是()A、“明天降雨的概率是80%”表示明天有80%的时间降雨B、“抛一枚硬币下面朝上的概率是0.5”表示每抛硬币两次就有一次正面朝上C、“彩票中奖的概率是1%”表示买100张彩票一定会中奖D、“抛一枚正方体骰子正面朝上的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现正面朝上的数为奇数2、根据概率的含义,指出下列说法不正确的是()A、不同的人做同一试验,得出某事件发生的频率不相同,因此该事件的概率不是确定的值B、试验的次数越多,某事件发生的频率就和该事件的概率越接近C、某事件的概率为5分之1,则可以说大量的试验中,该事件平均每5次会出现1次D、生活中常用“万一”这个词,从概率的含义来说,该事件的概率为“万分之一”3、在一场足球比赛前,甲队教练预言说:“根据我掌握的情况,这场比赛我们队有60%的概率获胜.”与“有60%的概率获胜”意思最接近的是()A、他这个队赢的可能性较大B、若这两个队打100场比赛,他这个队恰好会赢60场C、若这两个队打10场比赛,他这个队会赢6场左右D、若这两个队打100场比赛,他这个队会赢60场左右4、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这样结果的试验可能是()A、掷一枚正面六面体的骰子,出现1点的概率B、从一个装有2个白球和1个红球的袋子中任取一球,取得红球的概率C、抛一枚硬币,出现正面的概率D、任意写一个整数,它能被2整除的概率5、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 111 136 345 564 701落在“铅笔”区域的频率(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少(精确到1°)?总结反思1、了解了一种关系——频率与概率的关系2、学习了一种方法——用大量重复试验的频率去估计概率3、体会了一种思想——用频率估计概率用样本估计总体设计意图:通过小结与反思,使学生对本节课的内容有一个整体的认识和理解,对核心思想方法有了更深的体会.同时,培养学生归纳概括能力和语言表达能力.课后试验从一定高度落下的图钉,落地后可以图钉尖着地,也可以图钉尖不着地,估计一下哪种事件的概率更大.全班分成8个小组完成,发给学生同一型号的图钉,统一从20cm高度处抛掷,每组试验100次,由组长和数学科代表协作完成.完全数据统计之后,每位同学填好下列表格,完成结果的估计试验次数n 100 200 300 400 500 600 700 800“图顶尖着地”的频数m“图顶尖着地”的频率从表中可以发现,“图钉尖着地”的频率在左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计从一定高度落下的图钉,图钉尖着地的概率是 .设计意图:设计这个课后试验主要是为了让学生进一进掌握通过大量重复试验用频率估计概率的思想,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.3利用频率估计概率
教学目标:
知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展
概率观念。
过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
教学重点:理解当试验次数较大时,试验频率稳定于理论概率。
教学难点:对概率的理解。
设计教学程序:
一、问题情境:
妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!
二、合作游戏:
1、实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成
下面表格一的填写和有关结论的得出。
表格一:
问题:(1)你认为哪种情况的概率最大?
_________________红色________________________________________.
(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?当试验次数较小时,统计出的频率不能估计概率.
2、累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前
三组(90次)、前四组(120次)、五组(150次)。
的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。
表格二:
频率
试验次数
30 60 90 120 150 180……
问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?_________________________________________________.
4、得出试验结论。
三、随堂练习。
书本P158页“柑橘的损坏率”填写表25--6
四、拓展提升:解决问题2
1、柑橘的损坏率是多少?
2、到达目的地后完好的柑橘还有多少千克?
3、把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元?
4、设每千克定价为x元,则可以得到的方程是?
五、课堂小结:畅所欲言。
六、课内拓展:
教学反思。