利用频率估计概率
九年级数学《利用频率估计概率》教案
《利用频率估计概率》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级上册第25章第三小节利用频率估计概率第1课时。
2.知识背景分析本章隶属于“统计与概率”领域,相对于传统的代数、几何而言,概率论形成较晚,其定义方式新颖独特,具有不确定性,这是理解概率的难点所在.新教材在教学内容的编排上,采用了模块化、螺旋上升的方式.本节课就是在学习了“随机抽样”、“用样本估计总体”等统计知识的基础上展开对概率的研究的——利用频率估计概率,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率.本节课的学习,既是对前面知识的发展和应用,又是今后进一步研究相关知识的基础,在教材中起着承上启下的作用.3.学情背景分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,但他们不知道如何利用频率去估计概率,这是教学中的一大难点;另外,随机事件发生的随机性和规律性是如何辩证统一的,这是教学中的又一大难点.4.学习目标1、.知识与技能:学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.2.过程与方法:通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.3.情感态度与价值观:通过对实际问题的解答,体会知识的应用价值。
5.学习重、难点教学重点:用一件事件发生的频率来估计这一事件发生的概率.教学难点:理解大量重复试验的必要性。
6.教法设计与学法指导针对本节课的特点,在教法上,我采用以教师引导为主,学生合作探索、积极思考为辅的探究式教学方法;在教学过程中,我注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟。
7.学习环境与资源设计7.1学习环境:多媒体教室。
7.2学习资源:教材、教学课件(多媒体课件)。
8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
利用频率估计概率典型例题
《利用频率估计概率》典型例题(1)填表求该前锋罚球命中的频率(保留三个有效数字)(2)比赛中该前锋队员上蓝得分并造成对手犯规,罚球一次,你能估计这次他能投中的概率是多少吗?解析:罚中的频率=罚中的次数÷罚球的次数,故表中的频率可以直接求得,用频率估计概率时,一定要注意试验的次数增加时频率会稳定在那个常数附近.答案:(1)表中的频率依次为0.900, 0.750, 0.867, 0.787, 0.805, 0.797, 0.805, 0.802.(1)从表中的数据可以发现,随着练习次数的增加,该前锋罚球命中的频率稳定在0.8左右,估计他这次能罚中的概率为0.8分析:随机事件的频率可以对随机事件发生的可能性进行客观估计,当我们大量重复试验时,试验的每一个结果都会呈现出其频率的稳定性,此时频率与概率几乎相当,所以用稳定的频率估计概率合理的,并由此来说明事件发生的可能性大小.例2.某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.解:填完表格可知:柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.因此:在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克.完好柑橘的实际成本为:21000290000.9⨯=≈2.22(元/千克)设每千克柑橘的销价为x元,则应有: (x-2.22)×9000=5000解得:x≈2.8因此,出售柑橘时每千克大约定价为2.8元,可获利润5000元.分析:(1)引导学生分析获利问题需要知道哪些量.观察表格中频率的变化规律,确定柑橘损坏的概率为0.1,得到完好率为0.9.从而算出完好柑橘的实际成本约为2.22元.(2)让学生主动意识到在实际运输过程中柑橘是有损耗的.必须要把损耗的柑橘的成本折算到没有损耗的柑橘售价中.(3)本题一方面要应用“用样本估计总体”的统计思想以及用频率估计概率的思想计算出柑橘的损坏率,另一方面还要根据已知的损坏率为达到盈利的目的采取定价决策.(4)设计这道题是让学生感受到概率在决策中的作用,培养学生学数学、用数学的意识和能力.例3.一个学习小组有6名男生3名女生,•老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,•你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗?分析:因为要做从这9人中,抽取3人的试验确实工作量很大,为了简便这种试验,我们可用下面两种方法来简便.1.取9张形状完全相同的卡片,在6张卡片上分别写上1~6的整数表示男生,在其余的3张卡片上分别写上7~9的整数表示女生,把9张卡片混合并洗均匀.从卡片中放回的抽3次,随机抽取,每次抽取1张,并记录结果,经重复大量试验,•就能够计算相关频率,估计出三人中两男一女的概率.2.用计算器也能产生你指定的两个整数之间(包括这两个整数)的随机整数,•也同样能够估计概率.结论:以上这两种试验我们把它称为模拟实验.•从模拟实验中产生的一串串的数为“随机数”.下面的表中给出了一些模拟实验的方法,。
《利用频率估计概率》教学设计
《》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的根底上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这局部内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实根底。
【教学目标】根据新课程标准的要求,课改应表达学生身心开展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下四个方面:【知识技能】理解“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率〞.掌握用样本估计总体的根本思想.【数学思考】通过学生自己动手、动脑和亲身试验体会数学知识与现实世界的联系,并思考概率与频率之间的关系,样本估计总体的思想.【问题解决】通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.用估计得出的概率去解决实际问题.【情感态度】通过动手实验和课堂交流,进一步培养收集,描述,分析数据的技能,提高数学交流水平,开展探索,合作的精神.感受数学知识的运用在生活中的重要性.【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的根本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,到达事半功倍的教学效果。
25.3利用频率估计概率
学生结合统计表和 统计图思考
地,频率会趋于稳定, “正面朝上”的频率越来越接近 0.5. 这也与我们计算 的概率是一致的,就用 0.5 这个常数表示“正面向上”发生的可能性的大小. 其实, 历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上 数学家做掷币试验的数据统计表(看书 P141 表 25-3). 4.下面我们能否研究一下“反面向上”的频率情况? 学生自然可依照 “正面朝上” 的研究方法, 很容易总结得出: “反面向上” 的频率也相应稳定到 0.5. 5.归纳:即抛掷一枚质地均匀的硬币时, “正面向上”与“反面向上”的可能 性相等(各占一半). 一般地,在大量重复试验中,如果事件 A 发生的频率 m/n 会稳定在某个 常数 p 附近,那么这个常数 p 就叫做事件 A 的概率, 记作 P(A)= p. 思考: ①课本 142 页思考. ②频率与概率有什么区别与联系? 从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计 事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数 (事件发生的概率)附近, 说明概率是个定值,而频率随不同试验次数而有所不 同,是概率的近似值,二者不能简单地等同. ③阅读课本 142 页文字,并思考:如何灵活选用利用频率估计概率与利用公 式求概率. (二)利用频率估计概率的应用 课本问题 1 分析:1 幼树移植成活率问题是概率问题吗? 2 同样条件下,问题中移植的幼树成活可能性相等吗? 3 填表后观察幼树移植的成活率在哪个常数上下摆动? 课本问题 2 分析:1 本问题是概率问题吗? 2 试估测柑橘的损坏率是多少?完好的概率是多少? 3 柑橘完好的质量是多少? 4 这批柑橘的总进价是多少?实际成本的单价是多少? 5 如何计算利润?售价应定为多少可获利润 5000 元? 三、课堂训练 完成课本 142、145 页练习 四、小结归纳 1.本节学习的概率问题有什么特点? 2.利用频率估计概率与利用公式求概率分别适用于什么样的问题?如何灵活 选择方法求事件的概率? 五、作业设计 复习巩固作业和综合运用为全体学生必做; 拓广探索为成绩中上等学生必做; 学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习. 补充作业:. 板 课题 利用频率估计概率 教 学 反 思 应用 书 设 计
利用频率估算概率的方法频率估算概率的两个条件频率估算概率的依据
一、利用频率估算概率的方法1.在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率;3.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
4.利用频率估计出的概率是近似值。
二、利用频率估算概率频率:在多次实验中,某个事件出现的次数叫频数,某个事件出现的次数与试验总次数的比,叫做这个事件出现的频率。
概率:又称或然率、机会率或机率、可能性,是一个在0到1之间的实数,是对随机事件发生的可能性的度量,表示一个事件发生的可能性大小的数,叫做该事件的概率。
三、频率与概率之间的关系频率与概率的区别:事件的概率是客观存在的,是确定的,是个不变的常数.而事件发生的频率是大量重复试验的结果,是不确定的,是变化的数。
它不仅和总的试验次数n有关,即重复试验的次数n不同,结果(频率)可能不同,而且即便是两回大量重复试验的次数n相同,事件出现的次数k也可能不同,结果(频率)也就可能不同.频率与概率的关系:事件发生的频率客观上能够体现事件概率的含义,即一个事件发生的频率越大,说明该事件在总的试验次数n中,出现的次数k相对的越多,也就是说该事件发生的可能性越大;事件发生的频率越小,说明该事件在总的试验次数n中,出现的次数k相对的越少,也就是说该事件发生的可能性越小.反过来,事件发生的概率也应该体现在事件的频率上,即事件的概率越大,该事件发生的可能性越大,应该在总的试验次数n中,该事件出现的次数k相对越多;事件的概率越小,该事件发生的可能性越小,应该是在总的试验次数n中,该事件出现的次数k相对越小.四、如何用频率估计概率?1.要解决这个问题首先要了解频率和概率的定义以及它们之间的相互关系。
用频率估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
结束寄语:
概率是对随机现象的一种数学描述,它可 以帮助我们更好地认识随机现象,并对生活中 的一些不确定情况作出自己的决策.
从表面上看,随机现象的每一次观察结果都 是偶然的,但多次观察某个随机现象,立即可 以发现:在大量的偶然之中存在着必然的规律.
在相同情况下随机的抽取若干个体进行实验,
进行实验统计.并计算事件发生的频率 m
根据频率估计该事件发生的概率.
n
问题1 某林业部门要考查某种幼树在一定条件的移植 的成活率,应采用什么具体做法?
幼树移植成活率是实际问题中 的一种概率。这个实际
问题中的移植实验不属于各种结果可能性相等的类型, 所以成活率要由频率去估计。
解:
根据概率的意义,可以 认为其概率大约等于 250/2000=0.125.
该镇约有 100000×0.125=12500 人看中央电视台的早 间新闻.
例4
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
360 641 1275
0.9 0.855
0.850
3500 7000 14000
3203 6335 12628
0.915 0.905
3500 7000 14000
2996 5985 11914
0.856
0.855 0.851
观察图表,回答问题串
1、从表中可以发现,A类幼树移植成活的 频率在___0_.9_左右摆动,并且随着统计数据 的增加,这种规律愈加明显,估计A类幼树 移植成活的概率为__0_.9_,估计B类幼树移
3.2用频率估计概率(教案)
举例:通过抛硬币、掷骰子等实验,让学生观察不同试验次数下频率的变化,引导学生发现频率的稳定性。
(2)频率与概率之间的转化:让学生理解频率与概率之间的联系和区别,如何将频率转化为概率,这是学生掌握的难点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“频率估计概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数据分析观念,使学生能够通过实验观察数据,发现频率的稳定性,从而理解频率与概率之间的关系。
2.提高学生的数学抽象能力,让学生从具体的实验现象中抽象出频率估计概率的一般方法,并应用于实际问题。
3.增强学生的逻辑推理能力,引导学生通过实验、观察、分析等过程,合理解释频率估计概率的合理性。
1.回顾概率的定义,理解概率与频率的区别与联系。
2.通过实验,观察不同试验次数下事件发生频率的变化,探讨频率的稳定性。
3.学习如何利用频率估计概率,并通过实例进行分析。
4.练习运用频率估计概率的方法,解决简单的实际问题。
本节课的重点是让学生掌握利用频率估计概率的方法,难点是如何引导学生通过实验发现频率的稳定性,从而理解频率与概率之间的关系。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
利用频率估计概率
利用频率估计概率以下是为您推荐的利用频率估计概率,希望本篇文章对您学习有所帮助。
利用频率估计概率疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A 出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在铅笔的次数m 68 111 136 345 546 701落在铅笔的频率(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有铅笔区域的扇形的圆心角大约是多少?(精确到1)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69360248.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A. 90个B.24个C.70个D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ).A. B. C. D.3.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A. 、B. 、C. 、D. 、5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A.10粒B.160粒C.450粒D.500粒6.某校男生中,若随机抽取若干名同学做是否喜欢足球的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ).A.只发出5份调查卷,其中三份是喜欢足球的答卷;B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;C.在答卷中,喜欢足球的答卷占总答卷的 ;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( ).A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ).A. 2元B.5元C.6元D.0元二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为2个正面、1个正面和没有正面这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现2个正面、1个正面和没有正面这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 _ 50 4051 _ 55 8056 _ 60 16061 _ 65 8066 _ 70 3071_ 75 10从中任选一头猪,质量在65kg以上的概率是_____________.11.为配和新课程的实施,某市举行了应用与创新知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
九年级数学利用频率估计概率
置信水平和置信区间的概念
1 2
置信水平
表示估计的概率值在真实概率值周围的可信程度, 通常用百分比表示。
置信区间
表示估计的概率值所在的可能范围,通常用区间 表示。
3
置信水平和置信区间之间的关系
置信水平越高,置信区间越窄,估计的精度越高。
05 总结与展望
总结频率与概率的关系
01
频率是概率的近似值
在大量重复实验中,某一事件发生的频率会趋近于该事件发生的概率。
样本大小对频率稳定性的影响
样本越大,频率越稳定,估计的概率越准确。
样本大小与置信水平的关系
样本越大,置信水平越高,置信区间越窄,估计的精度越高。
随机误差和系统误差的影响
随机误差
由于随机抽样而产生的误差,可以通 过增加样本量来减小。
系统误差
由于抽样方法、测量工具或实验设计 等因素产生的误差,需要改进抽样方 法、提高测量精度或调整实验设计来 减小。
02 利用频率估计概率的方法
长期频率稳定性
定义
应用Leabharlann 长期频率稳定性是指当试验次数趋于 无穷时,某一随机事件的相对频率趋 于该事件的概率。
在现实生活中,许多概率可以通过长 期频率稳定性来估计,例如抛硬币正 面朝上的概率约为0.5。
原理
通过大量重复试验,观察某一随机事 件的相对频率,可以近似估计该事件 的概率。
概率论在金融领域的应用
金融领域涉及大量的不确定性和风险,概率论在金融领域的应用十分广泛。未来,随着金 融市场的不断发展和风险管理需求的增加,概率论在金融领域的应用将更加重要和迫切。
THANKS FOR WATCHING
感谢您的观看
因此,可以通过实验中事件发生的频率来估计概率。
25.3利用频率估计概率 TXC
m ) n
估计移植成Leabharlann 率0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 成活数(m) 8 成活的频率 ( 0.8
m ) n
50 47 0.94 900 棵. 1.林业部门种植了该幼树1000棵,估计能成活_______ 270 235 0.870 2.我们学校需种植这样的树苗500棵来绿化校园,则至少 0.923 400 369 556 棵. 向林业部门购买约_______ 0.883 750 662 1500 3500 7000 9000 14000 1335 3203 6335 8073 12628 0.890 0.915 0.905 0.897 0.902
m ) n
估计移植成活率
0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 50 270 400 750 1500 3500 7000 9000 14000 成活数(m) 8 47 235 369 662 1335 3203 6335 8073 12628 成活的频率 ( 0.8 0.94 0.870 0.923 0.883 0.890 0.915 0.905 0.897 0.902
湘教版数学九年级下册教学设计:4.3 用频率估计概率
湘教版数学九年级下册教学设计:4.3 用频率估计概率一. 教材分析《湘教版数学九年级下册》第四章第三节“用频率估计概率”是概率统计部分的重要内容。
本节课主要让学生掌握利用频率来估计事件的概率,理解频率与概率的关系,为后续的随机事件及其概率、统计量的计算等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念,了解了必然事件、不可能事件、随机事件等概念,并能够计算简单事件的概率。
但学生对利用频率来估计概率的方法可能还较为陌生,需要通过实例让学生感受和理解频率与概率之间的关系。
三. 教学目标1.让学生理解频率与概率的关系,掌握利用频率来估计事件的概率的方法。
2.培养学生的动手操作能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的数据分析观念。
四. 教学重难点1.教学重点:频率与概率的关系,利用频率来估计事件的概率的方法。
2.教学难点:如何引导学生理解频率与概率之间的关系,如何运用频率来估计事件的概率。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决问题的过程中感受和理解频率与概率的关系。
2.运用实例分析法,通过具体的例子让学生掌握利用频率来估计概率的方法。
3.采用小组合作交流的方式,培养学生的团队协作能力和数据分析观念。
六. 教学准备1.准备相关的实例和练习题,以便进行课堂讲解和练习。
2.准备多媒体教学设备,如投影仪、计算机等,以便进行课件展示和讲解。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与日常生活相关的问题,如抛硬币、掷骰子等,引导学生思考这些问题背后的概率规律。
2.呈现(10分钟)呈现一些具体实例,如抛硬币实验、掷骰子实验等,让学生观察实验结果,并引导学生总结实验结果与概率之间的关系。
3.操练(10分钟)让学生进行一些实际的操作练习,如抛硬币、掷骰子等,让学生亲自体验频率与概率的关系。
4.巩固(10分钟)针对学生的操作练习,进行讲解和解答,帮助学生巩固所学知识,并引导学生运用频率来估计事件的概率。
用频率估计概率教案
《利用频率估计概率》教案1第一课时★新课标要求知识与技能:1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.过程与方法:通过试验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力.情感态度与价值观:1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯.2.在活动中进一步发展合作交流的意识和能力.教学重点:理解当试验次数较大时,试验频率稳定于理论概率.教学难点:对概率的理解.设计教学程序:一、问题情境:教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、合作游戏:1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来.2.教师巡视学生分组试验情况.注意:(1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2)要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,抛掷次数n50100150200250300350400450500“正面向上”的频数mm“正面向上”的频率n想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在上下波动.想一想2(投影出示).随着抛掷次数增加,“正面向上”的频率变化趋势有何规律在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近.这也与我们刚开始的猜想是一致的.我们就用这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律.鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多着名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识有没有发现频率还有其他作用 学生探究交流,发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件可能性的大小. 那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ),记作P (A )=p .注意指出: 1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论):问题2.频率与概率有什么区别与联系从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.第二课时知识与技能:了解模拟试验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力.过程与方法:初步学会对一个简单的问题提出一种可行的模拟试验.情感态度与价值观:1.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣.2.渗透数形结合思想和分类思想.教学重点:理解用模拟试验解决实际问题的合理性.教学难点:会对简单问题提出模拟试验策略.设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢妈妈想用掷骰子的办法决定,你觉得这样公平吗说说你的理由但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替,你觉得这样公平吗选哪种颜色获得门票的概率更大说说你的理由!二、合作游戏:1.试验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出.表格一:(1)你认为哪种情况的概率最大(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论2.累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、前五组(150次).....的试验数据,完成表格二的填写,并绘制出相应的折线统计图并得出有关结论.表格二:问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论3.得出试验结论.例题小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯.袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只.同学们能否求出摸出的2只恰好是一双的可能性问:同学们能否通过试验估计它们恰好是一双的可能性如果手边没有袜子应该怎么办问:在摸袜子的试验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做试验吗答:不可以,用不同的替代物混在一起,大大地改变了试验条件,所以结果是不准确的.注意:试验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的.问:假设用小球模拟问题的试验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响试验结果吗答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的试验,而是中途变成了3双黑袜子试验,这两种试验结果是不一样的.问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行试验,结果会怎样答:小球的颜色不影响恰好是一双的可能性大小.三、随堂练习.书本“柑橘的损坏率”填写表25—6.四、拓展提升:解决问题2.1.柑橘的损坏率是多少2.到达目的地后完好的柑橘还有多少千克3.把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元4.设每千克定价为x元,则可以得到的方程是.。
人教版初三数学利用频率估计概率
样本 从总体中抽取 的一部分个体叫做 总体的一个样本;
频数 在考察中,每个对象出现的次数称为频 数,
频率 而每个对象出现的次数与总次数的比值 称为频率.
普查 为了一定的目的,而对考察对象进行全面的 调查,称为普查;
总体 所要考察对象的全体,称为总体, 个体 而组成总体的每一个考察对象称为个体;
应该如何做呢?翻到课本157页.
上面两个问题,都不属于结果可能性相等的类 型.移植中有两种情况活或死.它们的可能性 并不相等, 事件发生的概率并不都为50%.柑 橘是好的还是坏的两种事件发生的概率也不 相等பைடு நூலகம்因此也不能简单的用50%来表示它发生 的概率.
当试验次数很大时,一个事件发生频率也稳定在相应的概率附近. 因此,我们可以通过多次试验,用一个事件发生的频率来估计这一 事件发生的概率.
红
蓝
黄
红红 蓝黄
小明和小红正在玩一个游戏:每人掷一个 骰子。小明掷的是标准的正方体骰子。而 小红用的是均匀的四面体的骰子(标了1, 2,3,4)每人掷两次,骰子着地一面是 几,就向前走几格。现在两人离开终点目 标都是7格。请问谁最有可能先达到终点? 请用概率的知识加以分析。
四.依据闯关游戏规则,请你探 究“闯关游戏”的奥秘:(1) 用列表的方法表示有可能的闯 关情况;
小明抽出 的扑克
4
小华抽出 的扑克
2
结果
(4,2)
THANKS
天津代怀孕 天津代怀孕 昭痋耶
五.求出闯关成功的概率
五.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游 戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽, 抽出的牌不放回。
利用频率估计概率说课稿
利用频率估计概率说课稿一.教材的地位和作用《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
本节内容分两课时完成,本次课设计是第二课时的教学。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,体现了新课标第三学段“统计与概率”中对两个重要概念“频率、概率”的要求。
通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
同时,对此内容的学习,也为高中深入研究概率的相关知识打下坚实基础。
二、目标分析1.知识技能:1)理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2)进一步理解概率与频率之间的联系与区别,培养学生根据频率的集中趋势估计概率的能力。
2.过程方法:1)选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2)通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.3.情感态度与价值观:利用生活实例,结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
三、教学重难点重点:1.通过对事件发生的频率来分析来估计事件发生的概率. 2.运用频率估计概率的方法解决实际问题难点: 运用频率估计概率的方法解决实际问题四、教学流程(一)整体设计活动1:复习巩固引入新知活动2:创设情境,探究主题活动3:讲解例题,深化主题活动4:课堂练习,小结归纳(二)环节设计活动1:复习巩固,引入新知1.概率的定义2、事件的分类及概率的求法3、用列举法求概率的前提条件活动2:创设情境,探究主题问题1:估计移植成活率某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法?活动3:讲解例题,深化主题问题2:某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?学生填空1.这批柑橘损坏的概率是______,则完好柑橘的概率是_______,2.如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,完好柑橘的实际成本为______元/千克3.设每千克定价为x元,则可以得到的方程是4.若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.【设计意图】问题2是在问题1的基础上进行了拓展,它是一个综合性较强的实际问题,涉及的量较多,也是对本节课知识的升华,对提高学生分析问题的能力有很大好处。
人教版数学九年级上册25.3《利用频率估计概率》教学设计
人教版数学九年级上册25.3《利用频率估计概率》教学设计一. 教材分析人教版数学九年级上册25.3《利用频率估计概率》是学生在学习了概率的基本概念和计算方法后,进一步学习利用频率来估计概率的一节内容。
通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的基本概念和计算方法已经有了一定的了解。
但是,学生在利用频率估计概率方面可能还存在一些困难,如对频率与概率之间的关系理解不深,以及对实际问题解决方法的掌握不够熟练。
三. 教学目标1.让学生理解频率与概率之间的关系,能够利用频率来估计概率。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.频率与概率之间的关系。
2.利用频率估计概率的方法。
3.实际问题中如何运用频率估计概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究问题来理解频率与概率之间的关系。
2.利用多媒体演示和实例分析,帮助学生直观地理解频率估计概率的方法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.结合课后练习和实际问题,巩固学生对频率估计概率的理解和应用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与概率相关的日常生活实例,引导学生回顾概率的基本概念和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)展示教材中关于利用频率估计概率的内容,引导学生理解频率与概率之间的关系。
通过实例分析,让学生直观地感受利用频率估计概率的方法。
3.操练(10分钟)学生进行小组讨论,探讨如何利用频率来估计概率。
然后,让学生进行课堂练习,巩固对频率估计概率的理解。
4.巩固(10分钟)针对学生在练习中遇到的问题,进行讲解和解答。
利用频率估计概率(市示范课)
单击此处添加副标题
目录
贰
单击此处添加标题
壹
单击此处添加标题
第一章
引言
主题简介
利用频率估计概率是概率论中的一个基本概念,它涉及到概率的统计推断方法。这种方法是通过大量重复实验中某一事件发生的频率来估计该事件发生的概率。
在现实生活中,很多情况下我们无法直接得到事件的概率,但可以通过实验和观察频率来估计。例如,抛硬币的结果、抽奖活动的中奖率等。
第三章
频率估计概率的实例分析
抛硬币实验
抛硬币,观察正面和反面的出现次数。 实验过程 频率计算 概率估计 记录正面和反面出现的次数,计算各自出现的频率。 根据频率,估计正面和反面出现的概率。
抛骰子实验
抛骰子,观察每个点数的出现次数。 实验过程 记录每个点数出现的次数,计算各自出现的频率。 频率计算 根据频率,估计每个点数出现的概率。 概率估计
对样本量要求高
为了获得较为准确的频率,需要足够大的样本量。样本量不足会导致估计结果的不准确。
第五章
利用频率估计概率的实际应用
2
1
3
通过分析历史股票价格数据,利用频率估计概率的方法预测未来股票价格的走势,为投资者提供参考。
股票预测
在投资组合管理中,利用频率估计概率的方法评估不同资产的风险,帮助投资者制定合理的资产配置策略。
THANKS FOR
概率的近似计算
对未来的展望
统计学的应用
强调了统计学在各个领域的应用价值,鼓励学生们将所学知识应用于实际问题中。
数学建模的重要性
强调了数学建模在解决实际问题中的重要性,鼓励学生们培养数学建模的能力。
概率论的发展
讨论了概率论的发展趋势和前沿问题,鼓励学生们继续深入学习和探索。
课件1:25.3用频率估计概率
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
人教版数学九年级上册25.3用频率估计概率(教案)
1.培养学生运用数学语言描述随机现象的能力,增强数据分析观念;
2.提升学生通过实验观察、数据分析等方法,发现事件发生的规律,培养推理与论证能力;
3.引导学生运用频率估计概率,形成解决问题的策略,提高解决问题的能力;
4.培养学生合作交流、积极参与课堂讨论的意识,发展数学交流能力;
5.引导学生体会数学与实际生活的联系,增强数学应用意识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“频率估计概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
c.难点:实验设计。在实际问题中,如何设计实验来收集数据,例如在调查某地区居民身高分布时,如何选择样本、确定调查方法等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用频率估计概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估计某个事件发生概率的情况?”(如抛硬币正面朝上的概率)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索用频率估计概率的奥秘。
三、教学难点与重点
1.教学重点
-理解频率的定义及计算方法,掌握用频率估计概率的基本原理;
-能够运用频率估计实验中随机事件的概率,并通过实例分析频率与概率的关系;
-培养学生通过实验观察、数据分析等方法,发现事件发生规律的能力。
举例:在掷骰子实验中,计算出现某一面的频率,并据此估计出现该面的概率。