引物合成的详解1引物是如何合成的目前引物合成基本采用固相亚
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引物合成的详解
1.引物是如何合成的?
目前引物合成基本采用固相亚磷酰胺三酯法。
DNA合成仪有很多种, 主要都是由ABI/PE 公司生产,无论采用什么机器合成,合成的原理都相同,主要差别在于合成产率的高低,试剂消耗量的不同和单个循环用时的多少。
亚磷酰胺三酯法合成DNA片段,具有高效、快速的偶联以及起始反应物比较稳定的特点。
亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3′端向5′端合成的,相邻的核苷酸通过3′→5′磷酸二酯键连接。
第一步是将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5′-羟基的保护基团DMT,获得游离的5′-羟基。
第二步,合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3′端被活化,5′-羟基仍然被DMT保护,与溶液中游离的5′-羟基发生缩合反应。
第三步,带帽(capping)反应,缩合反应中可能有极少数5′-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。
第四步,在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。
经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。
再以三氯乙酸脱去它的5′-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。
合成过程中可以观察TCA处理阶段的颜色判定合成效率。
通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC, PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。
沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。
2.引物纯化方式有哪些,如何选择?
◆C18柱脱盐:有人称其为简易反相柱,它对DNA有特异性的吸附,可以被有机溶解洗脱,但不会被水洗脱,所以能有效地去除盐分。
它不能有效去除比目的片段短的小片段。
实际上,它是一种脱盐的作用。
这种方法一般不会对普通PCR反应产生影响。
对于需要用于测序、克隆的引物不能使用这个级别。
◆OPC纯化:OPC纯化是根据DNA保护基(DMTr基)和Cartridge柱中树脂间的亲合力作用的原理进行纯化目的DNA片段。
OPC法纯化的DNA纯度大于95%。
适用于40mer以下引物的纯化。
◆PAGE纯:PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。
PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于95%,对长链Oligo DNA (大于50mer)的纯化特别有效。
◆HPLC纯化:HPLC纯化是使用高效液相色谱的原理,对DNA片段进行纯化。
纯度可以大于99%。
主要用于短链和修饰引物的纯化。
该法的弱点是成本较高,批量生产效率不高。
3.引物的OD数如何定量?
答:引物合成引物OD数是这样测定的:用紫外分光光度计,波长260nm,石英比色杯,光程为1厘米,测定溶液的光密度。
测定时溶液的光密度最好稀释到0.2-1.0之间。
DNA干粉用一定体积的水充分振荡溶解以后,用1ml水稀释测OD值。
需要根据稀释倍数换算出母液的OD值。
4.需要什么级别的引物?
答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。
根据实验需要,确定订购引物的纯度级别。
应用引物长度要求纯度级别要求
一般PCR扩增<45 base OPC
一般PCR扩增>45 base PAGE
诊断PCR扩增< 40base OPC, PAGE
DNA测序20base左右OPC
亚克隆,点突变等根据实验要求定OPC, PAGE,HPLC
基因构建(全基因合成)根据实验要求定PAGE
反义核酸根据实验要求定PAGE
修饰引物
根据实验要求定PAGE, HPLC
5.最长可以合成多长的引物?
答:引物越长,出现问题的概率就越大。
有的公司合成过120base的引物,产率很低。
除非需要,建议合成片段长度不要超过80mer,按照目前的引物合成效率,80mer的粗产品,全长(还不一定正确)引物的百分比不会超过40%,后续处理还有丢失很多,最后的产量很低。
6.需要合成多少OD数?
答:根据实验目的确定。
一般PCR扩增,2 OD引物,可以做200-500次50ul标准PCR反应。
如果是做基因拼接或退火后做连接,1 OD就足够了。
但是有些研究人员,就做几次PCR,但是却要5-10 OD。
做全基因构建的引物都比较长,但是我们有些研究人员也要求高OD数。
片段越长, 最后全长得率就越低,出错的几率就越大。
超出需要之外的OD数要求,其实也是对社会资源的一种浪费,同时也从一个侧面反映了部分研究人员特别是新手的自信心不足,总觉得需要重复多次才能成功。
7.如何检测引物的纯度?
答:实验室方便的作法是用PAGE方法。
使用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳。
取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。
加入尿素的目的一是变性,二是增加样品比重,容易加样。
600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。
如果条件许可,也可以用EB 染色或银染方式染色。
8.如何计算引物的浓度?
答:引物保存在高浓度的状况下比较稳定。
引物一般配制成10-50pmol/ul。
一般情况下,建议将引物的浓度配制成50pmol/ul,加水的体积(微升)按下列方式计算:V (微升)= OD数*(乘)33 *(乘)*(乘)20000 / (除) 引物的分子量。
引物的分子量可以从合成报告单上获得。
如果需要配制成其他浓度,按上述公式换算。
注意:1 OD260= 33 ug/ml.
9.如何计算引物的Tm值?
答:引物设计软件都可以给出Tm,与引物长度、碱基组成、引物使用缓冲的离子强度有关。
长度为25mer以下的引物,Tm计算公式为:Tm = 4℃(G + C)+ 2℃(A + T)
对于更长的寡聚核苷酸,Tm计算公式为:
Tm = 81.5 + 16.6 x Log10[Na+] + 0.41 (%GC) – 600/size
公式中,Size = 引物长度。
Tm的定义:Tm = Temperature at which 50% of a given oligonucleotide is hybridized to its complementary strand. In the absence of destabilizing agents, like formamide or urea, Tm will depend on 3 major parameters: The sequence: a GC-rich sequence has a higher melting temperature. The strand concentration: high oligonucleotide concentrations favor hybrid formation, which results in a higher melting temperature. The salt concentration: high ionic strength results in a higher Tm as cations stabilize the DNA duplexes.
10.引物(含修饰)的分子量是如何确定的?
答:非修饰的引物的Molecular Weight在随引物提供的报告单上都有明确的标示。
如果需要估计一个引物的分子量按每个碱基的平均分子量为324.5,引物的分子量=碱基数x 碱基的平均分子量。
或按下列公式计算MW= (NA * WA) + (NC * WC) + (NG * WG) + (NT * WT)
+(Nmod * Wmod) +(Nx * Wx)+( Ni* Wi) +16* Ns–62.
NA, NG, NC, NT, Ni分别为引物中碱基A或G或C或T或I的数量,WA, WC, WG, W, Wi分别为引物中碱基A或G或C或T或I的分子量,Nmod,Wmod 分别为修饰基团的数目和分子量。
对于混合碱基的分子量为混合碱基的分子量总合除以混合数,例如G+A混合的分子量为(313.21+329.21)/2 = 321.21。
Ns为硫代数目,硫代每个位置增加分子量16。
常规碱基分子量:
Base Molecular Weight
A 313.21
C 289.18
G 329.21
T 304.19
I 314.2
U 290.17
常规修饰基团分子量
修饰基团分子量修饰基团分子量
5’-Biotin 405.45 3’-TAMARA 623.60
5’-(6 FAM) 537.46 3’-Dabsyl 498.49
5’-HEX 744.13 3’-(6 FAM) 569.46
5’-TET 675.24 3’-Amino Modifier C3 153.07
5’-Cy5 533.63 3’-Amino Modifier C7 209.18
5’-Cy3 507.59 3’-Thiol Modifier C3 154.12
11.如何溶解引物?
答:干燥后的引物质地非常疏松,开盖前最好离心一下,或管垂直向上在桌面上敲敲,将引物粉末收集到管底。
根据计算出的体积加入去离子无菌水或10mM Tris pH7.5缓冲液,室温放置几分钟,振荡助溶,离心将溶液收集到管底。
溶解引物用的水一般不要用蒸馏水,因为有些蒸馏水的pH值比较低(pH4-5),引物在这种条件下不稳定。
12.如何保存引物?
答:引物合成后,经过一系列处理和纯化步骤,旋转干燥而成片状物质。
引物在溶解前,室温状态下可以长期保存。
溶解后的引物-20度可以长期保存。
如果对实验的重复性要求较高,合成的OD数较大,建议分装,避免反复冻融。
修饰荧光引物需要避光保存。
13.合成的引物5’端是否有磷酸化
答:合成的引物5’为羟基,没有磷酸基团。
如果需要您可以用多核苷酸激酶进行5′端磷酸化,或者要求引物合成公司合成时直接在5′或3′端进行磷酸化,需要另外收费。
14.引物片段退火后不能连接到载体上是什么问题?
连接反应需要引物的5’磷酸基团。
如果需要将合成的引物退火直接连接相应的载体上,引物需要磷酸化。
磷酸化的产物如果还不能连接载体上,需要检查载体的酶切效果,需要改善引物退火的条件。
SiRNA分子具有特殊的对称结构,退火的难度较大,退火时需要提高退火温度。
15.测序发现引物有突变是怎么回事?
答:测序发现引物区域有突变,特别是40个碱基以下的引物, 发生的概率不大,但是肯定也会发生。
用户一般可以放心,引物序列一般都是通过电脑直接将您的序列COPY到合成仪的,碱基输错的机会不多。
核酸合成公司一般会有一套控制办法,预防碱基输入错误。
发生这种突变的原因有很多解释,人们还没有办法彻底解决这个问题。
引物合成的固相合成原理都一样,采用的机器也基本相同,合成主要原料都是由可数的几家跨国公司提供的,所有每个合成服务商遇到的问题也基本类似,没有人可以超脱。
引物合成是一种多步骤的化学反应,合成效率最高也就是99%,副产品不可以避免。
引物序列中插入突变往往是碱基重复,一般认为,偶连过程中,正在偶连的部分单体发生丢失DMT,
导致单体又接了上去,故发生插入同一碱基的突变。
至于缺失突变,一般认为是一般认为是带帽(capping)反应不彻底造成的,Caping反应主要是封闭极少数5′-羟基没有参加反应单体。
被封闭的引物,在下一轮偶连时将不能继续参与合成。
对于碱基置换的突变,产生的原因一般认为是碱基不能100%脱保护,即引物上可能含有残留保护基团,引物的这些区域不能很好地与互补链配对,当扩增的产品被亚克隆转化到大肠杆菌中,可能被细菌中修复系统补上了非配对的碱基。
置换突变通常发生在G 转换成其它碱基。
碱基G在一定条件下可以转化为烯醇异构体(脱嘌呤),2,6 diaminopurine , DNA复制和扩增过程中DNA聚合酶将2,6 diaminopurine看作碱基A,测序就会发现碱基G-A置换。
脱嘌呤现象在富含嘌呤的引物中发生的频率较高。
脱嘌呤的引物在引物后处理脱保护阶段如果被降解,测序就会发现碱基G或A的缺失。
引物合成过程中,造成碱基插入,缺失,置换突变的因素客观存在,有不少降低发生的频率建议和措施,但是这些措施还停留在实验室阶段,还没有能够应用到规模化生产中。
16.长链引物为什么出错的几率非常高?
答:引物合成时,每一步反应效率都不能达到100%,产生碱基插入、缺失、置换突变的因素客观条件都有一直存在。
引物链越长,突变的频率累加起来就越高。
研究人员总希望合成的引物万无一失,这种心情可以理解。
但是犹如PCR扩增,不可能绝对保证扩增产物中没有突变,引物合成也不可能保证100%正确。
要知道,引物合成中发生错误(非人为因素)的频率,比任何高保真高温聚合酶PCR扩增过程所产生的频率都要高。
做引物合成,长链引物合成,您要有引物中部分引物可能有突变的思想准备。
17.如果测序发现突变,该如何处理?
答:遇到这种情况,首先和核酸合成厂家取得联系,生产人员会检查生产的原始记录,主要是核对合成序列是否和定单一致,他们在电脑中一般会保留所有原始数据。
在确认引物合成序列没有输错的情况下,建议重新挑取克隆测序,可能会找到正确克隆的。
根据经验,40个碱基以下的引物,测1-2个克隆就可以了;40个以上的特别是用于全片段拼接合成的,就需要多测一些了。
一般情况下,每个克隆突变的位点都不一样,提示正确的总是有的,就是如何找到它。
也可以要求公司将引物免费重合一次,不过重合的引物和第一次的引物一样,都可能含突变,不会因为重合的引物就减少您的遇到问题的几率。
基因拼接过程中,如果发现一段区域突变点不多,就多测几个,否则就重合一下引物。
18.引物是经过PAGE纯化的,为什么还有碱基缺失或插入?
答:理论上分析型PAGE变性电泳,可以区分引物之间一个碱基的差别。
但是制备PAGE电泳,上样量都是非常大,电泳时的条带非常宽,带与带之间有重叠,分辨率已下降,电泳后割带回收目的引物时,很难说不割到差别仅几个碱基的引物。
国内有一个不好的现象,PAGE 纯化的引物,特别是长引物要的量都比较高,导致割的条带有时可能比较宽。
建议:您如果减少OD数,引物遇到的问题可能就会少一些。
19. TaqMan 探针设计的基本原则是什么?
答:下列原则供您参考。
◆TaqMan 探针位置尽可能靠近扩增引物(扩增产物50-150bp),但不能与引物重叠。
◆长度一般为18-40mer 。
◆G-C含量控制在40-80%左右。
◆避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。
◆在引物的5’端避免使用G。
◆选用比较多的碱基C。
◆退火温度Tm控制在68-70C左右。
有用的荧光染料参数
Name
吸收波长
发射波长colors
6-FAM (6-carboxy-fluorescein)494nm 518nm Green
TET (5-tetrachloro-fluorescein)521nm 538nm Orange
HEX (5-hexachloro-fluorescein)535nm 553nm Pink
TAMRA(tetramethyl-6-carboxyrhodamine)560nm 582nm Rose
ROX (6-carboxy-x-rhodamine)587nm 607nm Red
Cy3 (Indodicarbocyanine)552nm 570nm Red
Cy5(Indodicarbocyanine)643nm 667nm Violet
20.Primer设计的基本原则是什么?
答:引物设计的下列原则供您参考。
◆引物长度一般在18-35mer。
◆G-C含量控制在40-60%左右。
◆避免近3’端有酶切位点或发夹结构。
◆如果可能避免在3’端最后5个碱基有2个以上的G或C。
◆如果可能避免在3’端最后1个碱基为A。
◆避免连续相同碱基的出现,特别是要避免GGGG或更多G出现。
◆退火温度Tm控制在58-60C左右。
◆如果是设计点突变引物,突变点应尽可能在引物的中间。
21.为什么引物的OD260/OD280小于1.5 ?
答:引物应该全是DNA,但是OD260/OD280的比值为什么那么低,怎么会有蛋白质污染?引物化学合成,哪里有机会污染到蛋白质?需要指出的是OD260/OD280的比值不能用来衡量引物的纯度。
OD260/OD280的比值过低一般是由于引物中C/T 的含量比较高所致。
下表是一个20mer 同聚体引物的OD260/OD280的比值,清楚表明OD260/OD280的比值与引物的碱基组成密切相关。
A260/280 ratios of Crude 20-mer Oligos of Differing Base Compositions
Base Composition A260/280
5-AAAAAAAAAAAAAAAAAAAA-3 2.50
5-GGGGGGGGGGGGGGGGGGGG-3 1.85
5-CCCCCCCCCCCCCCCCCCCC-3 1.15
5-TTTTTTTTTTTTTTTTTTTT-3 1.14
5-AAAAAGGGGGTTTTTCCCCC-3 1.66
22.同样的OD用PAGE检测,EB染色为什么深浅不一?
答:通常可以用EB染色的方法来判断双链DNA的量(如质粒DNA),因为EB可以嵌合到双链DNA中。
而合成的单链DNA,由于碱基组成不同,形成二级结构的可能性不同,EB的染色程度也会有差异,比如Oligo(dT)等不形成二级结构,EB染色效果就非常差。
所以不要用EB染色的方法来定量,而用紫外分光光度计检测。
同样道理,用EB染色来照片不适合所有引物。
23.引物不纯会有什么后果?
答:引物不纯可能会导致:1)非特异性扩增;2)无法用预先设计在引物5′端酶切位点的酶切开,特别是没有保护碱基的引物;3) 用于测序出现双峰或乱峰。
解决办法重新合成或重新纯化。
24.已经溶解的引物,为什么原先使用正常,而过一段时间再使用就不好了?
答:如果溶解引物的水PH过低或污染了菌或核酸酶,会使引物降解。
使用时没有充分解冻混合,液体不均匀也可能会造成引物加入量不准确。
建议分装引物,避免反复冻溶。
建议使用10mM Tris pH7.5缓冲液溶解引物,因为有些蒸馏水的pH值比较低(pH4-5), 引物在这种条件下不稳定。
还有一种可能性是引物没有问题,而是PCR使用材料特别是模板的质量与先前使用的不完全一致。
25.PCR扩增不出就引物有问题吗?
答:基本不是。
当今发展出各色各样的PCR扩增技术,各色各样的高温聚合酶,就是来解决PCR扩增中遇到的扩不出、扩增效率低的问题。
如巢式PCR就是扩增那些拷贝数很低的基因
片段。
有些重复片段的扩增, GC含量高的片段,非要采用特殊扩增手段才能扩增出了。
引物扩增不出,主要是下列两种情况比较常见(1)RT-PCR。
请注意,很多基因通过常规RT –PCR方法是很难扩增出来的。
RT- PCR成功的关键在于RT的反应的RNA质量和目标基因在特定组织和细胞中含量。
(2)从基因组中扩增。
一般情况下,基因在基因组中都是单拷贝,基因组作为模板需要严格控制用量。
基因组DNA过高,会影响反应体系中的Mg和pH。
16:14 | 添加评论| 固定链接| 写入日。