2020年青海省中考数学试卷-(详解)

合集下载

2020年青海省中考数学试卷(有详细解析)

2020年青海省中考数学试卷(有详细解析)

2020年青海省中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共24.0分)1. 下面是某同学在一次测试中的计算:①3m 2n −5mn 2=−2mn ;②2a 3b ⋅(−2a 2b)=−4a 6b ;③(a 3)2=a 5;④(−a 3)÷(−a)=a 2.其中运算正确的个数为( )A. 4个B. 3个C. 2个D. 1个2. 等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40°3. 如图,根据图中的信息,可得正确的方程是( )A. π×(82)2x =π×(62)2×(x −5)B. π×(82)2x =π×(62)2×(x +5) C. π×82x =π×62×(x +5) D. π×82x =π×62×5 4. 剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A. B. C. D.5. 在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有( )A. 4个B. 8个C. 12个D. 17个6.若ab<0,则正比例函数y=ax与反比例函数y=b在同一平面直角坐标系中的大致图x象可能是()A. B.C. D.7.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A. 3.6B. 1.8C. 3D. 68.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.二、填空题(本大题共12小题,共30.0分)9.(−3+8)的相反数是______;√16的平方根是______.10.分解因式:−2ax2+2ay2=______;不等式组{2x−4≥0−x+3>0的整数解为______.11.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为______米.(1纳米=10−9米)12. 如图,将周长为8的△ABC 沿BC 边向右平移2个单位,得到△DEF ,则四边形ABFD 的周长为______.13. 如图,△ABC 中,AB =AC =14cm ,AB 的垂直平分线MN 交AC于D ,△DBC 的周长是24cm ,则BC = ______ cm .14. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知∠BOC =120°,DC =3cm ,则AC 的长为______cm .15. 已知a ,b ,c 为△ABC 的三边长.b ,c 满足(b −2)2+|c −3|=0,且a 为方程|x −4|=2的解,则△ABC 的形状为______三角形.16. 在解一元二次方程x 2+bx +c =0时,小明看错了一次项系数b ,得到的解为x 1=2,x 2=3;小刚看错了常数项c ,得到的解为x 1=1,x 2=4.请你写出正确的一元二次方程______.17. 已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,AB//CD ,AB =8cm ,CD =6cm ,则AB 与CD 之间的距离为______cm .18. 如图,在△ABC 中,∠C =90°,AC =3,BC =4,则△ABC的内切圆半径r =______.19. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =√a+b √a−b ,如:3⊕2=√3+2√3−2=√5,那么12⊕4=______.20. 观察下列各式的规律:.①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写出第4个算式______.用含有字母的式子表示第n 个算式为______.三、解答题(本大题共8小题,共66.0分)21. 计算:(13)−1+|1−√3tan45°|+(π−3.14)0−√273.22.化简求值:(a−1a −a−2a+1)÷2a2−aa2+2a+1;其中a2−a−1=0.23.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,√3≈1.732)25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD//OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有______名学生,“优秀”所占圆心角的度数为______.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF= CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)x2+bx+c经过B、D两点,与x轴28.如图1(注:与图2完全相同)所示,抛物线y=−12的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)答案和解析1. D解:①3m 2n 与5mn 2不是同类项,不能合并,计算错误;②2a 3b ⋅(−2a 2b)=−4a 5b ,计算错误;③(a 3)2=a 3×2=a 6,计算错误;④(−a 3)÷(−a)=(−a)3−1=a 2,计算正确;2. D解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°−70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°−70°−70°=40°.3. B解:依题意,得:π×(82)2x =π×(62)2×(x +5).4. A解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.5. C解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.6. B解:∵ab <0,∴分两种情况:(1)当a >0,b <0时,正比例函数y =ax 数的图象过原点、第一、三象限,反比例函数y =b x 图象在第二、四象限,故B 选项正确;(2)当a <0,b >0时,正比例函数y =ax 的图象过原点、第二、四象限,反比例函数y =b x 图象在第一、三象限,无选项符合.解:设这个圆锥的底面半径为r,根据题意得2πr=(360−252)×π×12180,解得r=3.6,即这个圆锥的底面半径是3.6.8.B解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.9.−5±2解:−3+8=5,5的相反数是−5;√16=4,4的平方根是±2.10.−2a(x−y)(x+y) 2解:−2ax2+2ay2=−2a(x2−y2)=−2a(x−y)(x+y);{2x−4≥0 ①−x+3>0 ②,解①得:x≥2,解②得:x<3,∴整数解为:2.11.1.25×10−7解:125纳米=125×10−9米=1.25×10−7米.12.12解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+ 2=12.解:∵C△DBC=24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24−14=10cm.14.6解:在矩形ABCD中,∴OB=OC,∴∠OCB=∠OBC,∵∠BOC=120°,∴∠OCB=30°,∵DC=3,∴AB=CD=3,在Rt△ACB中,AC=2AB=6,15.等腰解:∵(b−2)2+|c−3|=0,∴b−2=0,c−3=0,解得:b=2,c=3,∵a为方程|a−4|=2的解,∴a−4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,16.x2−5x+6=0解:根据题意得2×3=c,1+4=−b,解得b=−5,c=6,所以正确的一元二次方程为x2−5x+6=0.17.1或7解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB//CD,OE⊥AB,∴OF⊥CD,∴AE=BE=12AB=4,CF=DF=12CD=3,在Rt△OAE中,OE=√52−42=3,在Rt△OCF中,OF=√52−32=4,当点O在AB与CD之间时,EF=OF+OE=4+3=7;当点O不在AB与CD之间时,EF=OF−OE=4−3=1;综上所述,AB与CD之间的距离为1或7cm.18.1解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC−FC=3−r,BE=BD=BC−CE=4−r,∵AD+BD=AB,∴3−r+4−r=5,解得r=1.则△ABC的内切圆半径r=1.19.√2解:12⊕4=√12+4√12−4=√2.20.4×6−52=24−25=−1n×(n+2)−(n+1)2=−1解:④4×6−52=24−25=−1.第n个算式为:n×(n+2)−(n+1)2=−1.21.解:原式=3+|1−√3|+1−3=3+√3−1+1−3=√3.22.解:原式=(a+1)(a−1)−a(a−2)a(a+1)⋅(a+1)2 a(2a−1)=2a−1a(a+1)⋅(a+1)2 a(2a−1)=a+1a2,∵a2−a−1=0.∴a2=a+1,∴原式=a+1a+1=1.23.解:(1)如图,Rt△ABC的外接圆⊙O即为所求;(2)连接BD,∵∠C=90°.∴AB是⊙O的直径,∴∠BDA=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DBA=∠ACD=45°,∵AC=6,BC=8,∴AB=10,∴AD=BD=AB⋅sin45°=10×√22=5√2.答:AD的长为5√2.24.解:延长PQ交直线AB于点C,设PC=x米.在直角△APC中,∠A=45°,则AC=PC=x米;∵∠PBC=60°∴∠BPC=30°在直角△BPC中,BC=√33PC=√33x米,∵AB=AC−BC=60米,则x−√33x=60,解得:x=90+30√3,则BC=(30√3+30)米.在Rt△BCQ中,QC=√33BC=√33(30√3+30)=(30+10√3)米.∴PQ=PC−QC=90+30√3−(30+10√3)=60+20√3≈94.6(米).答:电线杆PQ的高度约是94.6米.25.(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD//CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC.∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD=√AB2−AD2=√122−42=8√2,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴ADOB =DBBC,即46=8√2BC.∴BC=12√2.26.500 108°解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×150500=108°;故答案为:500,108°;(2)“一般”的人数为500−150−200−50=100(名),补全条形统计图如图:(3)15000×50500=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为612=12.27.(1)证明:如图1中,∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,∴△FAB≌△GAC(AAS),∴FB=CG.(2)解:结论:CG=DE+DF.理由:如图2中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴12⋅AB⋅CG=12⋅AB⋅DE+12⋅AC⋅DF,∵AB=AC,∴CG=DE+DF.(3)解:结论不变:CG =DE +DF .理由:如图3中,连接AD .∵S △ABC =S △ABD +S △ADC ,DE ⊥AB ,DF ⊥AC ,CG ⊥AB , ∴12⋅AB ⋅CG =12⋅AB ⋅DE +12⋅AC ⋅DF , ∵AB =AC ,∴CG =DE +DF .28. 解:(1)把B(3,0)和D(−2,−52)代入抛物线的解析式得, {−92+3b +c =0−2−2b +c =−52, 解得,{b =1c =32,∴抛物线的解析式为:y =−12x 2+x +32; (2)令x =0,得y =−12x 2+x +32=32, ∴C(0,32),令y =0,得y =−12x 2+x +32=0,解得,x =−1,或x =3,∴A(−1,0),∵y =−12x 2+x +32=−12(x −1)2+2, ∴M(1,2),∴S 四边形ABMC =S △AOC +S △COM +S △MOM=12OA ⋅OC +12OC ⋅x M +12OB ⋅y M =12×1×32+12×32×1+12×3×2=92;(3)设Q(0,n),①当AB为平行四边形的边时,有AB//PQ,AB=PQ,a).Q点在P点左边时,则Q(−4,n),把Q(−4,n)代入y=−12x2+x+32,得n=−212,∴P(−4,−212);②Q点在P点右边时,则Q(4,n),把Q(4,n)代入y=−12x2+x+32,得n=−52,∴P(4,−52);③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,则E(1,0),∵PE=QE,∴P(2,−n),把P(2,−n)代入y=−12x2+x+32,得−n=32,∴n=−32,∴P(2,32).综上,满足条件的P 点坐标为:(−4,−212)或(4,−52)或(2,32).。

2020年青海省中考数学试题和答案

2020年青海省中考数学试题和答案

2020年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)(﹣3+8)的相反数是;的平方根是.2.(4分)分解因式:﹣2ax2+2ay2=;不等式组的整数解为.3.(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为米.(1纳米=10﹣9米)4.(2分)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为.5.(2分)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN 交AC于点D,且△DBC的周长是24cm,则BC=cm.6.(2分)如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为cm.7.(2分)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c ﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为三角形.8.(2分)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程.9.(2分)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB ∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.10.(2分)如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC 的内切圆半径r=.11.(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.12.(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式.用含有字母的式子表示第n个算式为.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.(3分)下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个14.(3分)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°15.(3分)如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×516.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.17.(3分)在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个18.(3分)若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.19.(3分)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6B.1.8C.3D.620.(3分)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A.B.C.D.三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.(5分)计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣.22.(5分)化简求值:(﹣)÷;其中a2﹣a﹣1=0.23.(8分)如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B 点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732)25.(8分)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.26.(9分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有名学生,“优秀”所占圆心角的度数为.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.(10分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA 垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)28.(12分)如图1(注:与图2完全相同)所示,抛物线y=﹣+bx+c 经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q 为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)答案一、填空题(本大题共12小题15空,每空2分,共30分).1.参考答案:解:﹣3+8=5,5的相反数是﹣5;=4,4的平方根是±2.故答案为:﹣5;±2.2.参考答案:解:﹣2ax2+2ay2=﹣2a(x2﹣y2)=﹣2a(x﹣y)(x+y);或原式=2a(y+x)(y﹣x);,解①得:x≥2,解②得:x<3,∴2≤x<3,∴不等式的整数解为:2.故答案为:﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);2.3.参考答案:解:125纳米=125×10﹣9米=1.25×10﹣7米.故答案为:1.25×10﹣7.4.参考答案:解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.故答案为12.5.参考答案:解:∵C△DBC=24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24﹣14=10cm.故填10.6.参考答案:解:在矩形ABCD中,∴OB=OC,∴∠OCB=∠OBC,∵∠BOC=120°,∴∠OCB=30°,∵DC=3cm,∴AB=CD=3cm,在Rt△ACB中,AC=2AB=6cm,故答案为:67.参考答案:解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|x﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.8.参考答案:解:根据题意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正确的一元二次方程为x2﹣6x+6=0.故答案为x2﹣6x+6=0.9.参考答案:解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,OE===3cm,在Rt△OCF中,OF===4cm,当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm;当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm;综上所述,AB与CD之间的距离为1cm或7cm.故答案为1或7.10.参考答案:解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,∵∠C=90°,∴四边形EOFC是矩形,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为:1.11.参考答案:解:12⊕4==.故答案为:.12.参考答案:解:④4×6﹣52=24﹣25=﹣1.第n个算式为:n(n+2)﹣(n+1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n(n+2)﹣(n+1)2=﹣1.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.参考答案:解:①3m2n与5mn2不是同类项,不能合并,计算错误;②2a3b•(﹣2a2b)=﹣4a5b,计算错误;③(a3)2=a3×2=a6,计算错误;④(﹣a3)÷(﹣a)=(﹣a)3﹣1=a2,计算正确;故选:D.14.参考答案:解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.15.参考答案:解:依题意,得:π×()2x=π×()2×(x+5).故选:B.16.参考答案:解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.17.参考答案:解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.18.参考答案:解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y=图象在第二、四象限,无选项符合.(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y=图象在第一、三象限,故B选项正确;故选:B.19.参考答案:解:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.6,即这个圆锥的底面半径是3.6.故选:A.20.参考答案:解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.参考答案:解:原式=3+|1﹣|+1﹣3=3+=.22.参考答案:解:原式=•=•=,∵a2﹣a﹣1=0.∴a2=a+1,∴原式==1.23.参考答案:解:(1)如图,Rt△ABC的外接圆⊙O即为所求;(2)连接BD,∵∠C=90°.∴AB是⊙O的直径,∴∠BDA=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DBA=∠ACD=45°,∵AC=6,BC=8,∴AB===10,∴AD=BD=AB•sin45°=10×=5.答:AD的长为5.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.参考答案:解:延长PQ交直线AB于点C,设PC=x米.在直角△APC中,∠A=45°,则AC=PC=x米;∵∠PBC=60°∴∠BPC=30°在直角△BPC中,BC=PC=x米,∵AB=AC﹣BC=60米,则x﹣x=60,解得:x=90+30,则BC=(30+30)米.在Rt△BCQ中,QC=BC=(30+30)=(30+10)米.∴PQ=PC﹣QC=90+30﹣(30+10)=60+20≈94.6(米).答:信号发射塔PQ的高度约是94.6米.25.参考答案:(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC(SAS).∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD===8,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴=,即=.∴BC=12.26.参考答案:解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;故答案为:500,108°;(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图1:(3)15000×=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为=.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.参考答案:(1)证明:如图1中,∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,∴△FAB≌△GAC(AAS),∴FB=CG.(2)解:结论:CG=DE+DF.理由:如图2中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG=•AB•DE+•AC•DF,∵AB=AC,∴CG=DE+DF.(3)解:结论不变:CG=DE+DF.理由:如图3中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG=•AB•DE+•AC•DF,∵AB=AC,∴CG=DE+DF.28.参考答案:解:(1)把B(3,0)和D(﹣2,﹣)代入抛物线的解析式得,,解得,,∴抛物线的解析式为:;(2)令x=0,得=,∴,令y=0,得=0,解得,x=﹣1,或x=3,∴A(﹣1,0),∵=,∴M(1,2),∴S四边形ABMC=S△AOC+S△COM+S△MOB==;(3)设Q(0,n),①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,a).P点在Q点左边时,则P(﹣4,n),把P(﹣4,n)代入,得n=,∴P(﹣4,﹣);②当AB为平行四边形的边时,有AB∥PQ,AB=PQ,当P点在Q点右边时,则P(4,n),把P(4,n)代入,得n=,∴P(4,﹣);③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,则E(1,0),∵PE=QE,∴P(2,﹣n),把P(2,﹣n)代入,得﹣n=,∴n=﹣,∴P(2,).综上,满足条件的P点坐标为:(﹣4,﹣)或(4,﹣)或(2,).。

2020年青海省中考数学试题

2020年青海省中考数学试题

青海省2020年初中毕业升学考试数学试卷一、填空题1.(-3+8)的相反数是________________. (1). 5- (2). 2±第1空:先计算-3+8的值,根据相反数的定义写出其相反数; 第2第1空:∵385-+=,则其相反数为:5- 第2空:4=,则其平方根为:2± 故答案为:5-,2±.2.分解因式:2222ax ay -+=________;不等式组24030x x -⎧⎨-+>⎩的整数解为________.(1). 2()()a x y x y -+- (2). 2x =综合利用提取公因式法和公式法即可得;先分别求出两个不等式的解,再找出它们的公共部分得出不等式组的解集,由此即可得出答案.222222)2(ax ay a x y -+=--2()()a x y x y =-+-;24030x x -≥⎧⎨-+>⎩①② 解不等式①得2x ≥ 解不等式②得3x < 则不等式组的解为23x ≤< 因此,不等式组的整数解2x = 故答案为:2()()a x y x y -+-,2x =.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为________米(1纳米910-=米)71.2510-⨯绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:将数据125纳米用科学记数法表示为:125×10-9米=1.25×10-7米. 故答案为:71.2510-⨯.4.如图,将周长为8的ABC 沿BC 边向右平移2个单位,得到DEF ,则四边形ABFD 的周长为________.12先根据平移的性质可得,2AC DF CF AD ===,再根据三角形的周长公式可得8AB BC AC ++=,然后根据等量代换即可得.由平移的性质得:,2AC DF CF AD ===ABC 的周长为88AB BC AC ∴++=则四边形ABFD 的周长为()AB BF DF AD AB BC CF AC AD +++=++++22AB BC AC =++++ 822=++12=故答案为:12.5.如图所示ΔABC 中,AB=AC=14cm,AB 的垂直平分线MN 交AC 于D,ΔDBC 的周长是24cm,则BC=___________cm .10由MN 是AB 的垂直平分线可得AD=BD ,于是将△BCD 的周长转化为BC 与边长AC 的和来解答. ∵24cm DBCC=,∴BD+DC+BC=24cm ,∵MN 垂直平分AB , ∴AD=BD ,∴AD+DC+BC=24cm , 即AC+BC=24cm , 又∵AC=14cm , ∴BC=24-14=10cm . 故答案为:10点睛:解答本题的关键是熟练掌握垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用.6.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知120BOC ∠=︒,3cm DC =,则AC 的长为________cm .6cm根据矩形的性质可得对角线相等且平分,由120BOC ∠=︒可得30ACD ∠=︒,根据30所对直角边是斜边的一半即可得到结果. ∵四边形ABCD 是矩形,∴90ABC DCB ∠=∠=︒,AC BD =,OA OA OB OD ===,AB DC =, ∵3cm DC =, ∴3cm AB =, 又∵120BOC ∠=︒, ∴=30ACD OBC ∠∠=︒,∴在Rt △ABC 中,26AC AB cm ==. 故答案为6cm .7.已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形. 等腰三角形根据绝对值和平方的非负性可得到b 、c 的值,再根据式子解出a 的值,即可得出结果.∵2(2)30b c -+-=, ∴20b -=,30c -=, ∴2b =,3c =, 又∵|4|2x -=, ∴16x =,22x =,∵a 是方程的解且a ,b ,c 为ABC 的三边长, ∴2a =,∴ABC 是等腰三角形.8.在解一元二次方程20x bx c ++=时,小明看错了一次项系数b ,得到的解为12x =,23x =;小刚看错了常数项c ,得到的解为11x =,24x =.请你写出正确的一元二次方程_________.2560x x -+=根据题意列出二元一次方程组求解即可得出答案.解:将12x =,23x =代入一元二次方程20x bx c ++=得420930b c b c ++=⎧⎨++=⎩, 解得:56b c =-⎧⎨=⎩,∵小明看错了一次项, ∴c 的值为6,将11x =,24x =代入一元二次方程20x bx c ++=得101640b c b c ++=⎧⎨++=⎩, 解得:54b c =-⎧⎨=⎩,∵小刚看错了常数项, ∴b=-5,∴一元二次方程为2560x x -+=, 故答案为:2560x x -+=.9.已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,//AB CD ,8cm AB =,6cm CD =,则AB 与CD 之间的距离为________cm .7或1.分两种情况考虑:当两条弦位于圆心O 同一侧时,当两条弦位于圆心O 两侧时;利用垂径定理和勾股定理分别求出OE 和OF 的长度,即可得到答案. 解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE ⊥CD ,交CD 于点E ,交AB 于点F ,连接OC ,OA , ∵AB ∥CD ,∴OE ⊥AB , ∴E 、F 分别为CD 、AB 的中点, ∴CE=DE=12CD=3cm ,AF=BF=12AB=4cm , 在Rt △AOF 中,OA=5cm ,AF=4cm , 根据勾股定理得:OF=3cm ,在Rt △COE 中,OC=5cm ,CE=3cm , 根据勾股定理得:OE ═4cm , 则EF=OE -OF=4cm -3cm=1cm ;当两条弦位于圆心O 两侧时,如图2所示, 同理可得EF=4cm+3cm=7cm ,综上,弦AB 与CD 的距离为7cm 或1cm . 故答案为:7或1.10.在ABC 中,90C ∠=︒,3AC =,4BC =,则ABC 的内切圆的半径为__________. 1如图,设△ABC 的内切圆与各边相切于D ,E ,F ,连接OD ,OE ,OF ,则OE ⊥BC ,OF ⊥AB ,OD ⊥AC ,设半径为r ,CD=r , ∵∠C=90°,BC=4,AC=3, ∴AB=5,∴BE=BF=4-r ,AF=AD=3-r , ∴4-r+3-r=5, ∴r=1.∴△ABC 的内切圆的半径为 1.11.对于任意不相等的两个实数a ,b ( a > b )定义一种新运算a ※,如3※,那么12※4=______按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.解:12※4==12.观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n 个算式为________.(1). 246524251⨯-=-=- (2). ()()2211n n n ⨯+-+=-(1)按照前三个算式的规律书写即可;(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;(1)2132341⨯-=-=-, ②2243891⨯-=-=-, ③235415161⨯-=-=-, ④246524251⨯-=-=-; 故答案为246524251⨯-=-=-.(2)第n 个式子为:()()2211n n n ⨯+-+=-.故答案为()()2211n n n ⨯+-+=-.二、选择题13.下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②()326224a b a b a b ⋅-=-;③()235a a =;④()32()a a a -÷-=,其中运算正确的个数为( ) A. 4个 B. 3个C. 2个D. 1个D根据整式的减法、整式的乘除法、幂的乘方逐个判断即可.23m n 与25mn 不是同类项,不可合并,则①错误()332251122244a b a b a b a b ++⋅-=-=-,则②错误()23326a a a ⨯==,则③错误()33312()a a aa a a -÷=-÷-==,则④正确综上,运算正确的个数为1个故选:D .14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是( ) A. 55°,55° B. 70°,40°或70°,55° C. 70°,40°D. 55°,55°或70°,40°D分析】先根据等腰三角形的定义,分70︒的内角为顶角和70︒的内角为底角两种情况,再分别根据三角形的内角和定理即可得.(1)当70︒的内角为这个等腰三角形的顶角 则另外两个内角均为底角,它们的度数为18070552︒-︒=︒ (2)当70︒的内角为这个等腰三角形的底角 则另两个内角一个为底角,一个为顶角 底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D . 15.根据图中给出的信息,可得正确的方程是( )A. 2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭ B. 2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C. 2286(5)x x ππ⨯=⨯⨯+D. 22865x ππ⨯=⨯⨯A根据题意可得相等关系的量为“水的体积”,然后利用圆柱体积公式列出方程即可.解:大量筒中的水的体积为:282x π⎛⎫⨯ ⎪⎝⎭,小量筒中的水的体积为:26(5)2x π⎛⎫⨯⨯+ ⎪⎝⎭,则可列方程为:2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭.故选A.16.将一张四条边都相等的四边形纸片按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应是( )A. B. C. D.A对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A .17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟共有( )A. 4个B. 8个C. 12个D. 17个C先根据俯视图得出碟子共有3摞,再根据主视图和俯视图得出每摞上碟子的个数,由此即可得. 由俯视图可知,碟子共有3摞由主视图和左视图可知,这个桌子上碟子的摆放为4,35,0,其中,数字表示每摞上碟子的个数则这个桌子上的碟共有43512++=(个)故选:C . 18.若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是( )A. B. C. D.B由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立. A. 由图象可知:0,0a b >>,故A 错误; B. 由图象可知:0,0a b <>,故B 正确;C. 由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D. 由图象可知:0,0a b <<,故D 错误;故选:B .19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )A. 3.6B. 1.8C. 3D. 6A先计算阴影部分的圆心角度数,再计算阴影部分的弧长,再利用弧长计算圆锥底面的半径.由图知:阴影部分的圆心角的度数为:360°-252°=108° 阴影部分的弧长为:1081236=1805ππ⋅ 设阴影部分构成的圆锥的底面半径为r :则3625r ππ=,即183.65r ==故选:A . 20.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )A. B.C. D.B用排除法可直接得出答案.圆柱形小水杯事先盛有部分水,起点处小水杯内水面的高度(cm)h 必然是大于0的,用排除法可以排除掉A 、D ;注水管沿大容器内壁匀速注水,在大容器内水面高度到达h 之前,小水杯中水边高度保持不变,大容器内水面高度到达h 后,水匀速从大容器流入小容器,小容器水面高度匀速上升,达到最大高度h 后,小容器内盛满了,水面高度一直保持h 不变,因此可以排除C ,正确答案选B. 三、解答题21.计算:101145( 3.14)3π-⎛⎫+-︒+- ⎪⎝⎭根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可 101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭3|11|13=++-3113=+-=22.化简求值:22122121a a a a aa a a ---⎛⎫-÷ ⎪+++⎝⎭;其中210a a --=. 21a a +,1 括号内先通分,合并同类项,括号外进行因式分解,之后变除为乘进行约分,之后利用21a a =+代入计算即可.22122121a a a a a a a a ---⎛⎫-÷ ⎪+++⎝⎭ 2(1)(1)(2)(21)(+1)(1)a a a a a a a a a -+---=÷+ 221(1)(+1)(21)a a a a a a -+=⋅- 21a a += ∵210a a --=∴21a a =+∴原式=111a a +=+. 23.如图,Rt ABC 中,90C ∠=︒.(1)尺规作图:作Rt ABC 的外接圆O ;作ACB ∠的角平分线交O 于点D ,连接AD .(不写作法,保留作图痕迹)(2)若AC =6,BC =8,求AD 的长.(1)见解析;(2)52(1)根据外接圆,角平分线的作法作图即可;(2)连接AD ,OD ,根据CD 平分ACB ∠,得45ACD ∠=°,根据圆周角与圆心角的关系得到90AOD ∠=°,在Rt ACB 中计算AB ,在Rt AOD △中,计算AD .(1)作图如下:(2)连接AD ,OD ,如图所示由(1)知:CD 平分ACB ∠,且90ACB ∠=°∴1452ACD ACB ∠=∠=°∴290AOD ACB ∠=∠=°在Rt ACB 中,6,8AC BC ==,∴10AB =,即5AO OD ==在Rt AOD △中,2252AD AO OD =+=24.某市为了加快5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A 测得发射塔顶端P 点的仰角是45°,向前走60米到达B 点测得P 点的仰角是60°,测得发射塔底部Q 点的仰角是30°.请你帮小军计算出信号发射塔PQ 的高度.(结果精确到0.1 米,3 1.732≈)94.6米先根据题意得出AC=PC ,BQ=PQ ,CQ=12BQ ,设BQ=PQ=x ,则CQ=12BQ=12x ,根据勾股定理可得BC=32x ,根据AB+BC=PQ+QC 即可得出关于x 的方程求解即可. ∵∠PAC=45°,∠PCA=90°,∴AC=PC ,∵∠PBC=60°,∠QBC=30°,∠PCA=90°,∴∠BPQ=∠PBQ=30°,∴BQ=PQ ,CQ=12BQ , 设BQ=PQ=x ,则CQ=12BQ=12x , 根据勾股定理可得22BQ CQ -3, ∴AB+BC=PQ+QC 即312x 解得:x=60+203,∴PQ 的高度为94.6米.25.如图,已知AB 是O 的直径,直线BC 与O 相切于点B ,过点A 作AD//OC 交O 于点D ,连接CD .(1)求证:CD 是O 的切线.(2)若4=AD ,直径12AB =,求线段BC 的长.(1)证明见解析;(2)2.(1)如图(见解析),先根据等腰三角形的性质可得DAO ADO ∠=∠,又根据平行线的性质可得,DAO BOC ADO DOC ∠=∠∠=∠,从而可得BOC DOC ∠=∠,再根据圆的切线的性质可得90OBC ∠=︒,然后根据三角形全等的判定定理与性质可得90ODC OBC ∠=∠=︒,最后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理得出90ADB ∠=︒,再根据勾股定理可得BD 的长,然后根据相似三角形的判定与性质即可得.(1)如图,连接OD ,则OA OB OD ==DAO ADO ∴∠=∠//AD OC,DAO BOC ADO DOC ∴∠=∠∠=∠BOC DOC ∴∠=∠直线BC 与O 相切于点B90OBC ∴∠=︒在COD △和COB △中,OD OB DOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩()COD COB SAS ∴≅90ODC OBC ∴∠=∠=︒又OC 是O 的半径CD ∴是O 的切线;(2)如图,连接BD由圆周角定理得:90ADB ∠=︒4AD =,12AB = 222212482BD AB AD ∴=-=-=,1112622OB AB ==⨯= 在OCB 和ABD △中,90BOC DAB OBC ADB ∠=∠⎧⎨∠=∠=︒⎩OCB ABD ∴~OB BC AD BD∴=,即6482= 解得122BC =.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.(1)500,108°;(2)见解析;(3)1500名;(4)12. (1)由条形统计图和扇形统计图得到良好的人数及其所对应的百分比,即可得到该校八年级总人数;通过计算优秀人员所占比例,即可得到其所对的圆心角;(2)计算出等级“一般”的学生人数,补充图形即可;(3)用该校八年级成绩及格的比例乘以该市的学生人数即可;(4)画出树状图,根据概率公式求概率即可.(1)由条形统计图知:等级“良好”的人数为:200名由扇形统计图知:等级“良好”的所占的比例为:40%则该校八年级总人数为:20040%500÷=(名)由条形统计图知:等级“优秀”的人数为:150名其站该校八年级总人数的比例为:15050030%÷=所以其所对的圆心角为:36030%108︒︒⨯=故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名)补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010%500= 故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种, 必有甲同学参加的概率为:61122=. 27.在ABC 中,AB AC =,CG BA ⊥交BA 的延长线于点G .特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 重合,另一条直角边恰好经过点B .通过观察、测量BF 与CG 的长度,得到BF CG =.请给予证明.猜想论证:(2)当三角尺沿AC 方向移动到图2所示的位置时,一条直角边仍与AC 边重合,另一条直角边交BC 于点D ,过点D 作DE BA ⊥垂足为E .此时请你通过观察、测量DE ,DF 与CG 的长度,猜想并写出DE 、DF 与CG 之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC 方向继续移动到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)(1)证明见详解;(2)DE+DF=CG ,证明见详解;(3)成立.(1)通过条件证明△BFC ≌△CGB ,即可得到BF CG =;(2)过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,通过△BMC ≌△CGB ,得到BM=CG ,然后由四边形MHDF 为矩形,MH=DF ,最后再证明△BDH ≌△DBE ,得到BH=DE ,即可得到结论;(3)同(2)中的方法.(1)∵AB AC =,∴∠ABC=∠ACB ,在△BFC 和△CGB 中,90=F G FCB GBC BC CB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BFC ≌△CGB ,∴BF CG =(2)DE+DF=CG ,如图,过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,∵AB AC =,∴∠ABC=∠ACB ,在△BMC 和△CGB 中,BC CB =⎩∴△BMC ≌△CGB ,∴BM=CG ,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF 为矩形,∴MH=DF ,DH ∥MF ,∴∠HDB=∠MCB ,∴∠HDB=∠ABC ,在△BDH 和△DBE 中,90=BHD BED HDB EBDBD DB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BDH ≌△DBE ,∴BH=DE ,∵BM=CG ,BM=BH+HM ,∴DE+DF=CG ,(3)成立,如图,过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,同(2)中的方法∵AB AC =,∴∠ABC=∠ACB ,在△BMC 和△CGB 中,BC CB =⎩∴△BMC ≌△CGB ,∴BM=CG ,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF 为矩形,∴MH=DF ,DH ∥MF ,∴∠HDB=∠MCB ,∴∠HDB=∠ABC ,在△BDH 和△DBE 中,90=BHD BED HDB EBDBD DB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BDH ≌△DBE ,∴BH=DE ,∵BM=CG ,BM=BH+HM ,∴DE+DF=CG .28.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). (1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩, ∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+,∴点M 的坐标为(1,2)令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =, ∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形, 如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线; 由平行四边形的性质, ∴点E 为AB 和11PQ 的中点, ∵E 为(1,0),∵点Q 1为(0,y ), ∴点P 1的横坐标为2; 当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线, ∵点B (3,0),点Q 2(0,y ), ∴BQ 2中点的横坐标为32,∵点A 为(1-,0), ∴点P 2的横坐标为4, 当4x =时,代入21322y x x =-++,∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线; ∵点A 为(1-,0),点Q 3(0,y ), ∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-, 当4x =-时,代入21322y x x =-++, ∴212y =-,∴点P 3的坐标为(4-,212-);综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-).。

2020年青海省西宁市城区中考数学试卷(附解析)

2020年青海省西宁市城区中考数学试卷(附解析)

2020年青海省西宁市城区中考数学试卷一、选择题(本大题共8小题,共24.0分)1.3的相反数是()A. 13B. −13C. 3D. −32.下列二次根式中,最简二次根式的是()A. √15B. √0.5C. √5D. √503.下列计算正确的是()A. (−a3)2=−a6B. a3⋅a2=a6C. (2a)2=2a2D. a3÷a2=a4.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是()A.B.C.D.5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=()A. √3B. 2C. 2√3D. 36.函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是()A. B. C. D.7.如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM=BN,AD=3AM,E为BC边上一动点,连接DE,将△DCE沿DE所在直线折叠得到△DC′E,当C′点恰好落在线段MN上时,CE的长为()A. 5或22B. 52C. 3或22D. 328.全民健身的今天,散步是大众喜欢的运动.甲、乙两人在绿道上同时从同一起点以各自的速度匀速同向而行,步行一段时间后,甲因有事按原速度原路返回,此时乙仍按原速度继续前行.甲乙两人之间的距离s(米)与他们出发后的时间t(分)的函数关系如图所示,已知甲步行速度比乙快.由图象可知,甲、乙的速度分别是()A. 60米/分,40米/分B. 80米/分,60米/分C. 80米/分,40米/分D. 120米/分,80米/分二、填空题(本大题共10小题,共20.0分)9.计算:(−1)2020=______ .10.2020年5月22日召开了第十三届全国人民代表大会第三次会议,在《政府工作报告》中指出:我国经济运行总体平稳,2019年国内生产总值达到99100000000000元.将99100000000000用科学记数法表示为______ .11.在函数y=√2x+1中,自变量x的取值范围是______.12.五边形的外角和是______度.13.若关于x的一元二次方程x2−2x−m=0有两个相等的实数根,则m的值是______ .14.如图,在2×2网格中放置了三枚棋子,在其余格点处再放置1枚棋子,则这四枚棋子构成的图形是轴对称图形的概率是______ .15.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板的一直角边与量角器的零刻度线所在直线重合,斜边与半圆相切,AB⏜对应的圆心角(∠AOB)为120°,OC 长为3,则图中扇形AOB的面积是______ .16.开学在即,由于新冠疫情学校决定共用6000元分两次购进口罩2200个免费发放给学生.若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.2倍,则第二次购买口罩的单价是______ 元.17.正方形ABCD的边长为2,点P在CD边所在直线上,若DP=1,则tan∠BPC的值是______ .18.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为______ .三、解答题(本大题共10小题,共76.0分)19.计算:3−2×|−9|+(−π)0.20.化简:3(x2+2)−(x−1)2.21. 解不等式组{2x −2≤x x +2>−12x −1,并把解集在数轴上表示出来.22. 先化简,再求值:(1−a a 2+a )÷a 2−1a 2+2a+1,其中a =√2+1.23. 如图,E 是正方形ABCD 对角线BD 上一点,连接AE ,CE ,并延长CE 交AD 于点F .(1)求证:△ABE≌△CBE ;(2)若∠AEC =140°,求∠DFE 的度数.24.如图,一次函数y=−x+1的图象与两坐标轴分别交于A,B两点,与反比例函数的图象交于点C(−2,m).(1)求反比例函数的解析式;(2)若点P在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,请直接写出所有符合条件的P点坐标.25.随着手机APP技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP(A微信、BQQ、C钉钉、D其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是______ ;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC和DE.(1)求证:四边形ABFC是菱形;(2)若CD=1,BE=2,求⊙O的半径.27.如图1,通海桥是西宁市海湖新区地标建筑,也是我省首座大规模斜拉式大桥,通海桥主塔两侧斜拉链条在夜间亮灯后犹如天鹅之翼,优雅非凡.某数学“综合与实践”小组的同学利用课余时间按照如图2所示的测量示意图对该桥进行了实地测量,测得如下数据:∠A=30°,∠B=45°,斜拉主跨度AB=260米.(1)过点C作CD⊥AB,垂足为D,求CD的长(√3取1.7);(2)若主塔斜拉链条上的LED节能灯带每米造价800元,求斜拉链条AC上灯带的总造价是多少元?28.如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=−(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为−1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:3的相反数是−3,故选:D.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】C中被开方数是分数,故不是最简二次根式;【解析】解:A、√15B、√0.5中被开方数是分数,故不是最简二次根式;C、√5中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式;D、√50中含能开得尽方的因数,故不是最简二次根式;故选:C.根据最简二次根式的定义解答即可.本题主要考查了最简二次根式的定义,最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式,否则就不是.3.【答案】D【解析】解:A.结果是a6,故本选项不符合题意;B.结果是a5,故本选项不符合题意;C.结果是4a2,故本选项不符合题意;D.结果是a,故本选项符合题意;故选:D.根据幂的乘方与积的乘方,同底数幂的乘法,同底数幂的除法分别进行计算,再逐个判断即可.本题考查了幂的乘方与积的乘方,同底数幂的乘法,同底数幂的除法等知识点,能灵活运用知识点进行计算是解此题的关键.4.【答案】A【解析】【分析】本题考查了学生的思考能力和对几何体三种视图的空间想象能力与及考查视图的画法,看得到的棱画实线,看不到的棱画虚线.找到从上面看所得到的图形即可.【解答】解:“阳马”的俯视图是一个矩形,还有一条看得见的棱,故选:A.5.【答案】B【解析】解:如图,连接OP交AB于D,∵PA,PB与⊙O分别相切于点A,B,∠APB=60°,∠APB=30°,OP⊥AB且AD=∴∠APO=∠BPO=12BD,AP.∴AD=12∴AB=2AD=AP=2.故选:B.∠APB=30°,再利用垂径定理得OP⊥AB且先根据切线长定理得到∠APO=∠BPO=12AD=BD,然后根据含30度的直角三角形三边的关系计算AD的长.本题主要考查了切线的性质和垂径定理,根据题意求得∠APO=30°是解题的关键.6.【答案】D【解析】解:∵y=ax2+1,∴二次函数y=ax2+1的图象的顶点为(0,1),故A、B不符合题意;当y=ax+a=0时,x=−1,∴一次函数y=ax+a的图象过点(−1,0),故C不符题意.故选:D.由二次函数y=ax2+1的图象顶点(0,1)可排除A、B答案;由一次函数y=ax+a的图象过点(−1,0)可排除C答案.此题得解.本题考查了一次函数的图象以及二次函数的图象,利用一次(二次)函数图象经过定点排除A 、B 、C 选项是解题的关键.7.【答案】B【解析】解:设CE =x ,则C′E =x ,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD//BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′=√C′D 2−MD 2=√52−42=3,∴C′N =5−3=2,∵EN =CN −CE =4−x ,∴C′E 2−NE 2=C′E 2,∴x 2−(4−x)2=22,解得,x =52,即CE =52.故选:B .设CE =x ,则C′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =5,由折叠的性质得出C′D =CD =5,求出MC′=3,由勾股定理得出x 2−(4−x)2=22,解方程可得出答案.本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键. 8.【答案】A【解析】解:根据题意可知,甲每分钟比乙快:200÷10=20(米),设乙的速度为x 米/分,则甲的速度为(x +20)米/分,根据题意得:2x +2(x +20)=200,解得x =40,40+20=60(米/分),即甲的速度为米/分,乙的速度为40米/分,故选:A.根据题意可知,步行10分钟后甲开始返回,此时两人之间的距离为200米,可得他们的速度差为20(米/分),再经过2分钟后两人相遇,根据相遇问题列方程解答即可.本题考查一次函数的应用,解答此类问题的关键是明确题意,利用数形结合的思想解答.9.【答案】1【解析】解:原式=1.故答案为:1.原式表示2020个(−1)的乘积,计算即可求出值.此题考查了乘方的定义,熟练掌握乘方的定义是解本题的关键.10.【答案】9.91×1013【解析】解:将99100000000000用科学记数法表示为9.91×1013.故答案为:9.91×1013.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】x≥−12【解析】解:依题意,得2x+1≥0,.解得x≥−12当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】360【解析】解:五边形的外角和是360度.任何凸多边形的外角和都是360度.多边形的外角和是360度,不随着边数的变化而变化.13.【答案】−1【解析】解:∵关于x的一元二次方程x2−2x−m=0有两个相等的实数根,∴△=(−2)2−4×1×(−m)=0,解得m=−1,故答案为:−1.根据方程有两个相等的实数根得出△=0,据此列出关于m的方程,解之即可.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.14.【答案】13【解析】解:如图所示:当棋子放到小圆位置都可以构成轴对称图形,故这四枚棋子构成的图形是轴对称图形的概率是:26=13.故答案为:13.直接利用轴对称图形的性质结合概率公式得出答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.15.【答案】12π【解析】解:∵∠AOB=120°,∠ACB=90°,∴∠OBC=∠AOB−∠ACB=30°,∵OC=3,∴OB=2OC=6,∵∠AOB=120°,∴图中扇形AOB的面积是120π×62360=12π,故答案为:12π.求出∠OBC的度数,根据含30°角的直角三角形的性质求出OB,根据扇形的面积公式求出答案即可.本题考查了含30°角的直角三角形的性质和扇形的面积计算,能求出OB的长是解此题的关键.16.【答案】2.5【解析】解:设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.2x元,依题意得:600021.2x+60002x=2200,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意.故答案为:2.5.设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.2x元,根据数量=总价÷单价结合两次共购进口罩2200个,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17.【答案】2或23【解析】解:(1)如图,当点P在CD上时,∵BC=2,DP=1,∠C=90°,∴tan∠BPC=BCPC=2;(2)如图,当点P在射线CD上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=BCPC =23.故答案为:2或23.分两种情况讨论,利用锐角三角函数的定义,正方形的性质求解.本题考查了正方形的性质,锐角三角函数的定义,解题的关键是利用图形考虑此题有两种可能,要依次求解.18.【答案】18【解析】解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH=120×220=12,∴DH=CH−CD=5,∴AD=√AH2+HD2=√144+25=13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.如图作AH⊥BC于H,连接AM,由EF垂直平分线段AC,推出MA=MC,推出DM+ MC=AM+MD,可得当A、D、M共线时,DM+MC的值最小,最小值就是线段AD 的长,利用勾股定理可求AD的长,即可求解.本题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:原式=19×9+1=2.【解析】直接利用零指数幂的性质和负整数指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=3x2+6−(x2−2x+1)=3x2+6−x2+2x−1=2x2+2x+5.【解析】原式利用完全平方公式化简,去括号合并即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.21.【答案】解:{2x−2≤x①x+2>−12x−1②,解不等式①,得x≤2,解不等式②,得x>−2,∴不等式组的解集是−2<x≤2.把不等式①和②的解集在数轴上表示出来为:.【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:原式=(a2+aa2+a −aa2+a)÷(a+1)(a−1)(a+1)2=a2+a−aa(a+1)⋅(a+1)2(a+1)(a−1)=a 2a(a +1)⋅(a +1)2(a +1)(a −1)=a a−1,当a =√2+1时,原式=√2+1√2+1−1=2+√22.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.【答案】(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =∠ADC =90°,∠ABE =∠CBE =∠ADB =12×90°=45°, 在△ABE 和△CBE 中,{AB =CB∠ABE =∠CBE BE =BE(公共边),∴△ABE≌△CBE(SAS);(2)∵△ABE≌△CBE ,∴∠AEB =∠CEB ,又∵∠AEC =140°,∴∠CEB =70°,∵∠DEC +∠CEB =180°,∴∠DEC =180°−∠CEB =110°,∵∠DFE +∠ADB =∠DEC ,∴∠DFE =∠DEC −∠ADB =110°−45°=65°.【解析】(1)由“SAS ”可证△ABE≌△CBE ;(2)由全等三角形的性质可求∠CEB =70°,由三角形的外角的性质可求解.本题考查了正方形的性质,全等三角形的判定和性质,掌握正方形的性质是本题的关键. 24.【答案】解:(1)∵点C(−2,m)在一次函数y =−x +1的图象上,把C 点坐标代入y =−x +1,得m =−(−2)+1=3,∴点C 的坐标是(−2,3),设反比例函数的解析式为y =kx (k ≠0),把点C 的坐标(−2,3)代入y =k x 得,3=k −2,解得k=−6,∴反比例函数的解析式为y=−6;x(2)在直线y=−x+1中,令x=0,则y=1,∴B(0,1),由(1)知,C(−2,3),∴BC=√(3−1)2+(−2)2=2√2,当BC=BP时,BP=2√2,∴OP=2√2+1,∴P(0,2√2+1),当BC=PC时,点C在BP的垂直平分线,∴P(0,5),即满足条件的点P的坐标为(0,5)或(0,2√2+1).【解析】(1)先确定出点C坐标,再代入反比例函数解析式中,即可得出结论;(2)分两种情况,利用等腰三角形的性质,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,线段的垂直平分线,用分类讨论的思想解决问题是解本题的关键.25.【答案】500人【解析】解:(1)(120+80)÷40%=500(人),即参与问卷调查的总人数为500人,故答案为:500人;(2)500×15%−15=60(人),补全条形统计图如图所示:(3)根据题意,列表如下:共有9个等可能的结果,其中小强和他爸爸选择同一种APP的情况有3种,∴小强和他爸爸选择同一种APP的概率为39=13.(1)根据A的人数÷其所占的比例=参与问卷调查的总人数;(2)求出C的人数−15,再将条形统计图补充完整即可;(3)列表得出所有结果,再由概率公式求解即可.本题考查了列表法与树状图法、条形统计图、扇形统计图;列表得出所有结果是解题的关键.26.【答案】(1)证明:∵AB为⊙O的直径,∴∠AEB=90°(直径所对的圆周角是直角),∴AF⊥BC.∵在△ABC中AB=AC∴CE=BE(等腰三角形三线合一),∵AE=EF.∴四边形ABFC是平行四边形(对角线互相平分的四边形是平行四边形).又∵AF⊥BC,∴▱ABFC是菱形(对角线互相垂直的平行四边形是菱形).(2)解:∵圆内接四边形ABED ,∴∠ADE +∠ABC =180°(圆内接四边形的对角互补).∵∠ADE +∠CDE =180°,∴∠ABC =∠CDE .∵∠ACB =∠ECD(公共角).∴△ECD∽△ACB(两角分别对应相等的两个三角形相似).∴EC AC =CD BC (相似三角形的对应边成比例).∵四边形ABFC 是菱形,∴BE =CE =12BC =2.∴2CE =BC =4.∴2AC =14. ∴AC =8.∴AB =AC =8.∴⊙O 的半径为4.【解析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可证明;(2)根据菱形的性质和相似三角形△ECD∽△ACB 的对应边成比例解答.本题考查菱形的判定和性质、圆周角定理以及相似三角形的判定与性质等知识,属于中考常考题型.27.【答案】解:(1)∵CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°,设CD =x ,在Rt △ADC 中,∠ADC =90°,∠A =30°,∴tan30°=CD AD ,即x AD =√33, ∴AD =√3x ,在Rt △BDC 中,∠B =45°,∴CD =BD =x ,∵AB =AD +BD .∴√3x +x =260,∴x =√3+1,∴x =130(√3−1)=130×0.7=91,∴CD =91(米).(2)在Rt △ADC 中∠ADC =90°,∠A =30°,∴AC =2CD(直角三角形中30°角所对的直角边等于斜边的一半),∴AC =182,∵LED 节能灯带每米造价为800元,∴800×182=145600(元),答:斜拉链条AC 上的LED 节能灯带造价是145600元.【解析】(1)设CD =x(米),在Rt △ADC 中表示出AD =√3x ,在Rt △BDC 中,表示出CD =BD =x ,根据AB =AD +BD 建立关于x 的方程,解之求出x 的值,从而得出答案;(2)先求出AC 的长度,再乘以单价即可得出答案.本题主要考查解直角三角形的应用,解题的关键是掌握三角函数的应用、直角三角形的有关性质.28.【答案】解:(1)∵抛物线解析式为y =−(x +2)2,∴点A 的坐标为(−2,0),设一次函数解析式为y =kx +b(k ≠0),把A(−2,0),B(0,4)代入y =kx +b ,得{−2k +b =0b =4, 解得{k =2b =4, ∴一次函数解析式为y =2x +4;(2)∵点C 在直线y =2x +4上,且点C 的横坐标为−1,∴y =2×(−1)+4=2,∴点C 坐标为(−1,2),设平移后的抛物线解析式为y =a(x −ℎ)2+k(a ≠0),∵a =−1,顶点坐标为C(−1,2),∴抛物线的解析式是y =−(x +1)2+2,∵抛物线与y 轴的交点为D ,∴令x =0,得y =1,∴点D坐标为(0,1);(3)存在,①过点D作P1D//OA交AB于点P1,∴△BDP1∽△BOA,∴P1点的纵坐标为1,代入一次函数y=2x+4,得x=−32,∴P1的坐标为(−32,1);②过点D作P2D⊥AB于点P2,∴∠BP2D=∠AOB=90°,又∵∠DBP2=∠ABO(公共角),∴△BP2D∽△BOA,∴OBP2B =ABBD,∵直线y=2x+4与x轴的交点A(−2,0),B(0,4),又∵D(0,1),∴OA=2,OB=4,BD=3,∴AB=√22+42=2√5,∴4P2B =2√53,∴P2B=6√55,过P2作P2M⊥y轴于点M,设P2(a,2a+4),则P2M=|a|=−a,BM=4−(2a+4)=−2a,在Rt△BP2M中P2M2+BM2=P2B2,∴(−a)2+(−2a)2=(6√55)2,解得a=±65a=65(舍去),∴a=−65,∴2a+4=85,∴P2的坐标为(−65,85 ),综上所述:点P的坐标为:(−32,1)或(−65,85).【解析】(1)先求出点A坐标,利用待定系数法可求解析式;(2)先求出点C坐标,由平移的性质可得可求平移后的解析式,即可求点D坐标;(3)分两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,相似三角形的判定和性质等知识,利用分类讨论思想解决问题是本题的关键.。

2020年青海省西宁市城区中考数学试卷(含答案解析)

2020年青海省西宁市城区中考数学试卷(含答案解析)

2020年青海省西宁市城区中考数学试卷一、选择题(本大题共8小题,共24.0分)1.(−3)2的相反数是()A. −6B. 9C. −9D. −192.下列二次根式中,最简二次根式是().A. √0.5B. √8C. √4aD. √103.下列计算正确的是()A. (a3)2=a5B. a6÷a2=a3C. (−3a)3=−3a3D. a2·a3=a54.如图所示的“h”型几何体的俯视图是()A.B.C.D.5.如图,PA,PB,CD是⊙O的切线,A,B,E是切点,CD分别交PA,PB于C,D两点,若∠APB=40°,PA=5,则下列结论:①PA=PB=5;②△PCD的周长为5;③∠COD=70°,其中正确的个数有()A. 3个B. 2个C. 1个D. 0个6.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则一次函数y=bx+ac在直角坐标系中的大致图象是()A.B.C.D.7.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A. 6B. 5C. 4D. 38.甲、乙两人在1600米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发40秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t的函数关系,下列说法:①乙的速度是4米/秒;②乙到终点时,甲、乙两人相距280米;③乙从出发到跑步结束,一共跑了1800米;④乙出发440秒时,甲、乙两人第二次相遇,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共20.0分)9.计算:−(−3)3=______.10.2019年3月5日召开十三届全国人大二次会议,政府工作报告中提到2012年我国的贫困人口为9899万人,2018年减少到1660万人,连续6年平均每年减贫1300多万人,将数据1300万用科学记数法可表示为______.+√x−2中,自变量x的取值范围是________.11.在函数y=1x−312.八边形的外角和是______.13.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.14.如图,在“3×3”网格中,有3个涂成黑色的小方格,若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.15.如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是______(结果保留π).16.某学校为了增强学生体质,准备购买一批体育器材,已知A类器材比B类器材的单价低10元,用150元购买A类器材与用300元购买B类器材的数量相同,则B类器材的单价为________元.17.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为______ .18.如图,等腰△ABC中一腰AB的垂直平分线交AC与E,已知AB=10cm,△BCE周长为17cm,那么底边BC=______ .三、解答题(本大题共10小题,共76.0分)19.计算:−22−|2−√3|+(−1)2017×(π−3)0−(12)−120.(1)已知(x+y)2=16,(x−y)2=4,求xy的值;(2)若(a+b)2=13,(a−b)2=7,求a2+b2和ab的值.21.解不等式组:{3x−5<x+13x−46≤2x−13,并利用数轴确定不等式组的解集.22.先化简,再求值:m2−2m+1m2−1÷(m−1−m−1m+1),其中m=√3.23.如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,连接DP.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC.24.如图,反比例函数y=kx的图象与一次函数y=ax﹢b的图象交于C(4,−3),E(−3,4)两点.且一次函数图象交y轴于点A.(1)求反比例函数与一次函数的解析式;(2)求△COE的面积;(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.25.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”“魅力数独”“数学故事”“趣题巧解”四门选修课(每位学生必须且只能选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生中选“数学故事”的人数;(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(用列表或画树状图的方法求解)26.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2√3,求CD的长.27.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB的长度38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(−2,0),B(8,0)两点,与y轴交于点C,且OC=2OA,抛物线的对称轴x轴交于点D.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上位于对称轴右侧的一个动点,设点P点的横坐标为m,且S△CDP=11S△ABC,求m的值;20(3)K是抛物线上一个动点,在平面直角坐标系中是否存在点H,使B、C、K、H为顶点的四边形成为矩形?若存在,直接写出点H的坐标;若不存在,说明理由.【答案与解析】1.答案:C解析:解:(−3)2的相反数是−9,故选:C.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.答案:D解析:本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.根据最简二次根式的概念判断即可.,不是最简二次根式,故A错误;解:A.√0.5=√22B.√8=2√2,不是最简二次根式,故B错误;C.√4a=2√a,不是最简二次根式,故C错误;D.√10是最简二次根式,故D正确.故选D.3.答案:D解析:本题主要考查了幂的乘方和积的乘方,同底数幂的除法以及同底数幂的乘法的知识,熟练掌握这些知识是解题的关键.直接运用幂的乘方和积的乘方,同底数幂的除法以及同底数幂的乘法的知识逐一进行判断即可.解:A.(a3)2=a6,故本选项错误;B.a6÷a2=a4,故本选项错误;C.(−3a)3=−27a3,故本选项错误;D.a2·a3=a5,故本选项正确.。

2020青海省中考数学试题(解析版)

2020青海省中考数学试题(解析版)

青海省2020年初中毕业升学考试数学试卷一、填空题1.(-3+8)的相反数是________________.【答案】(1). (2). 5-2±【解析】【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2【详解】第1空:∵,则其相反数为:385-+=5-第2空:,则其平方根为:4=2±故答案为:,.5-2±【点睛】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.2.分解因式:________;不等式组的整数解为________. 2222ax ay -+=24030x x -⎧⎨-+>⎩…【答案】(1). (2).2()()a x y x y -+-2x =【解析】【分析】综合利用提取公因式法和公式法即可得;先分别求出两个不等式的解,再找出它们的公共部分得出不等式组的解集,由此即可得出答案.【详解】222222)2(ax ay a x y -+=--; 2()()a x y x y =-+- 24030x x -≥⎧⎨-+>⎩①②解不等式①得2x ≥解不等式②得3x <则不等式组的解为23x ≤<因此,不等式组的整数解2x =故答案为:,.2()()a x y x y -+-2x =【点睛】本题考查了利用提取公因式法和公式法分解因式、求一元一次不等式组的整数解,熟练掌握因式分解的方法和一元一次不等式组的解法是解题关键.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为________米(1纳米米)910-=【答案】71.2510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据125纳米用科学记数法表示为:125×10-9米=1.25×10-7米.故答案为:.71.2510-⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,将周长为8的沿BC 边向右平移2个单位,得到,则四边形的周长为________.ABC A DEF A ABFD【答案】12【解析】【分析】先根据平移的性质可得,再根据三角形的周长公式可得,然后根据等量代换即可得.,2AC DF CF AD ===8AB BC AC ++=【详解】由平移的性质得:,2AC DF CF AD ===的周长为8ABC A8AB BC AC ∴++=则四边形ABFD 的周长为()AB BF DF AD AB BC CF AC AD +++=++++22AB BC AC =++++822=++12=故答案为:12.【点睛】本题考查了平移的性质等知识点,掌握理解平移的性质是解题关键.5.如图所示ΔABC 中,AB=AC=14cm,AB 的垂直平分线MN 交AC 于D,ΔDBC 的周长是24cm,则BC=___________cm .【答案】10【解析】【分析】由MN 是AB 的垂直平分线可得AD=BD ,于是将△BCD 的周长转化为BC 与边长AC 的和来解答.【详解】∵,24cm DBC C =A ∴BD+DC+BC=24cm ,∵MN 垂直平分AB ,∴AD=BD ,∴AD+DC+BC=24cm ,即AC+BC=24cm ,又∵AC=14cm ,∴BC=24-14=10cm .故答案为:10点睛:解答本题的关键是熟练掌握垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用. 6.如图,在矩形中,对角线,相交于点,已知,,则的长为________cm .ABCD AC BD O 120BOC ∠=︒3cm DC =AC【答案】6cm【解析】【分析】根据矩形的性质可得对角线相等且平分,由可得,根据所对直角边是斜边的一半即可得到结果.120BOC ∠=︒30ACD ∠=︒30°【详解】∵四边形ABCD 是矩形,∴,,,,90ABC DCB ∠=∠=︒AC BD =O A O A O B O D ===AB DC =∵,3cm DC =∴,3cm AB =又∵,120BOC ∠=︒∴,=30A C D O B C ∠∠=︒∴在Rt △ABC 中,.26A C A B cm ==故答案为6cm .【点睛】本题主要考查了矩形的性质应用,准确利用直角三角形的性质是解题的关键.7.已知a ,b ,c 为的三边长.b ,c 满足,且a 为方程的解,则的形状为________三角形.ABC A 2(2)30b c -+-=|4|2x -=ABC A 【答案】等腰三角形【解析】【分析】根据绝对值和平方的非负性可得到b 、c 的值,再根据式子解出a 的值,即可得出结果.【详解】∵, 2(2)30b c -+-=∴,,20b -=30c -=∴,,2b =3c =又∵,|4|2x -=∴,,16x =22x =∵a 是方程的解且a ,b ,c 为的三边长,ABC A ∴,2a =∴是等腰三角形.ABC A 【点睛】本题主要考查了根据三角形三边判断三角形的性质,准确求解题中的式子是解题的关键. 8.在解一元二次方程时,小明看错了一次项系数,得到的解为,;小刚看错了常数项,得到的解为,.请你写出正确的一元二次方程_________.20x bx c ++=b 12x =23x =c 11x =24x =【答案】2560x x -+=【解析】【分析】根据题意列出二元一次方程组求解即可得出答案.【详解】解:将,代入一元二次方程得, 12x =23x =20x bx c ++=420930b c b c ++=⎧⎨++=⎩解得:, 56b c =-⎧⎨=⎩∵小明看错了一次项,∴c 的值为6,将,代入一元二次方程得, 11x =24x =20x bx c ++=101640b c b c ++=⎧⎨++=⎩解得:, 54b c =-⎧⎨=⎩∵小刚看错了常数项,。

2020年青海省中考数学试卷 (解析版)

2020年青海省中考数学试卷 (解析版)

2020年青海省中考数学试卷一、填空题(共12小题).1.(﹣3+8)的相反数是;的平方根是.2.分解因式:﹣2ax2+2ay2=;不等式组的整数解为.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为米.(1纳米=10﹣9米)4.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD 的周长为.5.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=cm.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为cm.7.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为三角形.8.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程.9.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.10.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.11.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.12.观察下列各式的规律:.①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式.用含有字母的式子表示第n个算式为.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°15.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×516.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个18.若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6B.1.8C.3D.620.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A.B.C.D.三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣.22.化简求值:(﹣)÷;其中a2﹣a﹣1=0.23.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732)25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O 于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有名学生,“优秀”所占圆心角的度数为.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)28.如图1(注:与图2完全相同)所示,抛物线y=﹣+bx+c经过B、D两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)参考答案一、填空题(本大题共12小题15空,每空2分,共30分).1.(﹣3+8)的相反数是﹣5;的平方根是±2.【分析】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答;先求出=4,再根据平方根的定义解答.解:﹣3+8=5,5的相反数是﹣5;=4,4的平方根是±2.故答案为:﹣5;±2.2.分解因式:﹣2ax2+2ay2=﹣2a(x﹣y)(x+y);不等式组的整数解为2.【分析】直接提取公因式﹣2a,进而利用平方差公式分解因式即可;分别解不等式,进而得出不等式组的解集.解:﹣2ax2+2ay2=﹣2a(x2﹣y2)=﹣2a(x﹣y)(x+y);,解①得:x≥2,解②得:x<3,∴整数解为:2.故答案为:﹣2a(x﹣y)(x+y);2.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 1.25×10﹣7米.(1纳米=10﹣9米)【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:125纳米=125×10﹣9米=1.25×10﹣7米.故答案为:1.25×10﹣7.4.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD 的周长为12.【分析】利用平移的性质得到AD=CF=2,AC=DF,而AB+BC+AC=8,所以AB+BC+DF =8,然后计算四边形ABFD的周长.解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.故答案为12.5.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=10cm.【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.解:∵C△DBC=24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24﹣14=10cm.故填10.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为6cm.【分析】根据矩形的性质即可求出答案.解:在矩形ABCD中,∴OB=OC,∴∠OCB=∠OBC,∵∠BOC=120°,∴∠OCB=30°,∵DC=3,∴AB=CD=3,在Rt△ACB中,AC=2AB=6,故答案为:67.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为等腰三角形.【分析】利用绝对值的性质以及偶次方的性质得出b,c的值,进而利用三角形三边关系得出a的值,进而判断出其形状.解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|a﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.8.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程x2﹣5x+6=0.【分析】利用根与系数的关系得到2×3=c,1+4=﹣b,然后求出b、c即可.解:根据题意得2×3=c,1+4=﹣b,解得b=﹣5,c=6,所以正确的一元二次方程为x2﹣5x+6=0.故答案为x2﹣5x+6=0.9.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7cm.【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB 与CD之间时,EF=OF﹣OE.解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4,CF=DF=CD=3,在Rt△OAE中,OE==3,在Rt△OCF中,OF==4,当点O在AB与CD之间时,EF=OF+OE=4+3=7;当点O不在AB与CD之间时,EF=OF﹣OE=4﹣3=1;综上所述,AB与CD之间的距离为1或7cm.故答案为1或7.10.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=1.【分析】在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理可得AB=5,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,可得OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,再根据切线长定理可得CE=CF,所以矩形EOFC 是正方形,可得CE=CF=r,所以AF=AD=3﹣r,BE=BD=4﹣r,进而可得△ABC 的内切圆半径r的值.解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为:1.11.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.【分析】先依据定义列出算式,然后再进行计算即可.解:12⊕4==.故答案为:.12.观察下列各式的规律:.①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式4×6﹣52=24﹣25=﹣1.用含有字母的式子表示第n个算式为n×(n+2)﹣(n+1)2=﹣1.【分析】按照前3个算式的规律写出即可;观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可.解:④4×6﹣52=24﹣25=﹣1.第n个算式为:n×(n+2)﹣(n+1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n×(n+2)﹣(n+1)2=﹣1.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个【分析】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.解:①3m2n与5mn2不是同类项,不能合并,计算错误;②2a3b•(﹣2a2b)=﹣4a5b,计算错误;③(a3)2=a3×2=a6,计算错误;④(﹣a3)÷(﹣a)=(﹣a)3﹣1=a2,计算正确;故选:D.14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.15.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×5【分析】根据圆柱体的体积计算公式结合水的体积不变,即可得出关于x的一元一次方程,此题得解.解:依题意,得:π×()2x=π×()2×(x+5).故选:B.16.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【分析】对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案.解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个【分析】从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出每一层碟子的层数和个数,从而算出总的个数.解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.18.若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数y=图象在第二、四象限,故B选项正确;(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y=图象在第一、三象限,无选项符合.故选:B.19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6B.1.8C.3D.6【分析】设这个圆锥的底面半径为r,利用弧长公式得到2πr=,然后解关于r的方程即可.解:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.6,即这个圆锥的底面半径是3.6.故选:A.20.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B.三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣.【分析】利用负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则运算即可.解:原式=3+|1﹣|+1﹣3=3+=.22.化简求值:(﹣)÷;其中a2﹣a﹣1=0.【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解后约分得到原式=,然后把a2=a+1代入计算即可.解:原式=•=•=,∵a2﹣a﹣1=0.∴a2=a+1,∴原式==1.23.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.【分析】(1)作AB的垂直平分线,即可作Rt△ABC的外接圆⊙O;再作∠ACB的角平分线交⊙O于点D,连接AD即可;(2)根据AC=6,BC=8可得AB=10,再根据CD是∠ACB的平分线即可求AD的长.解:(1)如图,Rt△ABC的外接圆⊙O即为所求;(2)连接BD,∵∠C=90°.∴AB是⊙O的直径,∴∠BDA=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DBA=∠ACD=45°,∵AC=6,BC=8,∴AB=10,∴AD=BD=AB•sin45°=10×=5.答:AD的长为5.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732)【分析】延长PQ交直线AB于点C,设PC=x米,在直角△APC和直角△BPC中,根据三角函数利用x表示出AC和BC,根据AB=AC﹣BC即可列出方程求得x的值,再在直角△BQC中利用三角函数求得QC的长,则PQ的长度即可求解.解:延长PQ交直线AB于点C,设PC=x米.在直角△APC中,∠A=45°,则AC=PC=x米;∵∠PBC=60°∴∠BPC=30°在直角△BPC中,BC=PC=x米,∵AB=AC﹣BC=60米,则x﹣x=60,解得:x=90+30,则BC=(30+30)米.在Rt△BCQ中,QC=BC=(30+30)=(30+10)米.∴PQ=PC﹣QC=90+30﹣(30+10)=60+20≈94.6(米).答:电线杆PQ的高度约是94.6米.25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O 于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.【分析】(1)连接OD,要证明CD为圆O的切线,只要证明∠CDB=90°即可;(2)连接BD,根据已知求得△ADB∽△OBC再根据相似比即可求得BC的值.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC.∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD===8,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴=,即=.∴BC=12.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有500名学生,“优秀”所占圆心角的度数为108°.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.【分析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可;(3)由15000乘以“不合格”所占的比例即可;(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;故答案为:500,108°;(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图:(3)15000×=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为=.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC 上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【分析】(1)证明△FAB≌△GAC即可解决问题.(2)结论:CG=DE+DF.利用面积法证明即可.(3)结论不变,证明方法类似(2).【解答】(1)证明:如图1中,∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,∴△FAB≌△GAC(AAS),∴FB=CG.(2)解:结论:CG=DE+DF.理由:如图2中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG=•AB•DE+•AC•DF,∵AB=AC,∴CG=DE+DF.(3)解:结论不变:CG=DE+DF.理由:如图3中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG=•AB•DE+•AC•DF,∵AB=AC,∴CG=DE+DF.28.如图1(注:与图2完全相同)所示,抛物线y=﹣+bx+c经过B、D两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【分析】(1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A、D坐标及抛物线顶点M的坐标,再将四边形ABMC 的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.解:(1)把B(3,0)和D(﹣2,﹣)代入抛物线的解析式得,,解得,,∴抛物线的解析式为:;(2)令x=0,得=,∴,令y=0,得=0,解得,x=﹣1,或x=3,∴A(﹣1,0),∵=,∴M(1,2),∴S四边形ABMC=S△AOC+S△COM+S△MOM==;(3)设Q(0,n),①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,a).Q点在P点左边时,则Q(﹣4,n),把Q(﹣4,n)代入,得n=,∴P(﹣4,﹣);②Q点在P点右边时,则Q(4,n),把Q(4,n)代入,得n=,∴P(4,﹣);③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,则E(1,0),∵PE=QE,∴P(2,﹣n),把P(2,﹣n)代入,得﹣n=,∴n=﹣,∴P(2,).综上,满足条件的P点坐标为:(﹣4,﹣)或(4,﹣)或(2,).。

2020年青海省中考数学试卷(解析版)

2020年青海省中考数学试卷(解析版)
【解析】 【分析】 综合利用提取公因式法和公式法即可得;先分别求出两个不等式的解,再找出它们的公共部分得出不等式 组的解集,由此即可得出答案.
【详解】 2ax2 2ay2 2a(x2 y2 ) 2a(x y)(x y) ;
2x 4 0① x 3 0② 解不等式①得 x 2 解不等式②得 x 3 则不等式组的解为 2 x 3 因此,不等式组的整数解 x 2 故答案为: 2a(x y)(x y) , x 2 .
B.
C.
D.
17.在一张桌子上摆放着一些碟子,从 3 个方向看到的 3 种视图如图所示,则这个桌子上的碟共有( )
A. 4 个
B. 8 个
C. 12 个
D. 17 个
18.若 ab 0 ,则正比例函数 y ax 与反比例函数 y b 在同一平面直角坐标系中的大致图像可能是( ) x
A.
B.
C.
纳米;125 纳米用科学记数法表示为________米(1 纳米 109 米) 【答案】 1.25 107
【解析】 【分析】 绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a×10-n,与较大数的科学记数法不同的是其所 使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定. 【详解】解:将数据 125 纳米用科学记数法表示为:125×10-9 米=1.25×10-7 米.
之间的距离为________cm.
10.在 ABC 中, C 90 , AC 3 , BC 4 ,则 ABC 的内切圆的半径为__________.
11.对于任意不相等的两个实数 a,b( a > b )定义一种新运算 a※b= a b ,如 3※2= 3 2 ,那么
ab
32

2020年青海省中考数学试卷(附答案解析)

2020年青海省中考数学试卷(附答案解析)

2020年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分).1.(4分)(38)-+的相反数是____;16的平方根是____.2.(4分)分解因式:2222ax ay -+=____;不等式组24030x x -⎧⎨-+>⎩的整数解为____.3.(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为____米.(1纳米910-=米)4.(2分)如图,将周长为8的ABC ∆沿BC 边向右平移2个单位,得到DEF ∆,则四边形ABFD 的周长为____.5.(2分)如图,ABC ∆中,14AB AC cm ==,AB 的垂直平分线MN 交AC 于点D ,且DBC ∆的周长是24cm ,则BC =____cm .6.(2分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知120BOC ∠=︒,3DC cm =,则AC 的长为____cm .7.(2分)已知a ,b ,c 为ABC ∆的三边长.b ,c 满足2(2)|3|0b c -+-=,且a 为方程|4|2x -=的解,则ABC ∆的形状为____三角形.8.(2分)在解一元二次方程20x bx c ++=时,小明看错了一次项系数b ,得到的解为12x =,23x =;小刚看错了常数项c ,得到的解为11x =,25x =.请你写出正确的一元二次方程____.9.(2分)已知O 的直径为10cm ,AB ,CD 是O 的两条弦,//AB CD ,8AB cm =,6CD cm =,则AB 与CD 之间的距离为____cm .10.(2分)如图,在ABC ∆中,90C ∠=︒,3AC =,4BC =,则ABC ∆的内切圆半径r =____.11.(2分)对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a b a b a b+-⊕,如:3232532+==-⊕,那么124=⊕____.12.(4分)观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-. 请按以上规律写出第4个算式____. 用含有字母的式子表示第n 个算式为____.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.(3分)下面是某同学在一次测试中的计算: ①22352m n mn mn -=-; ②3262(2)4a b a b a b -=-; ③325()a a =; ④32()()a a a -÷-=.其中运算正确的个数为( ) A .4个B .3个C .2个D .1个14.(3分)等腰三角形的一个内角为70︒,则另外两个内角的度数分别是( ) A .55︒,55︒ B .70︒,40︒或70︒,55︒C .70︒,40︒D .55︒,55︒或70︒,40︒15.(3分)如图,根据图中的信息,可得正确的方程是( )A .2286()()(5)22x x ππ⨯=⨯⨯-B .2286()()(5)22x x ππ⨯=⨯⨯+C .2286(5)x x ππ⨯=⨯⨯+D .22865x ππ⨯=⨯⨯16.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .17.(3分)在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有( )A .4个B .8个C .12个D .17个18.(3分)若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .19.(3分)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )A .3.6B .1.8C .3D .620.(3分)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度()h cm 与注水时间()t min 的函数图象大致为图中的( )A .B .C .D .三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.(5分)计算:1031()|1345|( 3.14)273π-+︒+-.22.(5分)化简求值:22122()121a a a aa a a a ----÷+++;其中210a a --=. 23.(8分)如图,在Rt ABC ∆中,90C ∠=︒.(1)尺规作图:作Rt ABC ∆的外接圆O ;作ACB ∠的角平分线交O 于点D ,连接AD .(不写作法,保留作图痕迹)(2)若6BC=,求AD的长.AC=,8四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.(9分)某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45︒,向前走60米到达B点测得P点的仰角是60︒,测得发射塔底部Q点的仰角是30︒.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,3 1.732)≈25.(8分)如图,已知AB是O的直径,直线BC与O相切于点B,过点A作//AD OC 交O于点D,连接CD.(1)求证:CD是O的切线.(2)若4AB=,求线段BC的长.AD=,直径1226.(9分)每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有____名学生,“优秀”所占圆心角的度数为____. (2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.(10分)在ABC ∆中,AB AC =,CG BA ⊥交BA 的延长线于点G .特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 重合,另一条直角边恰好经过点B .通过观察、测量BF 与CG 的长度,得到BF CG =.请给予证明.猜想论证:(2)当三角尺沿AC 方向移动到图2所示的位置时,一条直角边仍与AC 边重合,另一条直角边交BC 于点D ,过点D 作DE BA ⊥垂足为E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE 、DF 与CG 之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC 方向继续移动到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)28.(12分)如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【试题答案】一、填空题(本大题共12小题15空,每空2分,共30分).1. 5-;2±【解答】解:385-+=,5的相反数是5-4=,4的平方根是2±. 2. 2()()a x y x y --+;2【解答】解:2222222()ax ay a x y -+=-- 2()()a x y x y =--+; 24030x x -⎧⎨-+>⎩①②, 解①得:2x , 解②得:3x <,∴整数解为:2.3. 71.2510-⨯【解答】解:125纳米912510-=⨯米71.2510-=⨯米. 4. 12【解答】解:ABC ∆沿BC 边向右平移2个单位,得到DEF ∆, 2AD CF ∴==,AC DF =, ABC ∆的周长为8, 8AB BC AC ∴++=, 8AB BC DF ∴++=,∴四边形ABFD 的周长82212AB BC CF DF AD AB BC DF AD CF =++++=++++=++=.5. 10【解答】解:24DBC C cm ∆=, 24BD DC BC cm ∴++=①,又MN 垂直平分AB ,AD BD ∴=②,将②代入①得:24AD DC BC cm ++=, 即24AC BC cm +=, 又14AC cm =,241410BC cm ∴=-=.6. 6【解答】解:在矩形ABCD 中,OB OC ∴=, OCB OBC ∴∠=∠, 120BOC ∠=︒,30OCB ∴∠=︒, 3DC =, 3AB CD ∴==,在Rt ACB ∆中, 26AC AB ==,7.等腰【解答】解:2(2)|3|0b c -+-=, 20b ∴-=,30c -=,解得:2b =,3c =,a 为方程|4|2a -=的解,42a ∴-=±,解得:6a =或2,a 、b 、c 为ABC ∆的三边长,6b c +<,6a ∴=不合题意,舍去, 2a ∴=,2a b ∴==,ABC ∴∆是等腰三角形,8. 2660x x -+=【解答】解:根据题意得23c ⨯=, 15b +=-,解得6b =-,6c =,所以正确的一元二次方程为2660x x -+=. 9. 1或7【解答】解:作OE AB ⊥于E ,延长EO 交CD 于F ,连接OA 、OC ,如图,//AB CD ,OE AB ⊥, OF CD ∴⊥,142AE BE AB ∴===,132CF DF CD ===, 在Rt OAE ∆中,22543OE =-=, 在Rt OCF ∆中,22534OF =-=,当点O 在AB 与CD 之间时,437EF OF OE =+=+=; 当点O 不在AB 与CD 之间时,431EF OF OE =-=-=; 综上所述,AB 与CD 之间的距离为1或7cm . 10. 1【解答】解:在ABC ∆中,90C ∠=︒,3AC =,4BC =, 根据勾股定理,得5AB =,如图,设ABC ∆的内切圆与三条边的切点分别为D 、E 、F ,连接OD 、OE 、OF ,OD AB ∴⊥,OE BC ⊥,OF AC ⊥,可得矩形EOFC , 根据切线长定理,得 CE CF =,∴矩形EOFC 是正方形,CE CF r ∴==,3AF AD AC FC r ∴==-=-,4BE BD BC CE r ==-=-,AD BD AB +=,345r r ∴-+-=,解得1r =.则ABC ∆的内切圆半径1r =. 11.2【解答】解:1241242124+=-⊕.12. 246524251⨯-=-=-;2(2)(1)1n n n +-+=- 【解答】解:④246524251⨯-=-=-.第n 个算式为:2(2)(1)1n n n +-+=-.二、单项选择题(本大题共8小题,每小题3分,共24分.请将正确选项的序号填入下面相应题号的表格内).13.D【解答】解:①23m n 与25mn 不是同类项,不能合并,计算错误; ②3252(2)4a b a b a b -=-,计算错误; ③32326()a a a ⨯==,计算错误;④3312()()()a a a a --÷-=-=,计算正确; 14.D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70︒时,另外两个内角(18070)255=︒-︒÷=︒;(2)若等腰三角形的底角为70︒时,它的另外一个底角为70︒,顶角为180707040︒-︒-︒=︒.15.B【解答】解:依题意,得:2286()()(5)22x x ππ⨯=⨯⨯+.16.A【解答】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:17.C【解答】解:易得三摞碟子数从左往右分别为5,4,3, 则这个桌子上共有54312++=个碟子. 18.B【解答】解:0ab <,∴分两种情况:(1)当0a >,0b <时,正比例函数y ax =数的图象过原点、第一、三象限,反比例函数by x=图象在第二、四象限,故B 选项正确; (2)当0a <,0b >时,正比例函数y ax =的图象过原点、第二、四象限,反比例函数by x=图象在第一、三象限,无选项符合. 19.A【解答】解:设这个圆锥的底面半径为r , 根据题意得(360252)122180r ππ-⨯⨯=,解得 3.6r =,即这个圆锥的底面半径是3.6. 20.B【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.【分析】利用负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则运算即可.【解答】解:原式3|113=++-3113=+-.22.【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解后约分得到原式21a a+=,然后把21a a =+代入计算即可. 【解答】解:原式2(1)(1)(2)(1)(1)(21)a a a a a a a a a +---+=+-221(1)(1)(21)a a a a a a -+=+- 21a a +=, 210a a --=. 21a a ∴=+,∴原式111a a +==+. 23.【分析】(1)作AB 的垂直平分线,即可作Rt ABC ∆的外接圆O ;再作ACB ∠的角平分线交O 于点D ,连接AD 即可;(2)根据6AC =,8BC =可得10AB =,再根据CD 是ACB ∠的平分线即可求AD 的长.【解答】解:(1)如图,Rt ABC ∆的外接圆O 即为所求;(2)连接BD , 90C ∠=︒.AB ∴是O 的直径,90BDA ∴∠=︒, CD 平分ACB ∠, 45ACD BCD ∴∠=∠=︒, 45DBA ACD ∴∠=∠=︒, 6AC =,8BC =, 10AB ∴=,2sin 451052AD BD AB ∴==︒== 答:AD 的长为52四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.【分析】延长PQ 交直线AB 于点C ,设PC x =米,在直角APC ∆和直角BPC ∆中,根据三角函数利用x 表示出AC 和BC ,根据AB AC BC =-即可列出方程求得x 的值,再在直角BQC ∆中利用三角函数求得QC 的长,则PQ 的长度即可求解.【解答】解:延长PQ 交直线AB 于点C ,设PC x =米. 在直角APC ∆中,45A ∠=︒, 则AC PC x ==米; 60PBC ∠=︒ 30BPC ∴∠=︒在直角BPC ∆中,33BC =米,60AB AC BC =-=米,则360x x -=, 解得:90303x =+, 则(30330)BC =+米. 在Rt BCQ ∆中,33(30330)(30103)QC BC ==+=+米. 90303(30103)6020394.6PQ PC QC ∴=-=+-+=+≈(米).答:信号发射塔PQ 的高度约是94.6米.25.【分析】(1)连接OD ,要证明CD 为圆O 的切线,只要证明90CDB ∠=︒即可; (2)连接BD ,根据已知求得ADB OBC ∆∆∽再根据相似比即可求得BC 的值. 【解答】(1)证明:连接OD ,如图所示: OA OD =, ODA OAD ∴∠=∠. //AD CO ,COD ODA ∴∠=∠,COB OAD ∠=∠. COD COB ∴∠=∠. OD OB =,OC OC =, ODC OBC ∴∆≅∆. ODC OBC ∴∠=∠.CB 是圆O 的切线且OB 为半径, 90CBO ∴∠=︒. 90CDO ∴∠=︒. OD CD ∴⊥.又CD 经过半径OD 的外端点D , CD ∴为圆O 的切线.(2)解:连接BD ,AB 是直径,90ADB ∴∠=︒.在直角ADB ∆中,222212482BD AB AD =-=-=, 90ADB OBC ∠=∠=︒,且COB BAD ∠=∠, ADB OBC ∴∆∆∽.∴AD DBOB BC=,即4826BC =. 122BC ∴=.26.【分析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360︒乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可; (3)由15000乘以“不合格”所占的比例即可;(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.【解答】解:(1)该校八年级共有学生人数为20040%500÷=(名);“优秀”所占圆心角的度数为150360108500︒⨯=︒; 故答案为:500,108︒;(2)“一般”的人数为50015020050100---=(名),补全条形统计图如图1:(3)50150001500500⨯=(名), 即估计该市大约有1500名学生在这次答题中成绩不合格; (4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为61122=.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.【分析】(1)证明FAB GAC ∆≅∆即可解决问题. (2)结论:CG DE DF =+.利用面积法证明即可. (3)结论不变,证明方法类似(2). 【解答】(1)证明:如图1中,90F G ∠=∠=︒,FAB CAG ∠=∠,AB AC =,()FAB GAC AAS ∴∆≅∆, FB CG ∴=.(2)解:结论:CG DE DF =+. 理由:如图2中,连接AD .ABC ABD ADC S S S ∆∆∆=+,DE AB ⊥,DF AC ⊥,CG AB ⊥,∴111222AB CG AB DE AC DF =+, AB AC =, CG DE DF ∴=+.(3)解:结论不变:CG DE DF =+.理由:如图3中,连接AD .ABC ABD ADC S S S ∆∆∆=+,DE AB ⊥,DF AC ⊥,CG AB ⊥,∴111222AB CG AB DE AC DF =+, AB AC =, CG DE DF ∴=+.28.【分析】(1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A 、D 坐标及抛物线顶点M 的坐标,再将四边形ABMC 的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB 为平行四边形的边;AB 为平行四边形的对角线.分别解答便可. 【解答】解:(1)把(3,0)B 和5(2,)2D --代入抛物线的解析式得,93025222b c b c ⎧-++=⎪⎪⎨⎪--+=-⎪⎩, 解得,132b c =⎧⎪⎨=⎪⎩,∴抛物线的解析式为:21322y x x =-++; (2)令0x =,得2133222y x x =-++=,∴3(0,)2C ,令0y =,得213022y x x =-++=,解得,1x =-,或3x =, (1,0)A ∴-,22131(1)2222y x x x =-++=--+,(1,2)M ∴,AOC COM MOB ABMC S S S S ∆∆∆∴=++四边形 111222M M OA OC OC x OB y =++ 1313191132222222=⨯⨯+⨯⨯+⨯⨯=;(3)设(0,)Q n ,①当AB 为平行四边形的边时,有//AB PQ ,AB PQ =, )a .Q 点在P 点左边时,则(4,)Q n -, 把(4,)Q n -代入21322y x x =-++,得212n =-, 21(4,)2P ∴--; ②Q 点在P 点右边时,则(4,)Q n , 把(4,)Q n 代入21322y x x =-++,得52n =-,5(4,)2P ∴-;③当AB 为平行四边形的对角线时,如图2,AB 与PQ 交于点E , 则(1,0)E , PE QE =, (2,)P n ∴-,把(2,)P n -代入21322y x x =-++,得32n -=,32n ∴=-,3(2,)2P ∴.综上,满足条件的P 点坐标为:21(4,)2--或5(4,)2-或3(2,)2.。

2020年青海省中考数学试卷

2020年青海省中考数学试卷

2020年青海省中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共8小题,共24.0分) 1. 下面是某同学在一次测试中的计算:①3m 2n −5mn 2=−2mn ; ②2a 3b ⋅(−2a 2b)=−4a 6b ; ③(a 3)2=a 5; ④(−a 3)÷(−a)=a 2. 其中运算正确的个数为( )A. 4个B. 3个C. 2个D. 1个2. 等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40°3. 如图,根据图中的信息,可得正确的方程是( )A. π×(82)2x =π×(62)2×(x −5) B. π×(82)2x =π×(62)2×(x +5) C. π×82x =π×62×(x +5)D. π×82x =π×62×54. 剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A. B. C. D.5.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A. 4个B. 8个C. 12个D. 17个6.若ab<0,则正比例函数y=ax与反比例函数y=b在同一平面直角坐标系中的大x致图象可能是()A. B.C. D.7.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A. 3.6B. 1.8C. 3D. 68.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.二、填空题(本大题共12小题,共30.0分)9.(−3+8)的相反数是______;√16的平方根是______.10.分解因式:−2ax2+2ay2=______;不等式组{2x−4≥0−x+3>0的整数解为______.11.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为______米.(1纳米=10−9米)12.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为______.13.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,△DBC的周长是24cm,则BC=______ cm.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为______cm.15.已知a,b,c为△ABC的三边长.b,c满足(b−2)2+|c−3|=0,且a为方程|x−4|=2的解,则△ABC的形状为______三角形.16.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程______.17.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为______cm.18.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=______.19. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =√a+b√a−b,如:3⊕2=√3+2√3−2=√5,那么12⊕4=______.20. 观察下列各式的规律:.①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写出第4个算式______. 用含有字母的式子表示第n 个算式为______. 三、解答题(本大题共8小题,共66.0分)21. 计算:(13)−1+|1−√3tan45°|+(π−3.14)0−√273.22. 化简求值:(a−1a−a−2a+1)÷2a 2−aa 2+2a+1;其中a 2−a −1=0.23. 如图,在Rt △ABC 中,∠C =90°.(1)尺规作图:作Rt △ABC 的外接圆⊙O ;作∠ACB 的角平分线交⊙O 于点D ,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,√3≈1.732)25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD//OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有______名学生,“优秀”所占圆心角的度数为______.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)x2+bx+c经过B、D两点,与28.如图1(注:与图2完全相同)所示,抛物线y=−12x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)2020年青海省中考数学试卷答案和解析【答案】1. D2. D3. B4. A5. C6. B7. A8. B9. −5±210. −2a(x−y)(x+y)211. 1.25×10−712. 1213. 1014. 615. 等腰16. x2−5x+6=017. 1或718. 119. √220. 4×6−52=24−25=−1n×(n+2)−(n+1)2=−121. 解:原式=3+|1−√3|+1−3=3+√3−1+1−3 =√3.22. 解:原式=(a+1)(a−1)−a(a−2)a(a+1)⋅(a+1)2a(2a−1)=2a−1a(a+1)⋅(a+1)2a(2a−1)=a+1a2,∵a2−a−1=0.∴a2=a+1,∴原式=a+1a+1=1.23. 解:(1)如图,Rt△ABC的外接圆⊙O即为所求;(2)连接BD,∵∠C=90°.∴AB是⊙O的直径,∴∠BDA=90°,∵AC=6,BC=8,∴AB=10,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DBA=∠ACD=45°,∠DAB=∠BCD=45°,∴AD=BD=√22AB=10×√22=5√2.答:AD的长为5√2.24. 解:延长PQ交直线AB于点C,设PC=x米.在直角△APC中,∠A=45°,则AC=PC=x米;∵∠PBC=60°∴∠BPC=30°在直角△BPC中,BC=√33PC=√33x米,∵AB=AC−BC=60米,则x−√33x=60,解得:x=90+30√3,则BC=(30√3+30)米.在Rt△BCQ中,QC=√33BC=√33(30√3+30)=(30+10√3)米.∴PQ=PC−QC=90+30√3−(30+10√3)=60+20√3≈94.6(米).答:电线杆PQ的高度约是94.6米.25. (1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD//CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC.∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD=√AB2−AD2=√122−42=8√2,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴ADOB =DBBC,即46=8√2BC.∴BC=12√2.26. 500 108°27. (1)证明:如图1中,∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,∴△FAB≌△GAC(AAS),∴FB=CG.(2)解:结论:CG=DE+DF.理由:如图2中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴12⋅AB⋅CG=12⋅AB⋅DE+12⋅AC⋅DF,∵AB=AC,∴CG=DE+DF.(3)解:结论不变:CG=DE+DF.理由:如图3中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴12⋅AB⋅CG=12⋅AB⋅DE+12⋅AC⋅DF,∵AB =AC ,∴CG =DE +DF .28. 解:(1)把B(3,0)和D(−2,−52)代入抛物线的解析式得,{−92+3b +c =0−2−2b +c =−52, 解得,{b =1c =32,∴抛物线的解析式为:y =−12x 2+x +32;(2)令x =0,得y =−12x 2+x +32=32,∴C(0,32), 令y =0,得y =−12x 2+x +32=0,解得,x =−1,或x =3,∴A(−1,0),∵y =−12x 2+x +32=−12(x −1)2+2,∴M(1,2),∴S 四边形ABMC =S △AOC +S △COM +S △MOM=12OA ⋅OC +12OC ⋅x M +12OB ⋅y M =12×1×32+12×32×1+12×3×2=92;(3)设Q(0,n),①当AB 为平行四边形的边时,有AB//PQ ,AB =PQ ,a).Q 点在P 点左边时,则Q(−4,n),把Q(−4,n)代入y =−12x 2+x +32,得n =−212,∴P(−4,−212);②Q 点在P 点右边时,则Q(4,n),把Q(4,n)代入y =−12x 2+x +32,得n =−52,∴P(4,−52); ③当AB 为平行四边形的对角线时,如图2,AB 与PQ 交于点E ,则E(1,0),∵PE =QE ,∴P(2,−n),把P(2,−n)代入y =−12x 2+x +32,得−n =32,∴n =−32,∴P(2,32).综上,满足条件的P 点坐标为:(−4,−212)或(4,−52)或(2,32).【解析】 1. 【分析】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.【解答】解:①3m 2n 与5mn 2不是同类项,不能合并,计算错误;②2a 3b(−2a 2b)=−4a 5b 2,计算错误;③(a 3)2=a 3×2=a 6,计算错误;④(−a 3)÷(−a)=(−a)3−1=a 2,计算正确;故选:D .2. 解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°−70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°−70°−70°=40°.故选:D .已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 3. 【分析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.根据圆柱体的体积计算公式结合水的体积不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:依题意,得:π×(82)2x =π×(62)2×(x +5).故选B . 4. 解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A .对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案.本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.5. 解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出每一层碟子的层数和个数,从而算出总的个数.本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.6. 解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函图象在第二、四象限,故B选项正确;数y=bx(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y=bx 图象在第一、三象限,无选项符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7. 解:设这个圆锥的底面半径为r,,根据题意得2πr=(360−252)×π×12180解得r=3.6,即这个圆锥的底面半径是3.6.故选:A.,然后解关于r的设这个圆锥的底面半径为r,利用弧长公式得到2πr=(360−252)×π×12180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8. 解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.9. 解:−3+8=5,5的相反数是−5;√16=4,4的平方根是±2.故答案为:−5;±2.根据相反数的定义,只有符号不同的两个数叫做互为相反数解答;先求出√16=4,再根据平方根的定义解答.本题考查了实数的性质,主要利用了相反数的定义,平方根的定义,是基础题,熟记概念与性质是解题的关键.10. 解:−2ax2+2ay2=−2a(x2−y2)=−2a(x−y)(x+y);{2x−4≥0 ①−x+3>0 ②,解①得:x≥2,解②得:x<3,∴整数解为:2.故答案为:−2a(x−y)(x+y);2.直接提取公因式−2a,进而利用平方差公式分解因式即可;分别解不等式,进而得出不等式组的解集.此题主要考查了提取公因式法以及公式分解因式和不等式组的解法,正确解不等式组是解题关键.11. 解:125纳米=125×10−9米=1.25×10−7米.故答案为:1.25×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+ 2+2=12.故答案为12.利用平移的性质得到AD=CF=2,AC=DF,而AB+BC+AC=8,所以AB+BC+ DF=8,然后计算四边形ABFD的周长.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.13. 解:∵C△DBC=24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24−14=10cm.故填10.由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△BCD的周长转化为BC与边长AC的和来解答.本题考查了垂直平分线的性质;此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用.14. 解:在矩形ABCD中,DC=3cm,∴OB=OC,AB=CD=3,∴∠OCB=∠OBC,∵∠BOC=120°,∴∠OCB=30°,在Rt△ACB中,AC=2AB=6,故答案为6根据矩形的性质即可求出答案.本题考查矩形,含30度角的直角三角形的性质,解题的关键是熟练运用矩形的性质以及含30度角的直角三角形的性质,本题属于基础题型.15. 解:∵(b−2)2+|c−3|=0,∴b−2=0,c−3=0,解得:b=2,c=3,∵a为方程|a−4|=2的解,∴a−4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.利用绝对值的性质以及偶次方的性质得出b,c的值,进而利用三角形三边关系得出a的值,进而判断出其形状.此题主要考查了等腰三角形的判定,三角形三边关系以及绝对值的性质和偶次方的性质,得出a的值是解题关键.16. 【分析】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.利用根与系数的关系得到2×3=c,1+4=−b,然后求出b、c即可.【解答】解:根据题意得2×3=c,1+4=−b,解得b=−5,c=6,所以正确的一元二次方程为x2−5x+6=0.故答案为x2−5x+6=0.17. 解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB//CD,OE⊥AB,∴OF⊥CD,∴AE=BE=12AB=4,CF=DF=12CD=3,在Rt△OAE中,OE=√52−42=3,在Rt△OCF中,OF=√52−32=4,当点O在AB与CD之间时,EF=OF+OE=4+3=7;当点O不在AB与CD之间时,EF=OF−OE=4−3=1;综上所述,AB与CD之间的距离为1或7cm.故答案为1或7.作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF= 4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD之间时,EF=OF−OE.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论.18. 解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC−FC=3−r,BE=BD=BC−CE=4−r,∵AD+BD=AB,∴3−r+4−r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为:1.在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理可得AB=5,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,可得OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,再根据切线长定理可得CE=CF,所以矩形EOFC是正方形,可得CE=CF=r,所以AF=AD=3−r,BE=BD=4−r,进而可得△ABC的内切圆半径r的值.本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内切圆与内心.19. 解:12⊕4=√12+4=√2.√12−4故答案为:√2.先依据定义列出算式,然后再进行计算即可.本题主要考查的是算术平方根的性质,根据定义运算列出算式是解题的关键.20. 解:④4×6−52=24−25=−1.第n个算式为:n×(n+2)−(n+1)2=−1.故答案为:4×6−52=24−25=−1;n×(n+2)−(n+1)2=−1.按照前3个算式的规律写出即可;观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于−1,根据此规律写出即可.此题主要考查了数字变化规律,观察出算式中的数字与算式的序号之间的关系是解题的关键.21. 利用负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则运算即可.本题主要考查了负整数指数幂,零指数幂,特殊角的三角函数,开立方的运算法则,熟练掌握运算法则是解答此题的关键.22. 先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解后约分得到原式=a+1,然后把a2=a+1代入计算即可.a2本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23. 本题考查了作图−复杂作图、角平分线的性质、三角形的外接圆与外心,(1)作AB的垂直平分线,即可作Rt△ABC的外接圆⊙O;再作∠ACB的角平分线交⊙O于点D,连接AD即可;(2)根据AC=6,BC=8可得AB=10,再根据CD是∠ACB的平分线即可求AD的长.24. 延长PQ交直线AB于点C,设PC=x米,在直角△APC和直角△BPC中,根据三角函数利用x表示出AC和BC,根据AB=AC−BC即可列出方程求得x的值,再在直角△BQC中利用三角函数求得QC的长,则PQ的长度即可求解.本题考查了解直角三角形的应用−仰角俯角的问题,仰角的定义,以及三角函数,正确求得PC的长度是关键.25. (1)连接OD,要证明CD为圆O的切线,只要证明∠CDB=90°即可;(2)连接BD,根据已知求得△ADB∽△OBC再根据相似比即可求得BC的值.本题主要考查了切线的判定和性质,常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.26. 解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×150500=108°;故答案为:500,108°;(2)“一般”的人数为500−150−200−50=100(名),补全条形统计图如图:(3)15000×50500=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为612=12.(1)由“良好”的人数和其所占的百分比即可求出总人数;由360°乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可;(3)由15000乘以“不合格”所占的比例即可;(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.本题考查了列表法与树状图法、条形统计图和扇形统计图以及概率公式;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27. (1)证明△FAB≌△GAC即可解决问题.(2)结论:CG=DE+DF.利用面积法证明即可.(3)结论不变,证明方法类似(2).本题属于三角形综合题,考查了全等三角形的判定和性质,三角形的面积等知识,解题的关键是学会利用面积法证明线段之间的关系,属于中考常考题型.28. (1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A、D坐标及抛物线顶点M的坐标,再将四边形ABMC 的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,四边形的面积计算,平行四边形的性质,第(2)题关键是把四边形分割成三角形进行解答,第(3)题关键是分情况讨论.。

2020年青海省中考数学试卷及答案解析.pdf

2020年青海省中考数学试卷及答案解析.pdf

24.某市为了加快 5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所 示.小军为了知道发射塔的高度,从地面上的一点 A 测得发射塔顶端 P 点的仰角是 45°, 向前走 60 米到达 B 点测得 P 点的仰角是 60°,测得发射塔底部 Q 点的仰角是 30°.请
你帮小军计算出信号发射塔 PQ 的高度.(结果精确到 0.1 米, 3 1.732 )
A.55°,55°
B.70°,40°或 70°,55°
试卷第 2 页,总 8 页
C.70°,40° D.55°,55°
或 70°,40° 15.根据图中给出的信息,可得正确的方程是( )
A.
8 2
2
x
6 2
2
(x
5)
B.
8 2
2
x
6 2
2
(x
5)
C. 82 x 62 (x 5)
22.化简求值:
a
1 a
a a
2 1
2a2 a2 2a
a
1
;其中
a2
a
1
0

23.如图,在 RtABC 中, C 90 . (1)尺规作图:作 RtABC 的外接圆 O ;作 ACB 的角平分线交 O 于点 D,连接
AD.(不写作法,保留作图痕迹)
(2)若 AC =6,BC =8,求 AD 的长.
表示第 n 个算式为________.
13.下面是某同学在一次测试中的计算:
① 3m2n 5mn2 2mn ;② 2a3b 2a2b 4a6b ;③ a3 2 a5 ;④ a3 (a) a2 ,
其中运算正确的个数为( )
A.4 个
B.3 个

2020青海省中考数学试题解析版

2020青海省中考数学试题解析版

青海省2020年初中毕业升学考试数学试卷一、填空题1.(-3+8)的相反数是________________.【答案】 (1). 5- (2). 2±【解析】【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2【详解】第1空:∵385-+=,则其相反数为:5-第2空:4=,则其平方根为:2±故答案为:5-,2±.【点睛】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.2.分解因式:2222ax ay -+=________;不等式组24030x x -⎧⎨-+>⎩的整数解为________. 【答案】 (1). 2()()a x y x y -+- (2). 2x =【解析】【分析】综合利用提取公因式法和公式法即可得;先分别求出两个不等式的解,再找出它们的公共部分得出不等式组的解集,由此即可得出答案.【详解】222222)2(ax ay a x y -+=--2()()a x y x y =-+-;24030x x -≥⎧⎨-+>⎩①② 解不等式①得2x ≥解不等式②得3x <则不等式组的解为23x ≤<因此,不等式组的整数解2x =故答案为:2()()a x y x y -+-,2x =.【点睛】本题考查了利用提取公因式法和公式法分解因式、求一元一次不等式组的整数解,熟练掌握因式分解的方法和一元一次不等式组的解法是解题关键.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为________米(1纳米910-=米)【答案】71.2510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据125纳米用科学记数法表示为:125×10-9米=1.25×10-7米. 故答案为:71.2510-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,将周长为8的ABC 沿BC 边向右平移2个单位,得到DEF ,则四边形ABFD 的周长为________.【答案】12【解析】【分析】先根据平移的性质可得,2AC DF CF AD ===,再根据三角形的周长公式可得8AB BC AC ++=,然后根据等量代换即可得.【详解】由平移的性质得:,2AC DF CF AD === ABC 的周长为88AB BC AC ∴++=则四边形ABFD 的周长为()AB BF DF AD AB BC CF AC AD +++=++++22AB BC AC =++++822=++12=故答案为:12.【点睛】本题考查了平移的性质等知识点,掌握理解平移的性质是解题关键.5.如图所示ΔABC 中,AB=AC=14cm,AB 的垂直平分线MN 交AC 于D,ΔDBC 的周长是24cm,则BC=___________cm .【答案】10【解析】【分析】由MN 是AB 的垂直平分线可得AD=BD ,于是将△BCD 的周长转化为BC 与边长AC 的和来解答.【详解】∵24cm DBC C =,∴BD+DC+BC=24cm ,∵MN 垂直平分AB ,∴AD=BD ,∴AD+DC+BC=24cm ,即AC+BC=24cm ,又∵AC=14cm ,∴BC=24-14=10cm .故答案为:10点睛:解答本题关键是熟练掌握垂直平分线的性质:垂直平分线上的点到线段两端的距离相等.此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用.6.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,已知120BOC ∠=︒,3cm DC =,则AC 的长为________cm .【答案】6cm【解析】【分析】根据矩形的性质可得对角线相等且平分,由120BOC ∠=︒可得30ACD ∠=︒,根据30所对直角边是斜边的一半即可得到结果.【详解】∵四边形ABCD 是矩形,∴90ABC DCB ∠=∠=︒,AC BD =,OA OA OB OD ===,AB DC =, ∵3cm DC =,∴3cm AB =,又∵120BOC ∠=︒,∴=30ACD OBC ∠∠=︒,∴在Rt △ABC 中,26AC AB cm ==.故答案为6cm .【点睛】本题主要考查了矩形的性质应用,准确利用直角三角形的性质是解题的关键.7.已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形.【答案】等腰三角形【解析】【分析】根据绝对值和平方的非负性可得到b 、c 的值,再根据式子解出a 的值,即可得出结果.【详解】∵2(2)30b c -+-=,∴20b -=,30c -=,∴2b =,3c =,又∵|4|2x -=,∴16x =,22x =,∵a 是方程的解且a ,b ,c 为ABC 的三边长,∴2a =,∴ABC 是等腰三角形.【点睛】本题主要考查了根据三角形三边判断三角形的性质,准确求解题中的式子是解题的关键. 8.在解一元二次方程20x bx c ++=时,小明看错了一次项系数b ,得到的解为12x =,23x =;小刚看错了常数项c ,得到的解为11x =,24x =.请你写出正确的一元二次方程_________.【答案】2560x x -+=【解析】【分析】根据题意列出二元一次方程组求解即可得出答案.【详解】解:将12x =,23x =代入一元二次方程20x bx c ++=得420930b c b c ++=⎧⎨++=⎩, 解得:56b c =-⎧⎨=⎩, ∵小明看错了一次项,∴c 的值为6,将11x =,24x =代入一元二次方程20x bx c ++=得101640b c b c ++=⎧⎨++=⎩, 解得:54b c =-⎧⎨=⎩, ∵小刚看错了常数项,∴b=-5,∴一元二次方程为2560x x -+=,故答案为:2560x x -+=.【点睛】本题考查了二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题关键.9.已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,//AB CD ,8cm AB =,6cm CD =,则AB 与CD 之间的距离为________cm .【答案】7或1.【解析】【分析】分两种情况考虑:当两条弦位于圆心O 同一侧时,当两条弦位于圆心O 两侧时;利用垂径定理和勾股定理分别求出OE 和OF 的长度,即可得到答案.【详解】解:分两种情况考虑:当两条弦位于圆心O 一侧时,如图1所示,过O 作OE ⊥CD ,交CD 于点E ,交AB 于点F ,连接OC ,OA ,∵AB ∥CD ,∴OE ⊥AB ,∴E 、F 分别为CD 、AB 的中点,∴CE=DE=12CD=3cm ,AF=BF=12AB=4cm , 在Rt △AOF 中,OA=5cm ,AF=4cm ,根据勾股定理得:OF=3cm ,在Rt △COE 中,OC=5cm ,CE=3cm ,根据勾股定理得:OE ═4cm ,则EF=OE -OF=4cm -3cm=1cm ;当两条弦位于圆心O 两侧时,如图2所示,同理可得EF=4cm+3cm=7cm ,综上,弦AB 与CD 的距离为7cm 或1cm .故答案为:7或1.【点睛】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键. 10.在ABC 中,90C ∠=︒,3AC =,4BC =,则ABC 的内切圆的半径为__________.【答案】1【解析】【详解】如图,设△ABC 的内切圆与各边相切于D ,E ,F ,连接OD ,OE ,OF ,则OE ⊥BC ,OF ⊥AB ,OD ⊥AC ,设半径为r ,CD=r ,∵∠C=90°,BC=4,AC=3,∴AB=5,∴BE=BF=4-r ,AF=AD=3-r ,∴4-r+3-r=5,∴r=1.∴△ABC 的内切圆的半径为 1.11.对于任意不相等的两个实数a ,b ( a > b )定义一种新运算a ※,如3※,那么12※4=______【解析】【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.12.观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n 个算式为________.【答案】 (1). 246524251⨯-=-=- (2).()()2211n n n ⨯+-+=- 【解析】【分析】(1)按照前三个算式的规律书写即可;(2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;【详解】(1)2132341⨯-=-=-,②2243891⨯-=-=-,③235415161⨯-=-=-,④246524251⨯-=-=-;故答案为246524251⨯-=-=-.(2)第n 个式子为:()()2211n n n ⨯+-+=-. 故答案为()()2211n n n ⨯+-+=-.【点睛】本题主要考查了规律性数字变化类知识点,准确分析是做题的关键.二、选择题13.下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②()326224a b a b a b ⋅-=-;③()235a a =;④()32()a a a -÷-=,其中运算正确的个数为( )A. 4个B. 3个C. 2个D. 1个【答案】D【解析】【分析】根据整式的减法、整式的乘除法、幂的乘方逐个判断即可.【详解】23m n 与25mn 不是同类项,不可合并,则①错误 ()332251122244a b a b a b a b ++⋅-=-=-,则②错误 ()23326a a a ⨯==,则③错误 ()33312()a a a a a a -÷=-÷-==,则④正确综上,运算正确的个数为1个故选:D .【点睛】本题考查了整式的减法、整式的乘除法、幂的乘方,熟记整式的运算法则是解题关键. 14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或70°,55°C. 70°,40°D. 55°,55°或70°,40° 【答案】D【解析】分析】 先根据等腰三角形的定义,分70︒的内角为顶角和70︒的内角为底角两种情况,再分别根据三角形的内角和定理即可得.【详解】(1)当70︒的内角为这个等腰三角形的顶角则另外两个内角均为底角,它们的度数为18070552︒-︒=︒ (2)当70︒的内角为这个等腰三角形的底角则另两个内角一个为底角,一个为顶角底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D .【点睛】本题考查了等腰三角形的定义、三角形的内角和定理,根据等腰三角形的定义,正确分两种情况讨论是解题关键.15.根据图中给出的信息,可得正确的方程是( )A. 2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B. 2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C. 2286(5)x x ππ⨯=⨯⨯+D. 22865x ππ⨯=⨯⨯ 【答案】A【解析】【分析】 根据题意可得相等关系的量为“水的体积”,然后利用圆柱体积公式列出方程即可.【详解】解:大量筒中的水的体积为:282x π⎛⎫⨯ ⎪⎝⎭,小量筒中的水的体积为:26(5)2x π⎛⎫⨯⨯+ ⎪⎝⎭,则可列方程为:2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭.故选A.【点睛】本题主要考查列方程,解此题的关键在于准确找到题中相等关系的量,然后利用圆柱的体积公式列出方程即可.16.将一张四条边都相等的四边形纸片按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应是()A. B. C. D.【答案】A【解析】【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.【点睛】本题主要考查学生的动手能力及空间想象能力.17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟共有()A. 4个B. 8个C. 12个D. 17个【答案】C【解析】【分析】先根据俯视图得出碟子共有3摞,再根据主视图和俯视图得出每摞上碟子的个数,由此即可得.【详解】由俯视图可知,碟子共有3摞由主视图和左视图可知,这个桌子上碟子的摆放为4,35,0,其中,数字表示每摞上碟子的个数则这个桌子上的碟共有43512++=(个)故选:C . 【点睛】本题考查了由三视图判断几何体的组成,掌握理解3种视图的定义是解题关键.18.若0ab <,则正比例函数y ax =与反比例函数b y x=在同一平面直角坐标系中的大致图像可能是( ) A. B. C. D.【答案】B【解析】【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.【详解】A. 由图象可知:0,0a b >>,故A 错误;B. 由图象可知:0,0a b <>,故B 正确;C. 由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D. 由图象可知:0,0a b <<,故D 错误;故选:B .【点睛】本题考查了根据已知参数的取值范围确定函数的大致图象的问题,熟知参数对于函数图象的影响是解题的关键.19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )A. 3.6B. 1.8C. 3D. 6 【答案】A【解析】【分析】先计算阴影部分的圆心角度数,再计算阴影部分的弧长,再利用弧长计算圆锥底面的半径.【详解】由图知:阴影部分的圆心角的度数为:360°-252°=108° 阴影部分的弧长为:1081236=1805ππ⋅ 设阴影部分构成的圆锥的底面半径为r :则3625r ππ=,即18 3.65r == 故选:A .【点睛】本题考查了扇形的弧长与其构成的圆锥之间的对应关系,熟练的把握这一对应关系是解题的关键.20.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )A. B.C. D.【答案】B【解析】【分析】用排除法可直接得出答案.【详解】圆柱形小水杯事先盛有部分水,起点处小水杯内水面的高度(cm)h 必然是大于0的,用排除法可以排除掉A 、D ;注水管沿大容器内壁匀速注水,在大容器内水面高度到达h 之前,小水杯中水边高度保持不变,大容器内水面高度到达h 后,水匀速从大容器流入小容器,小容器水面高度匀速上升,达到最大高度h 后,小容器内盛满了,水面高度一直保持h 不变,因此可以排除C ,正确答案选B.考点:1.函数;2.数形结合;3.排除法.三、解答题21.计算:101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭3|11|13=++-3113=+-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.22.化简求值:22122121a a a a aa a a ---⎛⎫-÷ ⎪+++⎝⎭;其中210a a --=. 【答案】21a a +,1 【解析】【分析】括号内先通分,合并同类项,括号外进行因式分解,之后变除为乘进行约分,之后利用21a a =+代入计算即可. 【详解】22122121a a a a aa a a ---⎛⎫-÷ ⎪+++⎝⎭ 2(1)(1)(2)(21)(+1)(1)a a a a a a a a a -+---=÷+ 221(1)(+1)(21)a a a a a a -+=⋅-21a a += ∵210a a --=∴21a a =+∴原式=111a a +=+. 【点睛】本题考查了分式的化简,及整体代入求值的应用,熟知以上计算是解题的关键.23.如图,Rt ABC 中,90C ∠=︒.(1)尺规作图:作Rt ABC 的外接圆O ;作ACB ∠的角平分线交O 于点D ,连接AD .(不写作法,保留作图痕迹)(2)若AC =6,BC =8,求AD 的长.【答案】(1)见解析;(2)52【解析】【分析】(1)根据外接圆,角平分线的作法作图即可;(2)连接AD ,OD ,根据CD 平分ACB ∠,得45ACD ∠=°,根据圆周角与圆心角的关系得到90AOD ∠=°,在Rt ACB 中计算AB ,在Rt AOD △中,计算AD .【详解】(1)作图如下:(2)连接AD ,OD ,如图所示由(1)知:CD 平分ACB ∠,且90ACB ∠=°∴1452ACD ACB ∠=∠=° ∴290AOD ACB ∠=∠=°在Rt ACB 中,6,8AC BC ==,∴10AB =,即5AO OD ==在Rt AOD △中,2252AD AO OD =+=【点睛】本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系,及勾股定理计算线段长度的方法,熟知以上方法是解题的关键.24.某市为了加快5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔高度,从地面上的一点A 测得发射塔顶端P 点的仰角是45°,向前走60米到达B 点测得P 点的仰角是60°,测得发射塔底部Q 点的仰角是30°.请你帮小军计算出信号发射塔PQ 的高度.(结果精确到0.1 米,3 1.732≈)【答案】94.6米【解析】【分析】先根据题意得出AC=PC ,BQ=PQ ,CQ=12BQ ,设BQ=PQ=x ,则CQ=12BQ=12x ,根据勾股定理可得BC=32x ,根据AB+BC=PQ+QC 即可得出关于x 的方程求解即可. 【详解】∵∠PAC=45°,∠PCA=90°,∴AC=PC ,∵∠PBC=60°,∠QBC=30°,∠PCA=90°,∴∠BPQ=∠PBQ=30°,∴BQ=PQ ,CQ=12BQ , 设BQ=PQ=x ,则CQ=12BQ=12x , 根据勾股定理可得BC=22BQ CQ -=3x , ∴AB+BC=PQ+QC即60+3x=x+12x 解得:x=60+203=60+20×1.732=94.64≈94.6,∴PQ 的高度为94.6米.【点睛】本题考查了等腰三角形的性质,勾股定理,含30度角的直角三角形的性质,找出等量关系是解题关键.25.如图,已知AB 是O 的直径,直线BC 与O 相切于点B ,过点A 作AD//OC 交O 于点D ,连接CD . (1)求证:CD 是O 的切线.(2)若4=AD ,直径12AB =,求线段BC 的长.【答案】(1)证明见解析;(2)【解析】【分析】(1)如图(见解析),先根据等腰三角形的性质可得DAO ADO ∠=∠,又根据平行线的性质可得,DAO BOC ADO DOC ∠=∠∠=∠,从而可得BOC DOC ∠=∠,再根据圆的切线的性质可得90OBC ∠=︒,然后根据三角形全等的判定定理与性质可得90ODC OBC ∠=∠=︒,最后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理得出90ADB ∠=︒,再根据勾股定理可得BD 的长,然后根据相似三角形的判定与性质即可得.【详解】(1)如图,连接OD ,则OA OB OD ==DAO ADO ∴∠=∠//AD OC,DAO BOC ADO DOC ∴∠=∠∠=∠BOC DOC ∴∠=∠直线BC 与O 相切于点B90OBC ∴∠=︒在COD △和COB △中,OD OB DOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩()COD COB SAS ∴≅90ODC OBC ∴∠=∠=︒又OC 是O 的半径CD ∴是O 的切线;(2)如图,连接BD由圆周角定理得:90ADB ∠=︒4AD =,12AB =BD ∴==1112622OB AB ==⨯= 在OCB 和ABD △中,90BOC DAB OBC ADB ∠=∠⎧⎨∠=∠=︒⎩OCB ABD ∴~OB BC AD BD ∴=,即64=解得122BC .【点睛】本题考查了圆周角定理、圆的切线的判定与性质、三角形全等的判定定理与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.【答案】(1)500,108°;(2)见解析;(3)1500名;(4)12.【解析】【分析】(1)由条形统计图和扇形统计图得到良好的人数及其所对应的百分比,即可得到该校八年级总人数;通过计算优秀人员所占比例,即可得到其所对的圆心角;(2)计算出等级“一般”的学生人数,补充图形即可;(3)用该校八年级成绩及格的比例乘以该市的学生人数即可;(4)画出树状图,根据概率公式求概率即可.【详解】(1)由条形统计图知:等级“良好”的人数为:200名由扇形统计图知:等级“良好”的所占的比例为:40%则该校八年级总人数为:20040%500÷=(名)由条形统计图知:等级“优秀”的人数为:150名其站该校八年级总人数的比例为:15050030%÷=所以其所对的圆心角为:36030%108︒︒⨯=故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名)补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010%500= 故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:61122=. 【点睛】本题考查了统计与概率的综合,熟知以上知识是解题的关键.27.在ABC 中,AB AC =,CG BA ⊥交BA 的延长线于点G .特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 重合,另一条直角边恰好经过点B .通过观察、测量BF 与CG 的长度,得到BF CG =.请给予证明.猜想论证:(2)当三角尺沿AC 方向移动到图2所示的位置时,一条直角边仍与AC 边重合,另一条直角边交BC 于点D ,过点D 作DE BA ⊥垂足为E .此时请你通过观察、测量DE ,DF 与CG 的长度,猜想并写出DE 、DF 与CG 之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC 方向继续移动到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【答案】(1)证明见详解;(2)DE+DF=CG ,证明见详解;(3)成立.【解析】【分析】(1)通过条件证明△BFC ≌△CGB ,即可得到BF CG =;(2)过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,通过△BMC ≌△CGB ,得到BM=CG ,然后由四边形MHDF 为矩形,MH=DF ,最后再证明△BDH ≌△DBE ,得到BH=DE ,即可得到结论; (3)同(2)中的方法.【详解】(1)∵AB AC =,∴∠ABC=∠ACB ,在△BFC 和△CGB 中,90=F G FCB GBC BC CB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BFC ≌△CGB ,∴BF CG =(2)DE+DF=CG ,如图,过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,∵AB AC =,∴∠ABC=∠ACB ,在△BMC 和△CGB 中,90=M G FCB GBC BC CB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BMC ≌△CGB ,∴BM=CG ,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF 为矩形,∴MH=DF ,DH ∥MF ,∴∠HDB=∠MCB ,∴∠HDB=∠ABC ,在△BDH 和△DBE 中,BD DB =⎩∴△BDH ≌△DBE ,∴BH=DE ,∵BM=CG ,BM=BH+HM ,∴DE+DF=CG ,(3)成立,如图,过点B 作BM ⊥CF 交CF 延长线于M ,过点D 作DH ⊥BM 于H ,同(2)中的方法∵AB AC =,∴∠ABC=∠ACB ,在△BMC 和△CGB 中,90=M G FCB GBC BC CB ∠=∠=︒⎧⎪∠∠⎨⎪=⎩∴△BMC ≌△CGB ,∴BM=CG ,由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,∴四边形MHDF 为矩形,∴MH=DF ,DH ∥MF ,∴∠HDB=∠MCB ,∴∠HDB=∠ABC ,在△BDH 和△DBE 中,BD DB =⎩∴△BDH ≌△DBE ,∴BH=DE ,∵BM=CG ,BM=BH+HM ,∴DE+DF=CG .【点睛】本题考查了全等三角形的性质和判定,属于几何动态问题,能够正确的构造辅助线找到全等三角形是解题的关键.28.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【答案】(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】 (1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩,解得:132b c =⎧⎪⎨=⎪⎩,∴抛物线的解析式为21322y x x =-++;(2)∵22131(1)2222y x x x =-++=--+,∴点M 的坐标为(1,2)令213022x x -++=,解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =,∴点C 为(0,32);∴OA=1,OC=32,过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =, ∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =, ∴点13(2,)2P ; ②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32, ∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.。

2020年青海省中考数学试卷(含详细解析)

2020年青海省中考数学试卷(含详细解析)
评卷人
得分
三、解答题
21.计算:
22.化简求值: ;其中 .
23.如图,在 中, .
(1)尺规作图:作 的外接圆 ;作 的角平分线交 于点D,连接AD.(不写作法,保留作图痕迹)
(2)若AC =6,BC =8,求AD的长.
24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米, )
保密★启用前
2020年青海省中考数学试卷
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.下面是某同学在一次测试中的计算:
① ;② ;③ ;④ ,其中运算正确的个数为()
A.4个B.3个C.2个D.1个
2.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()
A. B. C. D.
5.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟共有()
A.4个B.8个C.12个D.17个
6.若 ,则正比例函数 与反比例函数 在同一平面直角如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()
18.在 中, , , ,则 的内切圆的半径为__________.
19.对于任意不相等的两个实数a,b(a > b)定义一种新运算a※b= ,如3※2= ,那么12※4=______

2020年青海省中考数学试卷及答案

2020年青海省中考数学试卷及答案

2020年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分) 1.﹣5的绝对值是 ;278的立方根是 .2.分解因式:ma 2﹣6ma+9m = ;分式方程3x−3=2x的解为 .3.世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为 米.4.某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为 .5.如图,P 是反比例函数y =kx 图象上的一点,过点P 向x 轴作垂线交于点A ,连接OP .若图中阴影部分的面积是1,则此反比例函数的解析式为 .6.如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O 逆时针方向旋转180°后得到△CDO ,则点C 的坐标是 .7.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则CD 的长为 米.(结果保留根号)8.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是 .9.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆 的动力臂AC 与阻力臂BC 之比为5:1,要使这块石头滚动,至少要将杠杆的A 端向下压 cm .10.根据如图所示的程序,计算y 的值,若输入x 的值是1时,则输出的y 值等于 .11.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .12.如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有 个菱形……,第n 个图中共有 个菱形.二、单项选择题(本大题共8小题,每小题3分,共24分) 13.下面几何体中,俯视图为三角形的是( )A .B .C .D .14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( ) A .15°B .22.5°C .30°D .45°15.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为( ) A .10g ,40gB .15g ,35gC .20g ,30gD .30g ,20g16.为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为( ) 每周做家务的时间(h ) 011.522.533.54人数(人) 2268121343A .2.5和2.5B .2.25和3C .2.5和3D .10和1317.如图,小莉从A 点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A 时,一共走的路程是( ) A .150米B .160米C .180米D .200米18.如图,AD ∥BE ∥CF ,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知AB =1,BC =3,DE =1.2,则DF 的长为( ) A .3.6B .4.8C .5D .5,219.如图,在扇形AOB 中,AC 为弦,∠AOB =140°,∠CAO =60°,OA =6,则BC ̂的长为( ) A .4π3B .8π3C .2√3πD .2π20.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x ,水位高度变量为y ,下列图象中最符合故事情景的大致图象是( )A .B .C .D .三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分) 21.(5分)计算:(√49−1)0+(−13)﹣1+|√2−1|﹣2cos45°22.(5分)化简求值:(3m+2+m ﹣2)÷m 2−2m+1m+2;其中m =√2+123.(8分)如图,在△ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F ,连接CF .(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162 吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉 制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元, 一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD于点E.(1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=23,求⊙O的半径.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=√14[a2b2−(a2+b2−c22)2]①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=a+b+c2(周长的一半),则S=√p(p−a)(p−b)(p−c)②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=a+b+c2,S为三角形面积,则S=pr.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)2020年青海省中考数学试卷答案1. 5,32.2. m (a ﹣3)2;x =﹣6 3. 6×10﹣94. 10%. 5. 12. 6.(﹣3,﹣2).7. 4√3−4.8. 14.9. 50.10.﹣2.11. 112. 13,(3n ﹣2).13. D .14. A .15. C .16. C .17. C .18. B .19. B .20. D . 21.解:原式=1﹣3+√2−1﹣2×√22=1﹣3+√2−1−√2=﹣3.22.解:原式=(3m+2+m 2−4m+2)÷(m−1)2m+2=(m+1)(m−1)m+2•m+2(m−1) =m+1m−1,当m =√2+1时, 原式=√2+1+1√2+1−1=√2+1.23.证明:(1)∵AF ∥BC , ∴∠AFE =∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点, ∴AE =DE ,BD =CD 在△AFE 和△DBE 中, {∠AFE =∠DBE ∠AEF =∠BED AE =DE, ∴△AFE ≌△DBE (AAS )(2)由(1)知,AF =BD ,且BD =CD , ∴AF =CD ,且AF ∥BC , ∴四边形ADCF 是平行四边形 ∵∠BAC =90°,D 是BC 的中点, ∴AD =12BC =CD , ∴四边形ADCF 是菱形.24.解:(1)设安排x 辆大型车,则安排(30﹣x )辆中型车, 依题意,得:{8x +3(30−x)≤1905x +6(30−x)≤162,解得:18≤x ≤20.∵x 为整数, ∴x =18,19,20.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(2)方案1所需费用为:900×18+600×12=23400(元), 方案2所需费用为:900×19+600×11=23700(元), 方案3所需费用为:900×20+600×10=24000(元). ∵23400<23700<24000,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元. 25.(1)证明:连接OA ,如图,∵点C 、D 分别是半径OB 、弦AB 的中点,∵DC ∥OA ,即EC ∥OA , ∵AE ⊥CD , ∴AE ⊥AO , ∴AE 是⊙O 的切线; (2)解:连接OD ,如图, ∵AD =CD , ∴OD ⊥AB , ∴∠ODA =90°,在Rt △AED 中,sin ∠ADE =AEAD =23, ∴AD =3, ∵CD ∥OA , ∴∠OAD =∠ADE .在Rt △OAD 中,sin ∠OAD =23, 设OD =2x ,则OA =3x , ∴AD =√(3x)2−(2x)2=√5x , 即√5x =3,解得x =3√55, ∴OA =3x =9√55,即⊙O 的半径长为9√55.26.解:(1)这次随机抽取的献血者人数为5÷10%=50(人), 所以m =1050×100=20; 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人),血型 A B AB O 人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1250=625, 1300×625=312,估计这1300人中大约有312人是A 型血; (4)画树状图如图所示,所以P (两个O 型)=212=16.27.解:(1)由①得:S =√14[52×72−(52+72−822)2]=10√3,由②得:p =5+7+82=10,S =√=10√3; (2)公式①和②等价;推导过程如下: ∵p =a+b+c 2,∴2p =a+b+c ,①中根号内的式子可化为:14(ab +a 2+b 2−c 22)(ab −a 2+b 2−c 22)=116(2ab+a 2+b 2﹣c 2)(2ab ﹣a 2﹣b 2+c 2) =116[(a+b )2﹣c 2][c 2﹣(a ﹣b )2]=116(a+b+c )(a+b ﹣c )(c+a ﹣b )(c ﹣a+b ) =116×2p ×(2p ﹣2c )(2p ﹣2b )(2p ﹣2a )=p (p ﹣a )(p ﹣b )(p ﹣c ), ∴√14[a 2b 2−(a 2+b 2−c 22)2]=√p(p −a)(p −b)(p −c);(3)连接OA 、OB 、OC ,如图所示: S =S △AOB +S △AOC +S △BOC =12rc +12rb +12ra =(a+b+c 2)r =pr .28.解:(1)将点A 、B 的坐标代入二次函数表达式得:y =a (x ﹣1)(x ﹣5)=a (x 2﹣6x+5),则5a =4,解得:a =45,抛物线的表达式为:y =45(x 2﹣6x+5)=45x 2−245x+4,函数的对称轴为:x =3,顶点坐标为(3,−165);(2)连接B 、C 交对称轴于点P ,此时PA+PC 的值为最小,将点B 、C 的坐标代入一次函数表达式:y =kx+b 得:{0=5k +bb =4,解得:{k =−45b =4,直线BC 的表达式为:y =−45x+4, 当x =3时,y =85, 故点P (3,85); (3)存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则S 四边形OEBF =OB ×y E =5×y E =12, 则y E =125,将该坐标代入二次函数表达式得:y =45(x 2﹣6x+5)=125,解得:x =3±√7,故点E 的坐标为(3−√7,125)或(3+√7,125).。

2020年青海省中考数学试卷含答案解析(word版)

2020年青海省中考数学试卷含答案解析(word版)

2020年青海省中考数学试卷一、填空题(本大题共12小题,每空2分,共30分)1.﹣3的相反数是;的立方根是.2.分解因式:2a2b﹣8b=,计算:8x6÷4x2=.3.据科学计算,我国广阔的陆地每年从太阳得到的能量相当于燃烧1248000000000000千克的煤所产生的能量,该数字用科学记数法表示为千克.4.函数y=的自变量x的取值范围是.5.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.6.如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=.7.如图,直线y=x与双曲线y=在第一象限的交点为A(2,m),则k=.8.如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).9.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为,则y与x之间的关系式是.10.如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=.11.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=.12.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=,一般地,用含有m,n的代数式表示y,即y=.二、选择题(本大题共8小题,每小题3分,共24分)13.下列运算正确的是()A.a3+a2=2a5 B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b214.以下图形中对称轴的数量小于3的是()A.B. C.D.15.不等式组的解集在数轴上表示正确的是()A.B.C.D.16.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.1217.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数 B.方差 C.平均数D.中位数18.穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4 B.=4C.=4 D.=419.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.20.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.计算:﹣32+6cos45°﹣+|﹣3|22.先化简,后求值:(x﹣)÷,其中x=2.23.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)25.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.26.我省某地区为了了解2020年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2020年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).28.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).2020年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题,每空2分,共30分)1.﹣3的相反数是3;的立方根是.【考点】立方根;相反数.【分析】根据求一个数的相反数的方法就是在这个数的前边添加“﹣”,以及求一个数的立方根的方法求解即可.【解答】解:﹣3的相反数是3;∵=,∴的立方根是.故答案为:3、.2.分解因式:2a2b﹣8b=2b(a+2)(a﹣2),计算:8x6÷4x2=2x4.【考点】整式的除法;提公因式法与公式法的综合运用.【分析】通过提取公因式法进行因式分解;单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.【解答】解:2a2b﹣8b=2b(a+2)(a﹣2);8x6÷4x2=2x4.故答案是:2b(a+2)(a﹣2);2x4.3.据科学计算,我国广阔的陆地每年从太阳得到的能量相当于燃烧1248000000000000千克的煤所产生的能量,该数字用科学记数法表示为 1.248×1015千克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1248000000000000用科学记数法表示为1.248×1015.故答案为:1.248×1015.4.函数y=的自变量x的取值范围是﹣3≤x<2或x>2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:函数y=有意义,得.解得﹣3≤x<2或x>2,故答案为:﹣3≤x<2或x>2.5.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=65°.【考点】平行线的性质.【分析】先根据平行线的性质得∠ABC+∠BCD=180°,根据对顶角相等得∠ABC=∠1=50°,则∠BCD=130°,再利用角平分线定义得到∠ACD=∠BCD=65°,然后根据平行线的性质得到∠2的度数.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,而∠ABC=∠1=50°,∴∠BCD=130°,∵CA平分∠BCD,∴∠ACD=∠BCD=65°,∵AB∥CD,∴∠2=∠ACD=65°.故答案为65°.6.如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=38°.【考点】三角形的外角性质;平行线的性质.【分析】先用平行线求出∠EAD,再用角平分线求出∠EAC,最后用邻补角求出∠BAC.【解答】解:∵AD∥BC,∠B=71°,∴∠EAD=∠B=71°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×71°=142°,∴∠BAC=38°,故答案为38°.7.如图,直线y=x与双曲线y=在第一象限的交点为A(2,m),则k=2.【考点】反比例函数与一次函数的交点问题.【分析】先把A(2,m)代入直线y=x得出m的值,故可得出A点坐标,再代入双曲线y=,求出k的值即可.【解答】解:∵直线y=x与双曲线y=在第一象限的交点为A(2,m),∴m=×2=1,∴A(2,1),∴k=xy=2×1=2.故答案为:2.8.如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为500πcm2(结果保留π).【考点】扇形面积的计算;旋转的性质.【分析】易证三角形AOC与三角形A′OC′全等,故刮雨刷AC扫过的面积等于扇形AOA′的面积减去扇形COC′的面积.【解答】解:∵OA=OA′,OC=OC′,AC=A′C′∴△AOC≌△A′OC′∴刮雨刷AC扫过的面积=扇形AOA′的面积﹣扇形COC′的面积=×π=500π(cm2),故答案为:500π.9.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为,则y与x之间的关系式是y=3x+5.【考点】概率公式.【分析】根据从盒子中随机取出一颗白棋子的概率为列出关系式,进而可得y与x之间的关系式.【解答】解:由题意,得=,化简,得y=3x+5.故答案为y=3x+5.10.如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=40°.【考点】圆周角定理.【分析】根据直径所对的圆周角为直角求出∠ACB=90°,得到∠B的度数,根据同弧所对的圆周角相等得到答案.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,又∠CAB=50°,∴∠ABC=40°,∴∠ADC=∠ABC=40°,故答案为:40°.11.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH= 4.8.【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故答案为:4.8.12.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=63,一般地,用含有m,n的代数式表示y,即y=m(n+1).【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.【解答】解:观察,发现规律:3=1×(2+1),15=3×(4+1),35=5×(6+1),∴x=7×(8+1)=63,y=m(n+1).故答案为:63;m(n+1).二、选择题(本大题共8小题,每小题3分,共24分)13.下列运算正确的是()A.a3+a2=2a5 B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b2【考点】整式的混合运算.【分析】直接利用合并同类项、积的乘方与幂的乘方的性质与整式乘法的知识求解即可求得答案.【解答】解:A、a3+a2,不能合并;故本选项错误;B、(﹣ab2)3=﹣a3b6,故本选项错误;C、2a(1﹣a)=2a﹣2a2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.14.以下图形中对称轴的数量小于3的是()A.B. C.D.【考点】轴对称图形.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.15.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据解一元一次不等式组的方法可以求出原不等式组的解集,从而可以解答本题.【解答】解:由①,得x>﹣3,由②,得x≤2,故原不等式组的解集是﹣3<x≤2,故选C.16.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.12【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】用因式分解法可以求出方程的两个根分别是4和2,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0(x﹣4)(x﹣2)=0∴x1=4,x2=2,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:4+4+2=10.故选:B.17.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】统计量的选择.【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选D.18.穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4 B.=4C.=4 D.=4【考点】由实际问题抽象出分式方程.【分析】设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据“乘坐高铁列车比乘坐普通快车能提前4h到达”可列方程.【解答】解:设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据题意,可得:﹣=4,故选:B.19.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.【解答】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.20.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【考点】勾股定理.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.计算:﹣32+6cos45°﹣+|﹣3|【考点】实数的运算;特殊角的三角函数值.【分析】本题涉及负指数幂、二次根式化简、绝对值、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣9+6×﹣2+3﹣=﹣9+3﹣2+3﹣=﹣6.22.先化简,后求值:(x﹣)÷,其中x=2.【考点】分式的化简求值.【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【解答】解:原式=×=×=,当x=2+时,原式===.23.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【考点】解直角三角形的应用.【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m25.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.【考点】圆的综合题.【分析】(1)由切线的性质得出∠BME+∠OMB=90°,再由直径得出∠AMB=90°,利用同角的余角相等判断出结论;(2)由(1)得出的结论和直角,判断出△BME∽△BAM,即可得出结论,(3)先在Rt△BEM中,用三角函数求出BM,再在Rt△ABM中,用三角函数和勾股定理计算即可.【解答】解:(1)如图,连接OM,∵直线CD切⊙O于点M,∴∠OMD=90°,∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°.∴∠AMO+∠OMB=90°,∴∠BME=∠AMO,∵OA=OM,∴∠MAB=∠AMO,∴∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∵BE⊥CD,∴∠BEM=∠AMB=90°,∴△BME∽△BAM,∴,∴BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∵sin∠BAM=,∴sin∠BME=,在Rt△BEM中,BE=,∴sin∠BME==,∴BM=6,在Rt△ABM中,sin∠BAM=,∴sin∠BAM==,∴AB=BM=10,根据勾股定理得,AM=8.26.我省某地区为了了解2020年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了200名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2020年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据统计图可以得到本次调查的九年级学生数;(2)根据题目中的数据可以得到统计图中未知的数据,从而可以解答本题;(3)根据统计图中的数据可以估计该地区今年初中毕业生中读普通高中的学生人数;(4)根据题意可以画出相应的树状图,从而可以求得选中甲同学的概率.【解答】解:(1)该地区调查的九年级学生数为:110÷55%=200,故答案为:200;(2)B去向的学生有:200﹣110﹣16﹣4=70(人),C去向所占的百分比为:16÷200×100%=8%,补全的统计图如右图所示,(3)该地区今年初中毕业生中读普通高中的学生有:3500×55%=1925(人),即该地区今年初中毕业生中读普通高中的学生有1925人;(4)由题意可得,P(甲)=,即选中甲同学的概率是.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=72°(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).【考点】四边形综合题.【分析】(1)根据等边三角形证明AB=AD,AC=AE,再利用等式性质得∠DAC=∠BAE,根据SAS得出△ABE≌△ADC;(2)根据正方形性质证明△ABE≌△ADC,得∠BEA=∠DCA,再由正方形ACEG的内角∠EAC=90°和三角形外角和定理得∠BOC=90°;(3)根据正五边形的性质证明:△ADC≌△ABM,再计算五边形每一个内角的度数为108°,由三角形外角定理求出∠BOC=72°;(4)根据正n边形的性质证明:△ADC≌△ABM,再计算n边形每一个内角的度数为180°﹣,由三角形外角定理求出∠BOC=.【解答】证明:(1)如图1,∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,∴△ABE≌△ADC;(2)如图2,∠BOC=90°,理由是:∵四边形ABFD和四边形ACGE都是正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,∴∠BAE=∠DAC,∴△ADC≌△ABE,∴∠BEA=∠DCA,∵∠EAC=90°,∴∠AMC+∠DCA=90°,∵∠BOC=∠OME+∠BEA=∠AMC+∠DCA,∴∠BOC=90°;(3)如图3,同理得:△ADC≌△ABM,∴∠BME=∠DCA,∵∠BOC=∠BME+∠OEM=∠DCA+∠AEC,∵正五边形ACIGM,∴∠EAC=180°﹣=108°,∴∠DCA+∠AEC=72°,∴∠BOC=72°;故答案为:72°;(4)如图4,∠BOC的度数为,理由是:同理得:△ADC≌△ABM,∴∠BME=∠DCA,∵∠BOC=∠BME+∠OEM=∠DCA+∠AEC,∵正n边形AC…M,∴∠EAC=180°﹣,∴∠DCA+∠AEC=180°﹣°∴∠BOC=.28.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).【考点】二次函数综合题.【分析】(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式;﹣S△CDM﹣S△AOC,列式计(2)由解析式先求得点D、C坐标,再根据S△ACD=S梯形AOMD算即可;(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、E对称,则AP=EP,AQ=EQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等的性质可用t表示E点坐标,又E在E函数上,所以代入即可求t,进而E可表示.【解答】解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得:,∴y=x2﹣x﹣4;(2)过点D作DM⊥y轴于点M,∵y=x2﹣x﹣4=(x﹣1)2﹣,∴点D(1,﹣)、点C(0,﹣4),﹣S△CDM﹣S△AOC则S△ACD=S梯形AOMD=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由如下如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,∵AP=AQ=t,AP=EP,AQ=EQ∴AP=AQ=QE=EP,∴四边形AQEP为菱形,∵FQ∥OC,∴==,∴==∴AF=t,FQ=t•∴Q(3﹣t,﹣t),∵EQ=AP=t,∴E(3﹣t﹣t,﹣t),∵E在二次函数y=x2﹣x﹣4上,∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴E(﹣,﹣).2020年8月25日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年青海省中考数学试卷一、填空题(每空2分,共30分).1.(﹣3+8)的相反数是;的平方根是.2.分解因式:﹣2ax2+2ay2=;不等式组的整数解为.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为米.(1纳米=10﹣9米)4.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为.5.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN 交AC于点D ,且△DBC的周长是24cm,则BC=cm.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为cm.7.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为三角形.8.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程.9.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.10.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.11.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=,如:3⊕2==,那么12⊕4=.12.观察下列各式的规律:.①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式.用含有字母的式子表示第n个算式为.二、单项选择题(本大题共8小题,每小题3分,共24分)13.下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°15.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5) B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5) D.π×82x=π×62×516.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个18.若ab<0,则正比例函数y=ax与反比例函数y =在同一平面直角坐标系中的大致图象可能是()A .B .C .D .19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6 B.1.8 C.3 D.620.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A .B .C .D .三、(本大题共3小题,第21题5分,第22题5分,第23题8分,共18分).21.计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣.22.化简求值:(﹣)÷;其中a2﹣a﹣1=0.23.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分).24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732)25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有名学生,“优秀”所占圆心角的度数为.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F 与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)28.如图1(注:与图2完全相同)所示,抛物线y =﹣+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)2020年青海省中考数学试卷答案一、填空题(本大题共12小题15空,每空2分,共30分).1.(﹣3+8)的相反数是﹣5 ;的平方根是±2 .解:﹣3+8=5,5的相反数是﹣5;=4,4的平方根是±2.故答案为:﹣5;±2.2.分解因式:﹣2ax2+2ay2=﹣2a(x﹣y)(x+y);不等式组的整数解为 2 .解:﹣2ax2+2ay2=﹣2a(x2﹣y2)=﹣2a(x﹣y)(x+y);,解①得:x≥2,解②得:x<3,∴整数解为:2.故答案为:﹣2a(x﹣y)(x+y);2.3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 1.25×10﹣7米.(1纳米=10﹣9米)解:125纳米=125×10﹣9米=1.25×10﹣7米.故答案为:1.25×10﹣7.4.如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为12 .解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.故答案为12.5.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=10 cm.解:∵C△DBC=24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24﹣14=10cm.故填10.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为 6 cm.解:在矩形ABCD中,∴OB=OC,∴∠OCB=∠OBC,∵∠BOC=120°,∴∠OCB=30°,∵DC=3,∴AB=CD=3,在Rt△ACB中,AC=2AB=6,故答案为:67.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC 的形状为等腰三角形.解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b =2,c=3,∵a为方程|a﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.8.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程x2﹣5x+6=0 .解:根据题意得2×3=c,1+4=﹣b,解得b=﹣5,c=6,所以正确的一元二次方程为x2﹣5x+6=0.故答案为x2﹣5x+6=0.9.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7 cm.解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4,CF=DF=CD=3,在Rt△OAE中,OE==3,在Rt△OCF中,OF==4,当点O在AB与CD之间时,EF=OF+OE=4+3=7;当点O不在AB与CD之间时,EF=OF﹣OE=4﹣3=1;综上所述,AB与CD之间的距离为1或7cm.故答案为1或7.10.如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r= 1 .解:在△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理,得AB=5,如图,设△ABC的内切圆与三条边的切点分别为D、E、F,连接OD、OE、OF,∴OD⊥AB,OE⊥BC,OF⊥AC,可得矩形EOFC,根据切线长定理,得CE=CF,∴矩形EOFC是正方形,∴CE=CF=r,∴AF=AD=AC﹣FC=3﹣r,BE=BD=BC﹣CE=4﹣r,∵AD+BD=AB,∴3﹣r+4﹣r=5,解得r=1.则△ABC的内切圆半径r=1.故答案为:1.11.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.12.观察下列各式的规律:.①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n个算式为n×(n+2)﹣(n+1)2=﹣1 .解:④4×6﹣52=24﹣25=﹣1.第n个算式为:n×(n+2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n×(n+2)﹣(n+1)2=﹣1.13.下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个解:①3m2n与5mn2不是同类项,不能合并,计算错误;②2a3b•(﹣2a2b)=﹣4a5b,计算错误;③(a3)2=a3×2=a6,计算错误;④(﹣a3)÷(﹣a)=(﹣a)3﹣1=a2,计算正确;故选:D.14.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.15.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×5解:依题意,得:π×()2x=π×()2×(x+5).故选:B.16.剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.17.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.18.若ab<0,则正比例函数y=ax与反比例函数y =在同一平面直角坐标系中的大致图象可能是()A .B .C .D .解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数y =图象在第二、四象限,故B选项正确;(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y =图象在第一、三象限,无选项符合.故选:B.19.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6 B.1.8 C.3 D.6解:设这个圆锥的底面半径为r,根据题意得2πr =,解得r=3.6,即这个圆锥的底面半径是3.6.故选:A.20.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A .B .C .D .解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t 的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.21.计算:()﹣1+|1﹣tan45°|+(π﹣3.14)0﹣.解:原式=3+|1﹣|+1﹣3=3+=.22.化简求值:(﹣)÷;其中a2﹣a﹣1=0.解:原式=•=•=,∵a2﹣a﹣1=0.∴a2=a+1,∴原式==1.23.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.解:(1)如图,Rt△ABC的外接圆⊙O即为所求;(2)连接BD,∵∠C=90°.∴AB是⊙O的直径,∴∠BDA=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DBA=∠ACD=45°,∵AC=6,BC=8,∴AB=10,∴AD=BD=AB•sin45°=10×=5.答:AD的长为5.24.某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1米,≈1.732)解:延长PQ交直线AB于点C,设PC=x米.在直角△APC中,∠A=45°,则AC=PC=x米;∵∠PBC=60°∴∠BPC=30°在直角△BPC中,BC =PC =x米,∵AB=AC﹣BC=60米,则x ﹣x=60,解得:x=90+30,则BC=(30+30)米.在Rt△BCQ中,QC =BC =(30+30)=(30+10)米.∴PQ=PC﹣QC=90+30﹣(30+10)=60+20≈94.6(米).答:电线杆PQ的高度约是94.6米.25.如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.【解答】(1)证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.∵OD=OB,OC=OC,∴△ODC≌△OBC.∴∠ODC=∠OBC.∵CB是圆O的切线且OB为半径,∴∠CBO=90°.∴∠CDO=90°.∴OD⊥CD.又∵CD经过半径OD的外端点D,∴CD为圆O的切线.(2)解:连接BD,∵AB是直径,∴∠ADB=90°.在直角△ADB中,BD ===8,∵∠ADB=∠OBC=90°,且∠COB=∠BAD,∴△ADB∽△OBC.∴=,即=.∴BC=12.26.每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1.图2中所给的信息解答下列问题:(1)该校八年级共有500 名学生,“优秀”所占圆心角的度数为108°.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲,乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.解:(1)该校八年级共有学生人数为200÷40%=500(名);“优秀”所占圆心角的度数为360°×=108°;故答案为:500,108°;(2)“一般”的人数为500﹣150﹣200﹣50=100(名),补全条形统计图如图:(3)15000×=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格;(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为=.五、(本大题共两小题,第27题10分,第28题12分,共22分)27.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F 与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)【解答】(1)证明:如图1中,∵∠F=∠G=90°,∠FAB=∠CAG,AB=AC,∴△FAB≌△GAC(AAS),∴FB=CG.(2)解:结论:CG=DE+DF.理由:如图2中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG =•AB•DE +•AC•DF,∵AB=AC,∴CG=DE+DF.(3)解:结论不变:CG=DE+DF.理由:如图3中,连接AD.∵S△ABC=S△ABD+S△ADC,DE⊥AB,DF⊥AC,CG⊥AB,∴•AB•CG =•AB•DE +•AC•DF,∵AB=AC,∴CG=DE+DF.28.如图1(注:与图2完全相同)所示,抛物线y =﹣+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)解:(1)把B(3,0)和D(﹣2,﹣)代入抛物线的解析式得,,解得,,∴抛物线的解析式为:;(2)令x=0,得=,∴,令y=0,得=0,解得,x=﹣1,或x=3,∴A(﹣1,0),∵=,∴M(1,2),∴S四边形ABMC=S△AOC+S△COM+S△MOM==;(3)设Q(0,n),①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,a).Q点在P点左边时,则Q(﹣4,n),把Q(﹣4,n )代入,得n =,∴P(﹣4,﹣);②Q点在P点右边时,则Q(4,n),把Q(4,n )代入,得n =,∴P(4,﹣);③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,则E(1,0),∵PE=QE,∴P(2,﹣n),把P(2,﹣n )代入,得﹣n =,∴n =﹣,∴P(2,).综上,满足条件的P点坐标为:(﹣4,﹣)或(4,﹣)或(2,).。

相关文档
最新文档