(精)人教版新课标七年级数学上导学案【全套】
1新人教版七年级上数学导学案全套
新人教版七年级上册数学导学案全套第一章有理数第1课时:1.1 正数和负数(1)导学目标:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生导学数学的兴趣。
导学重点:正数和负数概念导学难点:负数概念导学指导:一、改变旧世界:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、知识新天地1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
三、学海苦无边:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
新人教版七年级数学-上册导学案(全册)
新人教版七年级数学上册导学案课题:1.1 正数和负数(1)学习目标:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生导学数学的兴趣。
学习重点及难点:重点:正数和负数概念难点:负数概念知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?学法指导:自主学习、合作探究学习过程一、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要二、合作探究【探究一】1、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容三、达标检测1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
2.已知下列各数:51-,432-,3.14,+3065,0,-239;则正数有_____________________;负数有____________________。
3.下列结论中正确的是…………………………………………()A.0既是正数,又是负数B.O是最小的正数C .0是最大的负数D .0既不是正数,也不是负数4.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010;其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个四、课堂小结及作业布置 小结:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新人教版七年级上册数学导学案全册
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新版人教版七年级上册数学全册导学案(共128页)
新版⼈教版七年级上册数学全册导学案(共128页)初三数学七年级数学第⼀章导学案第1学时内容:正数和负数(1)学习⽬标:1、整理前两个学段学过的整数、分数(⼩数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会⽤符号表⽰正数和负数.3、体验数学发展是⽣活实际的需要,激发学⽣学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学⽅法:引导、探究、归纳与练习相结合教学过程⼀、学前准备1、⼩学⾥学过哪些数请写出来:、、.2、在⽣活中,仅有整数和分数够⽤了吗?有没有⽐0⼩的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例⼦,边阅读边思考)回答上⾯提出的问题:.⼆、探究新知1、正数与负数的产⽣1)、⽣活中具有相反意义的量如:运进5吨与运出3吨;上升7⽶与下降8⽶;向东50⽶与向西47⽶等都是⽣活中遇到的具有相反意义的量.请你也举⼀个具有相反意义量的例⼦:.2)负数的产⽣同样是⽣活和⽣产的需要2、正数和负数的表⽰⽅法1)⼀般地,我们把上升、运进、零上、收⼊、前进、⾼出等规定为正的,⽽与它相反的量,如:下降、运出、零下、⽀出、后退、低于等规定为负的。
正的量就⽤⼩学⾥学过的数表⽰,有时也在它前⾯放上⼀个“+”(读作正)号,如前⾯的5、7、50;负的量⽤⼩学学过的数前⾯放上“—”(读作负)号来表⽰,如上⾯的—3、—8、—47。
2)活动两个同学为⼀组,⼀同学任意说意义相反的两个量,另⼀个同学⽤正负数表⽰.3)阅读P3练习前的内容3、正数、负数的概念1)⼤于0的数叫做,⼩于0的数叫做。
2)正数是⼤于0的数,负数是的数,0既不是正数也不是负数。
3)练习P3第⼀题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出⼏对(⾄少两对)具有相反意义的量,并分别⽤正、负数表⽰四、应⽤迁移,巩固提⾼(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.⼩明的姐姐在银⾏⼯作,她把存⼊3万元记作+3万元,那么⽀取2万元应记作_______,-4万元表⽰________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表⽰的意义是………………………() A .向东⾏进50m C .向北⾏进50m B .向南⾏进50m D .向西⾏进50m5.下列结论中正确的是 …………………………………………() A .0既是正数,⼜是负数 B .O 是最⼩的正数C .0是最⼤的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ……………………………………………………() A .2个 B .3个 C .4个 D .5个B 组1.零下15℃,表⽰为_________,⽐O℃低4℃的温度是_________.2.地图上标有甲地海拔⾼度30⽶,⼄地海拔⾼度为20⽶,丙地海拔⾼度为-5⽶,其中最⾼处为_______地,最低处为_______地.3.“甲⽐⼄⼤-3岁”表⽰的意义是______________________. C 组1.写出⽐O ⼩4的数,⽐4⼩2的数,⽐-4⼩2的数.2.如果海平⾯的⾼度为0⽶,⼀潜⽔艇在海⽔下40⽶处航⾏,⼀条鲨鱼在潜⽔艇上⽅10⽶处游动,试⽤正负数分别表⽰潜⽔艇和鲨鱼的⾼度.第2学时内容:正数和负数(2)学习⽬标:1、会⽤正、负数表⽰具有相反意义的量.2、通过正、负数学习,培养学⽣应⽤数学知识的意识.3、通过探究,渗透对⽴统⼀的辨证思想学习重点:⽤正、负数表⽰具有相反意义的量学习难点:实际问题中的数量关系教学⽅法:讲练相结合教学过程⼀、.学前准备通过上节课的学习,我们知道在实际⽣产和⽣活中存在着两种不同意义的量,为了区分它们,我们⽤正数和负数来分别表⽰它们.问题1:“零”为什么即不是正数也不是负数呢?引导学⽣思考讨论,借助举例说明.参考例⼦:温度表⽰中的零上,零下和零度.⼆.探究理解解决问题问题2:(教科书第4页例题)先引导学⽣分析,再让学⽣独⽴完成例(1)⼀个⽉内,⼩明体重增加2kg,⼩华体重减少1kg,⼩强体重⽆变化,写出他们这个⽉的体重增长值;(2)2009年下列国家的商品进出⼝总额⽐上⼀年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意⼤利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出⼝总额的增长率.解:(1)这个⽉⼩明体重增长2kg,⼩华体重增长-1kg,⼩强体重增长0kg.(2)六个国家2009年商品进出⼝总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意⼤利0.2%, 中国7.5%.三、巩固练习从0表⽰⼀个也没有,是正数和负数的分界的⾓度引导学⽣理解.在学⽣的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学⽣通过阅读题中的含义,找出具有相反意义的量,决定哪个⽤正数表⽰,哪个⽤负数表⽰.通过问题(2)提醒学⽣审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)⽤正负数表⽰加⼯允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以⽤正负数表⽰允许误差吗?请举例.五、⼩结1、本节课你有那些收获?2、还有没解决的问题吗?六、应⽤与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,⼄冷库的温度⽐甲冷酷低5°C,则⼄冷库的温度是.2、⼀种零件的内径尺⼨在图纸上是9±0.05(单位:mm),表⽰这种零件的标准尺⼨是9mm,加⼯要求最⼤不超过标准尺⼨多少?最⼩不⼩于标准尺⼨多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少⽶?4、如果规定向东为正,那么从起点先⾛+40⽶,再⾛-60⽶到达终点,问终点在起点什么⽅向多少⽶?应怎样表⽰?⼀共⾛过的路程是多少⽶?5、10筐橘⼦,以每筐15㎏为标准,超过的千克数记作正数,不⾜的千克数记作负数。
【全册】最新人教版七年级数学上册导学案
最新人教版七年级数学上册全册导学案第一章有理数 (1)第二章整式的加减 (6)第三章一元一次方程 (22)第四章图形认识初步 (57)第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
七年级上册数学导学案(全册)
第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
最新人教版初一数学上册全册教学案导学案
第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:-51,432,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个 B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新人教版七年级上册数学导学案全册
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
最新人教版七年级数学上册导学案(全册)
最新人教版七年级数学上册导学案(全册)第一章 有理数1. 1正数和负数备课:七年级数学教研组 学生姓名:【学习目标】1、掌握正数和负数的概念。
2、能区分两种不同意义的量,会用符号表示正数和负数。
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合【学习过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。
2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。
3、如果向南走2米记为+2,那么向北走10米应表示为 。
4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。
二、课堂学习5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。
6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
人教版新课标七年级数学上导学案【全套,120页】
第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P2页的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3、1,2(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新人版七年级(上册)数学导学案[全册]
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
人教版七年级数学上册全册导学案(122页)
第一章有理数。
课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
2023年部编本人教版七年级数学上册导学案(全册)
2023年部编本人教版七年级数学上册导学案(全册)第一单元:数学与你我他1. 观察身边的事物,描述它们与数学的关系。
2. 研究数学的重要性和在生活中的应用。
- 探索数学在日常生活中的应用场景。
- 分享身边有趣的数学事例。
3. 研究数学基本概念。
- 了解自然数和整数。
- 掌握数轴上的整数表示方法和比较大小。
- 研究如何用数轴解决实际问题。
第二单元:数的整数运算1. 回顾正整数的加减运算。
2. 研究关于正整数的乘法和除法运算。
- 掌握乘法的运算法则。
- 了解除法的基本概念和运算法则。
3. 练运用整数运算解决实际问题。
- 运用正整数的运算进行计算。
第三单元:图形的认识1. 研究图形相关术语和概念。
- 了解点、线、面的定义。
- 掌握不同类型的线段和角的特征。
2. 研究如何绘制简单的几何图形。
- 利用尺规画直线和圆。
- 绘制多边形和正方形。
3. 在实际情境中运用图形知识。
- 识别和描述身边的图形。
第四单元:一次函数1. 研究函数的概念。
- 了解函数的基本特点。
- 掌握自变量、因变量和函数关系的概念。
2. 认识一次函数。
- 研究一次函数的定义和表示方法。
- 探索一次函数的图象和性质。
3. 运用一次函数解决实际问题。
- 利用一次函数的性质进行计算和推理。
第五单元:平方根与立方根1. 研究平方数和立方数的概念。
- 掌握平方数和立方数的定义。
- 记忆一些常见的平方数和立方数。
2. 研究平方根和立方根的概念和性质。
- 了解平方根和立方根的定义。
- 掌握平方根和立方根的计算方法。
3. 运用平方根和立方根解决实际问题。
- 运用平方根和立方根进行计算和推理。
第六单元:既约分数和倍数1. 复分数的概念和分数的计算。
2. 了解既约分数的概念和性质。
- 掌握既约分数的计算方法。
- 理解既约分数的意义和应用。
3. 研究倍数的概念和计算方法。
- 探索倍数的性质和规律。
- 利用倍数进行计算和推理。
4. 运用既约分数和倍数解决实际问题。
七年级上册数学导学案(全册)
第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新人教版七年级上册数学导学案(全册)
七年级数学(上册)导学案之阿布丰王创作第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种分歧意义的量,会用符号暗示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的发生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的发生同样是生活和生产的需要2、正数和负数的暗示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数暗示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来暗示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数暗示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元暗示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239;则正数有_____________________;负数有____________________。
4.下列结论中正确的是…………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。
新人教版七年级上册数学导学案(全册)
七年级数学(上册)导学案之青柳念文创作第一章有理数1.1 正数和负数(1)【学习方针】1、掌握正数和负数概念;2、会区分两种分歧意义的量,会用符号暗示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.【导学指导】一、:1、小学里学过哪些数请写出来:、、.2、阅读讲义P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,唯一整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的发生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.(2)负数的发生同样是生活和生产的需要2、正数和负数的暗示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数暗示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来暗示,如上面的—3、—8、—47.(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另外一个同学用正负数暗示.(3)阅读P3操练前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做.2)正数是大于0的数,负数是的数,0既不是正数也不是负数.【讲堂操练】:1. P3第1题到第2题(讲义上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那末取出2万元应记作_______,-4万元暗示________________.3.已知下列各数:51-,432-,,+3065,0,-239;则正数有_____________________;负数有____________________.4.下列结论中正确的是…………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有……………………………………………………( )A .2个B .3个C .4个D .5个 【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做.(2)正数是大于0的数,负数是的数,0既不是正数也不是负数.【拓展训练】:1.零下15℃,暗示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”暗示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别暗示潜水艇和鲨鱼的高度.【总结反思】:课题:1.1正数和负数(2)【学习方针】:1、会用正、负数暗示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数暗示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接.通过上节课的学习,我们知道在实际生产和生活中存在着两种分歧意义的量,为了区分它们,我们用__________ 和___________ 来分别暗示它们.问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度暗示中的零上,零下和零度.二.自主探究问题:(讲义第4页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变更,写出他们这个月的体重增长值;2)2001年下各国家的商品进出口总额比上一年的变更情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;2)六个国家2001年商品进出口总额的增长率:美国___________ 德国__________法国___________ 英国__________意大利__________ 中国__________【讲堂操练】1.讲义第4页操练2、阅读思考(讲义第8页)用正负数暗示加工允许误差;问题:直径为30.032mm和直径为29.97的零件是否合格?【要点归纳】1、本节课你有那些收获?2、还有没处理的问题吗?【拓展训练】1)甲冷库的温度是-12°C,乙冷库的温度比甲刻毒低5°C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),暗示这种零件的尺度尺寸是9mm,加工要求最大不超出尺度尺寸多少?最小不小于尺度尺寸多少?【总结反思】:课题:1.2.1 有理数【学习方针】:1、掌握有理数的概念,会对有理数按一定尺度停止分类,培养分类才能;2、懂得分类的尺度与集合的含义;3、体验分类是数学上常常使用的处理问题方法;【学习重点】:正确懂得有理数的概念【学习难点】:正确懂得分类的尺度和依照一定尺度分类【导学指导】一、温故知新1、通过两节课的学习,,那末你能写出3个分歧类的数吗?.(4论理学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数.问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【讲堂操练】1、P8操练(做在讲义上)2.把下列各数填入它所属于的集合的圈内: 15, -91, -5, 152, 813-, 0.1, -5.32, -80, 123,2.333;正整数集合 负整数集合 正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 【拓展训练】1、下列说法中不正确的是……………………………………………( )A .既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:【学习方针】: 1、掌握数轴概念,懂得数轴上的点和有理数的对应关系;2、会正确地画出数轴,操纵数轴上的点暗示有理数;3、体会数形连系的重要思想方法;【重点难点】:数轴的概念与用数轴上的点暗示有理数;【导学指导】一、知识链接1、°C 、°C 、°C ;和一棵杨树,汽车站西3m 和4.8m 处分别有一棵槐树和一根电线杆,试画图暗示这一 情境?东汽车站请同学们分小组讨论,交流合作,动手操纵二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来暗示有理数吗?2、自己动手操纵,看看可以暗示有理数的直线必须知足什么条件?引导归纳:1)、画数轴需要三个条件,即、方向和长度.2)数轴【讲堂操练】1、请你画好一条数轴2、操纵上面的数轴暗示下列有理数1.5, —2, 2, —2.5, 92,23-, 0;3、 写出数轴上点A,B,C,D,E 所暗示的数:三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每一个数到原点的间隔是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展操练】1、在数轴上,暗示数-3,2.6,53-,0,314,322-,-1的点中,在原点左边的点有个.2、在数轴上点A 暗示-4,如果把原点O 向正方向移动1个单位,那末在新数轴上点A 暗示的数是( )3、你感觉数轴上的点暗示数的大小与点的位置有什么关系?【总结反思】:课题:1.2.3 相反数【学习方针】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形连系思想;【学习重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号.【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出暗示5、—2、—5、+2 这四个数的点.3、观察上图并填空:数轴上与原点的间隔是2的点有个,这些点暗示的数是;与原点的间隔是5的点有个,这些点暗示的数是.从上面问题可以看出,一般地,如果a是一个正数,那末数轴上与原点的间隔是a的点有两个,即一个暗示a,另外一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称.二、自主学习自学讲义第10、11的内容并填空:1、相反数的概念像2和—2、5和—5、3和—3这样,只有分歧的两个数叫做互为相反数.2、操练(1)、2.5的相反数是,—115和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,—a是的相反数例如a=7时,—a=—7,即7的相反数是—7.a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,—(—5)=5你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的(3)简化符号:-(+0.75)=,-(-68)=,-(-0.5 )=,-(+3.8)=;(4)、0的相反数是.3、数轴上暗示相反数的两个点和原点的间隔.【讲堂操练】 P11第1、2、3题【要点归纳】:1、本节课你有那些收获?2、还有没处理的问题吗?【拓展训练】1.在数轴上标出3,-1.5,0各数与它们的相反数.2是,2x的相反数是,a-b的相反数是;3. 相反数等于它自己的数是,相反数大于它自己的数是;4.填空:(1)如果a=-13,那末-a=;(2)如果-a=-5.4,那末a=;(3)如果-x=-6,那末x=;(4)-x=9,那末x=;相反数的两个数的点之间的间隔为10,求这两个数.【总结反思】:【学习方针】:1、懂得、掌握相对值概念.体会相对值的作用与意义;2、掌握求一个已知数的相对值和有理数大小比较的方法;3、体验运用直观知识处理数学问题的成功;【重点难点】:相对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的道路(填相同或不相同),他们行走的间隔(即旅程远近)二、自主探究1、由上问题可以知道,10到原点的间隔是,—10到原点的间隔也是到原点的间隔等于10的数有个,它们的关系是一对.这时我们就说10的相对值是10,—10的相对值也是10;例如,—3.8的相对值是3.8;17的相对值是17;—613的相对值是一般地,数轴上暗示数a的点与原点的间隔叫做数a的相对值,记作∣a∣.2、操练(1)、式子∣∣暗示的意义是.(2)、—2的相对值暗示它分开原点的间隔是个单位,记作;(3)、∣24∣=. ∣—∣=,∣—13∣=,∣0∣=;3、思考、交流、归纳由相对值的定义可知:一个正数的相对值是;一个负数的相对值是它的;0的相对值是.用式子暗示就是:1)、当a 是正数(即a>0)时,∣a ∣=;2)、当a 是负数(即a<0)时,∣a ∣=;3)、当a=0时,∣a ∣=;4、随堂操练 P12第1、2大题(直接做在讲义上)5、阅读思考,发现新知阅读P12问题—P13第12行,你有什么发现吗?在数轴上暗示的两个数,右边的数总要左边的数.也就是:1)、正数0,负数0,正数大于负数.2)、两个负数,相对值大的.【讲堂操练】:1、自学例题 P13 (教员指导)2、比较下列各对数的大小:—3和—5; ——∣—∣【要点归纳】:一个正数的相对值是;一个负数的相对值是它的;0的相对值是.【拓展操练】1.如果a a 22-=-,则a 的取值范围是…………………………( )A .a >OB .a ≥OC .a ≤OD .a <O2.7=x ,则______=x ; 7=-x ,则______=x .3.如果3>a ,则______3=-a ,______3=-a .4.相对值等于其相反数的数一定是…………………………………( )A .负数B .正数C .负数或零D .正数或零5.给出下列说法:①互为相反数的两个数相对值相等;②相对值等于自己的数只有正数;③不相等的两个数相对值不相等; ④相对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个【总结反思】:课题:1.3.1有理数的加法(1)【学习方针】:1、懂得有理数加法意义,掌握有理数加法法则,会正确停止有理数加法运算;2、会操纵有理数加法运算处理简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有能够超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为 4+(-2),蓝队的净胜球数为 1+(-1).这里用到正数和负数的加法.那末,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法.二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那末一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式暗示就是:2)如果规定向东为正,向西为负,那末一个人向西走2米,再向西走4米,两次共向西走多少米?很分明,两次共向西走了米.这个问题用算式暗示就是:如图所示:3)如果向西走2米,再向东走4米,那末两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴暗示如下图所示:4)操纵数轴,求以下情况时这个人两次运动的成果:①先向东走3米,再向西走5米,这个人从起点向()走了()米;②先向东走5米,再向西走5米,这个人从起点向()走了()米;③先向西走5米,再向东走5米,这个人从起点向()走了()米.写出这三种情况运动成果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米.写成算式就是2、师生归纳两个有理数相加的几种情况.3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加.(2)相对值不相等的异号两数相加,取的加数的符号,并用较大的相对值较小的相对值. 互为相反数的两个数相加得;(3)一个数同0相加,仍得.例1 计算(自己动动手吧!)(1)(-3)+(-9);(2)(-4.7)+3.9.例2 (自己独立完成)【讲堂操练】:1.填空:(口答)(1)(-4)+(-6)= ;(2)3+(-8)= ;(4)7+(-7)= ;(4)(-9)+1 = ;(5)(-6)+0 = ;(6)0+(-3) = ;2. 讲义P18第1、2题【要点归纳】:有理数加法法则:【拓展训练】:1.断定题:(1)两个负数的和一定是负数;(2)相对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2.已知│a│= 8,│b│= 2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.【总结反思】:课题:1.3.1有理数的加法(2)【学习方针】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:矫捷运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母暗示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]=思考:观察上面的式子与计算成果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、连系律在有理数范围内同样适应,三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子暗示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的尺度重量为90千克,10袋小麦称重记录如下:10袋小麦总计超出多少千克或缺乏多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.【讲堂操练】讲义P20页操练 1、2【要点归纳】:你会用加法交换律、连系律简化运算了吗?【拓展训练】1.计算:(1)(-7)+ 11 + 3 +(-2);(2)).31()41(65)32(41-+-++-+2.相对值不大于10的整数有个,它们的和是.3、填空:(1)若a>0,b>0,那末a+b 0.(2)若a<0,b<0,那末a+b 0.(3)若a>0,b<0,且│a│>│b│那末a+b 0.(4)若a<0,b>0,且│a│>│b│那末a+b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、讲义P20实验与探究【总结反思】:课题:1.3.2有理数的减法(1)【学习方针】:1、履历探索有理数减法法则的过程.懂得并掌握有理数减法法则;2、会正确停止有理数减法运算;3、体验把减法转化为加法的转化思想;【重点难点】:有理数减法法则和运算【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);想想看,温差到底是多少呢?那末,3―(―2)=;二、自主探究1、还记得吗,被减数、减数差之间的关系是:被减数—减数=;差+减数=.2、请你与同桌伙伴一起探究、交流:要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是;也就是3―(―2)=5;再看看,3+2=;所以3―(―2)3+2;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?—1—(—3)=,—1+3=,所以—1—(—3)—1+3;0—(—3)=, 0+3=,所以0—(—3)0+3;4、师生归纳1)法则:2)字母暗示:三、新知应用1、例题例1计算:(1) (-3)―(―5); (2)0-7;―(―4.8); (4)-341521 ;请同学们先测验测验处理 【讲堂操练【要点归纳】: 有理数减法法则: 【拓展训练】 1、计算:(1)(-37)-(-47); (2)(-53)-16; (3)(-210)-87; (4)1.3-(-2.7);(5)(-243)-(-121);2.分别求出数轴上下列两点间的间隔: (1)暗示数8的点与暗示数3的点; (2)暗示数-2的点与暗示数-3的点;【总结反思】:课题:1.3.2 有理数的减法(2)【学习方针】:1、懂得加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;【重点难点】:有理数加减法统一成加法运算; 【导学指导】 一、知识链接1、一架飞机作特技扮演,起飞后的高度变更如下表:. 2、你是怎么算出来的,方法是 二、自主探究1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为.再把加号记在头脑里,省略不写如:(-20)+(+3)-(-5)-(+7) 有加法也有减法 =(-20)+(+3)+(+5)+(-7) 先把减法转化为加法 = -20+3+5-7 再把加号记在头脑里,省略不写 可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.4、师生完整写出解题过程5、补偿例题:计算-4.4-(-451)-(+221)+(-2107)+12.4;【讲堂操练】计算:(讲义P24操练) (1)1—4+3—0.5; —4.6+3.5 ;(3)(—7)—(+5)+(—4)—(—10);(4)3712()()14263-+----;【要点归纳】: 【拓展训练】: 1、计算:1)27—18+(—7)—32 2)245()()()(1)799++--+-+【总结反思】:课题:1.4.1有理数的乘法(1)【学习方针】:1、懂得有理数的运算法则;能根占有理数乘法运算法则停止有理的简单运算;2、履历探索有理数乘法法则过程,发展观察、归纳、猜测、验证才能;【重点难点】:有理数乘法法则 【导学指导】 一、温故知新1.有理数加法法则内容是什么?(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗? 二、自主探究1、自学讲义28-29页回答下列问题(1)如果它以每分2cm 的速度向右匍匐,3分钟后它在什么位置? 可以暗示为 .( 2)如果它以每分2cm 的速度向左匍匐,3分钟后它在什么位置? 可以暗示为(3) 如果它以每分2cm 的速度向右匍匐,3分钟前它在什么位置? 可以暗示为(4)如果它以每分2cm 的速度向左匍匐,3分钟前它在什么位置? 可以暗示为 由上可知:(1) 2×3 = ; (2)(-2)×3 =;(3)(+2)×(-3)=; (4)(-2)×(-3)=; (5)两个数相乘,一个数是0时,成果为0观察上面的式子, 你有什么发现?能说出有理数乘法法则吗? 归纳有理数乘法法则两数相乘,同号,异号,并把相乘. 任何数与0相乘,都得.2、直接说出下列两数相乘所得积的符号1)5×(—3) ; 2)(—4)×6 ; 3)(—7)×(—×8 ; 3、请同学们自己完成例1 计算:(1)(-3)×9; (2)(-21)×(-2); 归纳: 的两个数互为倒数. 例2【讲堂操练】讲义30页操练1.2.3(直接做在讲义上) 【要点归纳】: 有理数乘法法则: 【拓展训练】1.如果ab >0,a+b >0,确定a 、b 的正负.2.对于有理数a 、b 定义一种运算:a*b=2a-b,计算(-2)*3+1 【总结反思】:课题:1.4.1有理数的乘法(2)【学习方针】:1、履历探索多个有理数相乘的符号确定法则;2、会停止有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的才能;【学习重点】:多个有理数乘法运算符号的确定; 【学习难点】:正确停止多个有理数的乘法运算; 【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版新课标七年级数学上导学案【全套】第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P2页的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3、1,2(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【总结反思】:课题:1.1正数和负数(2)【学习目标】:1、会用正、负数表示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数表示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接.通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。
问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究问题:(课本第3页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;2)六个国家2001年商品进出口总额的增长率:美国___________ 德国__________法国___________ 英国__________意大利__________ 中国__________【课堂练习】1.课本第4页练习2、(课本第5页)7、8【要点归纳】1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【总结反思】:课题:1.2.1 有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P7练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:课题:1.2.2数轴【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点】:数轴的概念与用数轴上的点表示有理数;【导学指导】一、知识链接1、观察下面的温度计,读出温度.分别是°C、°C、°C;2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?东汽车站请同学们分小组讨论,交流合作,动手操作二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看可以表示有理数的直线必须满足什么条件? 引导归纳:1)、画数轴需要三个条件,即 、 方向和 长度。
2)数轴【课堂练习】P9 1 2 3 1、请你画好一条数轴2、利用上面的数轴表示下列有理数 1.5, —2, 2, —2.5,92, 23-, 0; 3、 写出数轴上点A,B,C,D,E 所表示的数:三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展练习】1、在数轴上,表示数-3,2.6,53-,0,314,322-,-1的点中,在原点左边的点有 个。
2、在数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( )A.-5,B.-4C.-3D.-23、你觉得数轴上的点表示数的大小与点的位置有什么关系?【总结反思】:课题:1.2.3 相反数【学习目标】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;【学习重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号。
【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。
从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。
二、自主学习自学课本第9、10的内容并填空:1、相反数的概念像2和—2、5和—5、3和—3这样,只有不同的两个数叫做互为相反数。
2、练习(1)、2.5的相反数是,—115和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,—a是的相反数例如a=7时,—a=—7,即7的相反数是—7.a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以,—(—5)=5你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的(3)简化符号:-(+0.75)= ,-(-68)= ,-(-0.5 )= ,-(+3.8)= ;(4)、0的相反数是 .3、数轴上表示相反数的两个点和原点的距离。
【课堂练习】P10第1、2、3、4题【要点归纳】:1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1.在数轴上标出3,-1.5,0各数与它们的相反数。
2.-1.6的相反数是,2x的相反数是,a-b的相反数是;3. 相反数等于它本身的数是,相反数大于它本身的数是;4.填空:(1)如果a=-13,那么-a=;(2)如果-a=-5.4,那么a=;(3)如果-x=-6,那么x=;(4)-x=9,那么x=;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。