考点30 直接证明与间接证明
第二节直接证明与间接证明
第二节直接证明与间接证明直接证明与间接证明是数学推理中常用的两种证明方法。
直接证明是通过逻辑推理直接得出结论,而间接证明是通过反证法或归谬法得出结论。
以下将详细介绍这两种证明方法,并进行比较。
直接证明是最常见的证明方法之一、它的基本思路是根据已知条件和数学定义,逐步演绎出所要证明的结论。
直接证明需要使用与所要证明的结论相关的定理、性质、定义等来推导,使之成立。
这种方法是一个逐步推进的过程,每一步都必须经过严格的逻辑推理,从已知到结论的推导链条必须清晰、合理。
直接证明通常比较直观,逻辑性较为明显,容易理解。
例如,我们可以通过直接证明来证明“两个相等的数相加,结果仍然相等”。
间接证明是与直接证明相对的一种证明方式。
它的基本思路是假设所要证明的结论不成立,通过逻辑推理得出矛盾或不合理的结论,从而排除了假设的情况,证明了原来的结论是成立的。
间接证明常常采用反证法或归谬法。
反证法是一种最常用的间接证明方法,其基本思路是通过假设结论不成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
归谬法是一种较少使用的间接证明方法,它的基本思路是假设结论成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
例如,我们可以通过反证法来证明“根号2是无理数”。
直接证明与间接证明各有其优点和适用范围。
直接证明较为直观和直接,逻辑性更明显,适用于证明一些简单且直接的结论,或是一些简单的数学性质和定理。
间接证明更具有一般性和普遍性,适用于证明复杂的结论,或是一些需要反证或归谬的情况。
通过间接证明,我们可以深入分析和推理,挖掘结论的内在逻辑关系。
间接证明常常需要对结论进行反向思考,找到对立面、矛盾面,通过推导和推理得到最终的结论。
总的来说,直接证明和间接证明是数学推理中常用的两种证明方法。
直接证明通过逻辑推理直接得出结论,适用于一些简单直接的结论。
间接证明通过反证或归谬得出结论,适用于一些复杂或需要反向思考的结论。
数学证明中的直接证明与间接证明
数学是一门严谨的学科,其核心在于推理与证明。
在进行数学证明时,有直接证明和间接证明两种方法。
直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。
本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。
首先,我们来讨论直接证明。
直接证明是最常见、最直接的证明方法。
其核心思想是根据已知条件和数学定理,一步一步地推导出结论。
直接证明通常包括假设、推理和结论三个步骤。
首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。
直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。
此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。
然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。
在遇到这种情况时,我们就需要采用间接证明的方法。
其次,我们来讨论间接证明。
间接证明有两种形式,一种是反证法,另一种是归谬法。
反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。
归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。
间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。
间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。
然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。
在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。
有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。
而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。
因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。
总之,数学证明中的直接证明和间接证明是两种常用的推理方法。
直接证明与间接证明
直接证明与间接证明直接证明和间接证明是数学中常用的两种证明方法。
直接证明是通过逻辑推理和已知的真实前提,以直接的方式推出所要证明的结论。
间接证明则是采用反证法或者假设推理的方式,通过说明对立假设或者逻辑矛盾来推出所要证明的结论。
直接证明的思路是从已知条件出发,逐步运用数学定义、性质、定理等等,直接推导到所要证明的结论。
这种证明方法通常比较直观,步骤清晰,容易理解。
下面来看一个简单的例子。
假设我们要证明:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
直接证明的思路是从正整数是3的倍数这个已知条件出发,即假设正整数n可以写为3k,其中k为整数。
那么正整数n的平方可以写为(3k)^2=9k^2,即n^2=9k^2、由此可知,正整数n^2也可以写为3的倍数,因为9k^2可以写为3的倍数。
因此,根据直接证明的逻辑推理,我们得出结论:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
间接证明的思路是通过反证法或者假设推理的方式,假设所要证明的结论不成立,然后通过推理说明这个假设是不可能的或者导致矛盾的。
下面来看一个简单的例子。
假设我们要证明:不存在两个整数的和等于3的倍数,且差等于5的倍数。
间接证明的思路是先假设存在这样的两个整数,分别为a和b。
那么根据条件,我们可以得到以下两个等式:a+b=3k,其中k为整数;a-b=5m,其中m为整数。
然后我们将这两个等式相加,得到:2a=3k+5m。
由于3k+5m是整数,所以2a也是整数。
但是,由于2是偶数,所以2a是偶数,而3k+5m是奇数。
因此,2a和3k+5m不能同时成立,即假设不成立。
因此,不存在两个整数的和等于3的倍数,且差等于5的倍数。
以上是直接证明和间接证明的简单例子,实际的证明可能需要更多的推理和步骤。
两种证明方法各有优点和适用范围。
直接证明通常通过展示清晰的推理过程来达到证明目的,适合于结论的证明比较明显和直观的情况。
而间接证明则通过反证法或者假设推理来达到证明目的,适合于结论的证明比较困难或者复杂的情况。
66直接证明与间接证明
66直接证明与间接证明直接证明和间接证明是逻辑学中的两种常见证明方法。
直接证明即通过逐步推理和逻辑推导来证明一个命题的真实性。
间接证明则采用反证法,假设命题的否定形式是真的,然后通过推理来推出矛盾,从而证明原命题的真实性。
在下面的文章中,我将详细讨论直接证明和间接证明的定义、用途、优点和缺点,并通过实例来解释如何使用这两种证明方法。
首先,直接证明是一种通过逻辑推理直接展示命题真实性的证明方法。
它是从已知的前提中进行推理,在推理的每一步中使用规则和定义来逐步推导出目标命题的真实性。
直接证明的一般结构是“假设P是正确的,然后通过推理步骤S1,S2,...,Sn,得出结论Q是正确的”。
例如,我们可以使用直接证明来证明命题“如果a和b是偶数,那么a+b也是偶数”。
首先,我们假设a和b是偶数,那么可以写成a=2m和b=2n(其中m和n是整数)。
然后,我们可以推导得到a+b=2m+2n=2(m+n),这说明a+b也能被2整除,因此是偶数。
这个推导过程可以通过严格的逻辑推理证明,从而证明了原命题的真实性。
然而,有时候直接证明并不那么容易,特别是当命题的真实性与一系列复杂的推理步骤或逻辑关系相关时。
在这种情况下,间接证明可以提供一种有效的证明方法。
间接证明是通过假设命题的否定形式是真的,然后通过推理来推出矛盾,从而证明原命题的真实性。
具体地说,我们假设命题的否定形式是真的,然后进行一系列逻辑推理,当推理过程中产生了矛盾时,我们可以得出结论原命题是真的。
例如,我们可以使用间接证明来证明命题“根号2是无理数”。
首先,我们假设根号2是有理数,即可以写成一个分数形式,a/b(其中a和b是整数,且a和b没有公因子)。
然后,我们将这个分数形式进行平方,得到a²/b²=2,整理得到a²=2b²。
根据这个方程,我们可以得出结论a²是偶数,那么a也一定是偶数。
假设a=2m(其中m是整数),我们可以再次代入方程得到4m²=2b²,整理得到2m²=b²,这说明b也是偶数。
中学数学几何证明与推理方法
中学数学几何证明与推理方法数学几何是中学数学的重要内容之一,它不仅有助于提高学生的空间想象力和逻辑思维能力,还培养了学生分析问题、证明结论和推理推导的能力。
本文将介绍中学数学几何中常用的证明与推理方法,帮助学生更好地掌握这一知识点。
一、数学几何证明方法数学几何证明是通过已知条件和已经得到的结论,通过逻辑推理和推导方法,得出新的结论的过程。
在数学几何证明中,常见的证明方法包括:直接证明法、间接证明法、反证法、数学归纳法等。
1. 直接证明法直接证明法是最常见的证明方法之一,它通过列出已知条件和所要证明的结论,利用几何性质和定理进行逻辑推导,直接得出所要证明的结论。
例如,当要证明两个三角形全等时,可以通过已知的对应相等的边和角来进行推导,最终得到两个三角形的全部对应边和角都相等,从而证明了它们全等。
2. 间接证明法间接证明法是通过假设所要证明的结论不成立,然后推导出与已知条件矛盾的结论,从而得出所要证明的结论成立。
例如,要证明一个三角形是等腰三角形,可以假设该三角形不等腰,然后通过推导得到两边相等的结论,与已知条件矛盾,因此原假设不成立,得证。
3. 反证法反证法是通过假设所要证明的结论不成立,然后推导出与已知条件矛盾的结论,从而推翻了原来的假设,得出所要证明的结论成立。
与间接证明法相比,反证法更加直接和简洁。
例如,要证明勾股定理(直角三角形斜边平方等于两直角边平方和),可以假设定理不成立,然后推导出与已知条件矛盾的结论,得出结论成立。
4. 数学归纳法数学归纳法是一种证明自然数性质的有力方法。
它是通过证明当n取任意正整数时性质成立,再证明当n取n + 1时性质也成立,从而得出性质对所有正整数都成立的结论。
在几何证明中,数学归纳法常常用于证明递推关系式和图形的一般性质。
二、数学几何推理方法推理是数学几何中的重要思维方式,它通过观察、分析和推导,从已知条件得出新的结论。
在数学几何推理中,常见的推理方法包括:直观推理、转化推理、类比推理、逆向推理等。
直接证明与间接证明_知识讲解
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
直接证明与间接证明
到结果的证明方法,它是利用已知 (1)______ 条件和某些数学定义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立的证明方法. 分析法是从要证明的结论出发,逐步寻求使它成立的充 (2)______ 分条件,直到最后,把要证明的结论归结为判断一个明显成立 的条件(已知条件、定义、公理、定理等)为止的证明方法.
索因法.它常见的书面表达形式是:“要证…,只需证…”或
“…⇐…”.利用分析法证明“若 A 则 B”命题的分析法思考过 程可用框图表示为:
图 10-2-2 分析法的思考顺序执果索因的顺序,是从 B 上溯寻其论据, 如 C、C1、C2 等,再寻求 C、C1、C2 的论据,如 B、B1、B2、 B3、B4 等等,继而寻求 B、B1、B2、B3、B4 的依据,如果其中之 一 B 的论据恰为已知条件,于是命题已经得证.
2 比数列,则 bq =bpbr.
即(q+ 2)2=(p+ 2)(r+ 2). ∴(q2-pr)+(2q-p-r) ∵p、q、r∈N*,
2 q -pr=0 ∴ 2q-p-r=0
2=0.
p+r2 =pr,(p-r)2=0, .∴ 2
∴p=r.与 p≠r 矛盾. ∴数列{bn}中任意不同的三项都不可能成等比数列.
错源:犯循环论证的逻辑性错误
例 4:设 a、b、c、d 是正有理数, c、 d是无理数,求证: a c+b d是无理数.
误解分析:本题在推理证明过程中,容易犯循环论证的逻 辑性错误:因为 c为无理数,a 为正有理数,故 a c为无理数, 同理 b d也为无理数,两正无理数的和为无理数,故 a c+b d 为无理数.主要原因是对有关概念定理没有真正的理解掌握, 导致用任意的推广引申定理得出有利于论题成立的假判断.
全等三角形证明判定方法分类归纳
全等三角形证明判定方法分类归纳一、直接证明法直接证明法是指通过对已知条件进行计算和推理,直接得出两个三角形全等的结论。
常用的直接证明法有以下几种:1.SSS判定法SSS判定法是指如果两个三角形的三边分别相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,BC=EF,AC=DF,要证明ΔABC≌ΔDEF。
通过SSS判定法可知,只需要证明∠ABC=∠DEF,∠BAC=∠EDF,∠ACB=∠DFE即可。
这个可以通过角的和为180°进行计算和推理得到。
2.SAS判定法SAS判定法是指如果两个三角形的两个边分别相等,并且这两个边夹角相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,∠ABC=∠DEF,AC=DF,要证明ΔABC≌ΔDEF。
通过SAS判定法可知,只需要证明BC=EF即可。
这个可以通过边与角关系进行计算和推理得到。
3.ASA判定法ASA判定法是指如果两个三角形的两个角分别相等,并且这两个角的夹边相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,要证明ΔABC≌ΔDEF。
通过ASA判定法可知,只需要证明AB=DE即可。
这个可以通过角与角关系进行计算和推理得到。
二、间接证明法间接证明法是指通过假设两个三角形不全等,然后推出与已知条件矛盾的结论,从而得出两个三角形全等的结论。
常用的间接证明法有以下几种:1.矛盾法假设三角形ABC和DEF不全等,然后通过对已知条件进行计算和推理,得出一个与已知条件矛盾的结论,进而推出两个三角形全等的结论。
2.割取法假设三角形ABC和DEF不全等,然后取一个边分别作其平行线或垂线,进而构造出等腰三角形或等边三角形,从而推出两个三角形全等的结论。
三、利用全等条件证明法利用全等条件证明法是指在已知两个三角形之间有一个或多个角、边、角边相等的关系时,可以根据全等条件推出两个三角形全等的结论。
数学证明的常见题型与应用
数学证明的常见题型与应用数学证明作为数学学科的核心内容之一,在学习数学时经常会碰到。
数学证明旨在通过逻辑推理和严密论证,将一个数学命题或结论从已知条件推导出来,使之成为数学中不可否认的真理。
本文将介绍数学证明的常见题型以及在实际应用中的意义和用途。
一、直接证明法1. 定理:如果一个多边形的内角和为180度,则该多边形是凸多边形。
证明:设多边形的边数为n,根据几何图形的性质可知,n个顶点的内角和为 (n-2) × 180 度。
因此,当 n>2 时,该多边形的内角和一定大于180度,故该多边形是凸多边形。
证毕。
二、间接证明法1. 定理:根号2是无理数。
证明:假设根号2是有理数,即可以表示为 p/q (p、q为正整数,且p/q为最简分数)。
则有 (p/q)^2 = 2,即 p^2/q^2 = 2。
将该等式两边平方可得 p^2 = 2q^2。
由此可知,p^2是偶数,那么p也必然是偶数(偶数的平方仍为偶数)。
设 p = 2k,则可得到 (2k)^2 = 2q^2,化简得2k^2 = q^2。
从而可知,q^2 是偶数,那么 q 也必然是偶数。
这与我们一开始的假设矛盾,因为在假设中,我们假设 p/q 是最简分数。
所以根号2必定是无理数。
证毕。
三、数学归纳法1. 定理:1 + 2 + 3 + ... + n = n(n+1)/2,对于所有正整数 n 成立。
证明:首先,当 n = 1 时,左边等式为 1,右边等式为 1 × (1+1) / 2= 1。
显然相等,此时等式成立。
假设当 n = k 时,等式成立,即 1 + 2 + 3 + ... + k = k(k+1)/2。
则考虑 n = k+1 的情况,有 1 + 2 + 3 + ... + k + (k+1) = (k(k+1)/2) +(k+1) = (k+1)(k+2)/2。
根据归纳法原理,等式对于所有正整数 n 成立。
证毕。
四、反证法1. 定理:根号2是无理数。
数学中的证明方法和技巧
数学中的证明方法和技巧数学作为一门严谨的学科,证明是其核心和灵魂。
无论是基础数学还是高等数学,在数学的世界里,证明是推动数学发展和解决问题的关键方法。
本文将探讨数学中常见的证明方法和一些应用技巧,帮助读者更好地理解和运用数学证明。
一、直接证明法直接证明法是最常见也是最直观的证明方法之一。
它通过一系列逻辑推理来证明一个数学命题。
步骤如下:1. 假设给定的前提条件(假设x是奇数);2. 推导出结论(推导出x的平方也是奇数);3. 根据推导过程中的逻辑关系,展示每一步的合理性(通过元素的特性,奇数的平方仍然是奇数);4. 结合前提条件和推导过程,得出结论(根据步骤2和步骤3可得出结论)。
二、间接证明法(反证法)间接证明法,也称为反证法,通过假设反命题,证明其导致矛盾,从而得出所要证明的正命题成立。
步骤如下:1. 假设所要证明的命题的反命题为真;2. 对反命题进行逻辑推理,得出矛盾的结论;3. 根据矛盾结论,推出原命题为真;4. 得出结论,所要证明的命题成立。
三、归纳法归纳法是数学证明中常用的一种方法,尤其适合用于证明某个命题在所有自然数上成立。
步骤如下:1. 基础步骤:证明当n为某个特定数时,命题成立(如n=1时);2. 归纳假设:假设当n=k时命题成立;3. 归纳步骤:证明当n=k+1时命题也成立;4. 根据归纳步骤,推出结论:由步骤2和步骤3可得出结论,命题对所有自然数成立。
四、递推法递推法是一种通过建立递推关系,不断由已知结果推出未知结果的方法。
递推法通常用于数列和递归问题的证明。
步骤如下:1. 确定初始条件:给出初始条件,如数列的前几项已知;2. 建立递推关系:找出数列中相邻项之间的关系,建立递推公式;3. 假设命题成立:假设当前项满足递推公式时,后一项也满足;4. 基于递推关系推出结论:根据递推公式,由当前项推导出后一项;5. 通过数学归纳法证明:使用数学归纳法证明递推公式成立;6. 得出结论,命题成立。
直接证明与间接证明、数学归纳法
直接证明与间接证明、数学归纳法[考纲传真]1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.【知识通关】1.直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.2.间接证明——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.3.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.[常用结论]利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)综合法是直接证明,分析法是间接证明.( )(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(4)用反证法证明结论“a >b ”时,应假设“a <b ”.( )[答案](1)× (2)× (3)× (4)×2.利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”时,在验证n =1成立时,左边应该是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3C3.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了 ( )A .分析法B .综合法C .综合法、分析法结合使用D .间接证法B4.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2D5.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( ) A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] B分析法的应用1.若a ,b ∈(1,+∞),证明a +b <1+ab .[证明] 要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c , 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立.[方法总结] (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.综合法的应用【例1】 设数列{a n }的前n 项和为S n ,已知3a n -2S n =2.(1)证明{a n }是等比数列并求出通项公式a n ;(2)求证:S 2n +1-S n S n +2=4×3n .[证明] (1)因为3a n -2S n =2,所以3a n +1-2S n +1=2,所以3a n +1-3a n -2(S n +1-S n )=0.因为S n +1-S n =a n +1,所以a n +1a n=3,所以{a n }是等比数列. 当n =1时,3a 1-2S 1=2,又S 1=a 1,所以a 1=2.所以{a n }是以2为首项,以3为公比的等比数列,其通项公式为a n =2×3n -1.(2)由(1)可得S n =3n -1,S n +1=3n +1-1,S n +2=3n +2-1,故S 2n +1-S n S n +2=(3n +1-1)2-(3n -1)(3n +2-1)=4×3n , 即S 2n +1-S n S n +2=4×3n .[方法总结] (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性. (2)综合法的逻辑依据是三段论式的演绎推理.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,得a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a ,b ,c 均为正数,a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c ,所以a 2b +b 2c +c 2a ≥1.反证法的应用【例2】设a>0,b>0,且a+b=1a+1b.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.[证明]由a+b=1a+1b=a+bab,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2ab=2,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.[方法总结]用反证法证明问题的步骤(1)反设:假定所要证的结论不成立,而设结论的反面成立(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.(推导矛盾) (3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)n n(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?[解](1)证明:假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列.假设{S n}是等差数列,则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{S n}是等差数列;当q≠1时,数列{S n}不是等差数列.数学归纳法的应用【例3】 已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系;(2)猜想f (n )与g (n )的大小关系,并给出证明.[解] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216, 所以f (3)<g (3).(2)由(1)猜想,f (n )≤g (n ),用数学归纳法证明.①当n =1,2,3时,不等式显然成立.②假设当n =k (k >3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2, 则当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3 =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立. [方法总结] 1.应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.2.利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.n n n n +1S 3=15.(1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式.[解] (1)由S n =2na n +1-3n 2-4n ,得S 2=4a 3-20,S 3=S 2+a 3=5a 3-20.又S 3=15,∴a 3=7,S 2=4a 3-20=8.∵S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7,∴a 2=5,a 1=S 1=2a 2-7=3.综上知a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1(n ∈N *),以下用数学归纳法证明:①当n =1时,猜想显然成立;②假设当n =k (k ∈N *,且k ≥2)时,有a k =2k +1成立,则S k =3+5+7+…+(2k +1)=3+(2k +1)2·k =k (k +2). 又S k =2ka k +1-3k 2-4k ,∴k (k +2)=2ka k +1-3k 2-4k ,解得a k +1=2k +3=2(k +1)+1,即当n =k +1时,猜想成立.由①②知,数列{a n }的通项公式为a n =2n +1(n ∈N *).。
直接证明与间接证明_分析法
直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。
直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。
下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。
首先,直接证明是一种简洁明确的证明方法。
它通过逐步展示事实和推理过程,直接地得出结论。
直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。
直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。
对于一些简单的问题,直接证明是最常见和最有效的证明方法。
其次,直接证明适用于一些直观的、已知的情况。
例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。
我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。
这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。
然而,直接证明也有一定的局限性。
对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。
有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。
在这种情况下,间接证明就可以派上用场。
间接证明是一种通过反证法推导出结论的方法。
它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。
间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。
它可以避免直接证明中的复杂推理和繁琐的计算。
间接证明适用于一些复杂、难以直接证明的问题。
例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。
费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。
然而,这个定理的直接证明非常困难。
数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。
总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。
直接证明与间接证明 知识点+例题+练习
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
高三数学考点-直接证明与间接证明
12.3 直接证明与间接证明1.直接证明(1)综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的____________,最后推导出所要证明的结论________,这种证明方法叫做综合法.综合法又叫顺推证法或__________法.(2)分析法:一般地,从要证明的________出发,逐步寻求使它成立的____________,直至最后,把要证明的__________归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法又叫逆推证法或__________法.(3)综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.间接证明反证法:一般地,假设原命题____________(即在原命题的条件下,结论____________),经过______________,最后得出__________.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾.因此说明假设________,从而证明了原命题成立,这样的证明方法叫做反证法.反证法是间接证明的一种基本方法.自查自纠1.(1)推理论证 成立 由因导果 (2)结论 充分条件 结论 执果索因2.不成立 不成立 正确的推理 矛盾 错误要证明3+7<25,以下方法中最合理的是( ) A .分析法 B .综合法 C .反证法 D .数学归纳法 解:“执果索因”最佳,即分析法.故选A .(2015·黄冈高二检测)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D.a 2+b 22<1<ab解:ab <⎝⎛⎭⎫a +b 22=1<a 2+b 22(a ≠b ).故选B .设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个大于2D .至少有一个不小于2 解:因为a ,b ,c >0,所以a +1b +b +1c +c +1a ≥6,举反例可排除A 、B 、C.或直接由a =b =c =1排除A ,B ,C.故选D .用反证法证明“如果a >b ,那么3a >3b ”,假设内容应是____________.解:原条件不变,假设结论不成立.故填3a =3b 或3a<3b.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,则∠A =∠B =90°不成立; ②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为____________.解:由反证法证明的步骤知,先反设,即③,再推出矛盾,即①,最后作出判断,肯定结论,即②,顺序应为③①②.故填③①②.类型一 直接证明已知a ,b ,c ∈R +,求证:a 2+b 2+c 23≥a +b +c3. 证法一:采用分析法.要证a 2+b 2+c 23≥a +b +c3,只需证a 2+b 2+c 23≥⎝⎛⎭⎫a +b +c 32,只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的, 所以a 2+b 2+c 23≥a +b +c3成立(当且仅当a =b =c 时等号成立).证法二:采用综合法.因为a ,b ,c ∈R +,所以(a -b )2+(b -c )2+(c -a )2≥0, 所以2(a 2+b 2+c 2)≥2(ab +bc +ac ),所以3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac ,所以3(a 2+b 2+c 2)≥(a +b +c )2, 所以a 2+b 2+c 23≥a +b +c3(当且仅当a =b =c 时等号成立).【点拨】分析法与综合法是直接证明常用的两种方法,前者是“执果索因”,后者是“由因导果”.常用分析法探索证明路径,再用综合法进行表述.已知:a >0,b >0,a +b =1. 求证:a +12+b +12≤2.证明:要证a +12+b +12≤2,只需证a +12+b +12+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4, 又a +b =1,故只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1, 只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12=ab +12(a +b )+14≤1,只需证ab ≤14.因为a >0,b >0,1=a +b ≥2ab ,所以ab ≤14,故原不等式成立⎝⎛⎭⎫当且仅当a =b =12时取等号. 类型二 间接证明已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.证法一:假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,因为a ,b ,c ∈(0,1),所以三式同向相乘得(1-a )b (1-b )c (1-c )a >164.又(1-a )a ≤⎝⎛⎭⎫1-a +a 22=14,同理(1-b )b ≤14,(1-c )c ≤14,所以(1-a )a (1-b )b (1-c )c ≤164,这与假设矛盾,故原命题正确.证法二:假设三式同时大于14,因为0<a <1,所以1-a >0, (1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12,三式相加得32>32,这是矛盾的,故假设错误,所以原命题正确.【点拨】一般地,对于结论是“都是”“都不是”“至多”“至少”形式的数学问题,或直接从正面入手难以寻觅解题突破口的问题,宜考虑用反证法,这体现了“正难则反”的思想,用反证法解题时,推导出矛盾是关键一步,途径很多,可以与已知矛盾、与假设矛盾、与已知事实相违背等,但推导出的矛盾必须是明显的.(1)(2016·周口模拟)用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 中恰有1个或3个偶数”时正确反设为( ) A .自然数a ,b ,c 都是奇数 B .自然数a ,b ,c 都是偶数 C .自然数a ,b ,c 中恰有两个偶数D .自然数a ,b ,c 中都是奇数或恰有两个偶数解:由于“自然数a ,b ,c 中恰有1个或3个偶数”的否定是“自然数a ,b ,c 都是奇数或恰有两个偶数”,故选D .(2)已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.解:假设x 0是f (x )的负数根,则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,所以0<ax 0<1⇒0<-x 0-2x 0+1<1,解得12<x 0<2,这与x 0<0矛盾,故方程f (x )=0没有负数根.1.综合法又叫顺推证法或由因导果法,它是从“已知”看“可知”,逐步推向“未知”,其逐步推理是在寻求它的必要条件.综合法的解题步骤用符号表示是:P (已知)⇒Q 1⇒Q 2⇒Q 3⇒…⇒Q n ⇒Q (结论).2.分析法又叫逆推证法或执果索因法,它是从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理的实质是寻求使结论成立的充分条件.分析法的解题步骤用符号表示是:B (结论)⇐B 1⇐B 2⇐…⇐B n ⇐A (已知). 3.分析法与综合法的综合应用分析法和综合法是两种思路相反的推理证明方法,二者各有优缺点.分析法思考起来比较自然,容易找到解题的思路和方法,缺点是思路逆行,叙述较繁,且表述易错;综合法条理清晰,宜于表述,缺点是探路艰难,易生枝节.在证明数学问题的过程中分析法和综合法往往是相互结合的,先用分析法探索证明途径,然后再用综合法表述.4.用反证法证明命题的一般步骤: (1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设;(3)由假设出发,应用正确的推理方法,推出与已知条件,或与假设矛盾,或与定义、公理、定理、事实等矛盾的结果;(4)断定产生矛盾的原因是假设不真,于是原结论成立,从而间接地证明命题为真. 5.可用反证法证明的数学命题类型 (1)结论是否定形式的命题;(2)结论是以至多、至少、唯一等语句给出的命题; (3)结论的反面是较明显或较易证明的命题;(4)用直接法较难证明或需要分成多种情形进行分类讨论的命题. 6.常见的“结论词”与“反设词”原结论词 反设词 原结论词 反设词 至少有一个 没有一个 ∀x 成立 ∃x 0不成立 至多有一个 至少有两个 ∀x 不成立 ∃x 0成立 至少有n 个 至多有n -1个 p 或q p 且 q 至多有n 个至少有n +1个p 且qp 或 q1.用分析法证明:欲使①A >B ,只需②C <D .这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件解:分析法证明的本质是证明使结论成立的充分条件成立,即②⇒①,所以①是②的必要条件.故选B .2.用反证法证明命题:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数时,下列假设中正确的是( ) A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数 C .假设a ,b ,c 中至多有一个偶数 D .假设a ,b ,c 中至多有两个偶数解:“a ,b ,c 中至少有一个是偶数”的否定为“a ,b ,c 都不是偶数”.故选B . 3.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B .b >c >aC .c >a >bD .a >c >b解:因为a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0,所以a >b >c .故选A .4.若a >b >0,且x =a +1b ,y =b +1a,则( )A .x >yB .x <yC .x ≥yD .x ≤y 解:因为a +1b -⎝⎛⎭⎫b +1a =(a -b )⎝⎛⎭⎫1+1ab >0.所以a +1b >b +1a.故选A . 5.已知a >b >0,且ab =1,若0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( ) A .p >q B .p <qC .p =qD .p ≥q解:因为a 2+b 22>ab =1,所以p =log c a 2+b 22<0.又q =log c ⎝ ⎛⎭⎪⎫1a +b 2=log c 1a +b +2ab >log c 14ab =log c 14>0,所以q >p .故选B .6.设[x ]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x ]=-[x ] B .[2x ]=2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ]解:取x =1.6,y =2.7,则[x ]=[1.6]=1,[y ]=[2.7]=2,[2x ]=[3.2]=3,[-x ]=[-1.6]=-2,故A ,B 错误;[x +y ]=[1.6+2.7]=4,故C 错.故选D .7.设a >b >0,x =a a +b b ,y =a b +b a ,则x ,y 的大小关系是________.解:x -y =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b )>0.所以x >y .故填x>y. 8.(2015·河北保定高二期末)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是__________.(填序号)解:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,若a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.故填③.9.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R . (1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b ); (2)判断(1)中命题的逆命题是否成立,并证明你的结论.解:(1)证明:因为a +b ≥0,所以a ≥-b . 因为f (x )在R 上单调递增,所以f (a )≥f (-b ). 同理,a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ). 两式相加即得:f (a )+f (b )≥f (-a )+f (-b ). (2)(1)中命题的逆命题为:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0. 该命题成立,下面用反证法证之. 假设a +b <0,那么: a +b <0⇒a <-b ⇒f (a )<f (-b ), a +b <0⇒b <-a ⇒f (b )<f (-a ), 所以f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故a +b ≥0.逆命题得证.10.已知a ,b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43.证明:因为a 3-b 3=a 2-b 2且a ≠b , 所以a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得 (a +b )2>a +b ,又a +b >0,所以a +b >1.要证a +b <43,即证3(a +b )<4,因为a +b >0,所以只需证明3(a +b )2<4(a +b ), 又a +b =a 2+ab +b 2, 即证3(a +b )2<4(a 2+ab +b 2), 也就是证明(a -b )2>0.因为a ,b 是不等正数,故(a -b )2>0成立.故a +b <43成立.综上,得1<a +b <43.11.已知a >0,b >0,且a +b =1,求证:⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254. 证明:要证⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254, 只需证ab +a 2+b 2+1ab ≥254,只需证4(ab )2+4(a 2+b 2)-25ab +4≥0, 只需证4(ab )2+8ab -25ab +4≥0,只需证4(ab )2-17ab +4≥0, 即证ab ≥4或ab ≤14,只需证ab ≤14,而由1=a +b ≥2ab ,所以ab ≤14显然成立,所以原不等式⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254成立. 已知α为锐角,且tan α=2-1,函数f (x )=x 2tan2α+x ·sin ⎝⎛⎭⎫2α+π4,数列{a n }的首项a 1=12,a n +1=f (a n ).(1)求函数f (x )的表达式;(2)求证:a n +1>a n ;(3)求证:1<11+a 1+11+a 2+…+11+a n<2(n ≥2,n ∈N *).解:(1)tan2α=2tan α1-tan 2α=2(2-1)1-(2-1)2=1,又因为α为锐角,所以2α=π4,所以sin ⎝⎛⎭⎫2α+π4=1,f (x )=x 2+x .(2)证明:a n +1=a 2n +a n ,因为a 1=12,所以a 2,a 3,…,a n 都大于0, 所以a 2n >0,所以a n +1>a n .(3)证明:1a n +1=1a 2n +a n =1a n (1+a n )=1a n -11+a n ,所以11+a n =1a n -1a n +1,所以11+a 1+11+a 2+…+11+a n =1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=2-1a n +1,因为a 2=⎝⎛⎭⎫122+12=34,a 3=⎝⎛⎭⎫342+34>1,又因为n ≥2,a n +1>a n ,所以n ≥2时,a n +1≥a 3>1,所以1<2-1a n +1<2,所以1<11+a 1+11+a 2+…+11+a n<2.。
39直接证明与间接证明
x1+x2 x1+x2 1 1 证明要证 [f(x1)+f(x2)]>f ,即证明2(tan x1+tan x2)>tan 2 , 2 2
x1+x2 1 sin x1 sin x2 >tan 只需证明 cos x +cos x , 2 2 1 2 sinx1+x2 sinx1+x2 只需证明 > . 2cos x1cos x2 1+cosx1+x2
b S,
b a c, 即证 因为,在三角形中,b<a+c 显然成立,
所以原不等式成立.
2.△ABC三边长a, b, c的倒数成等差数列.
求证: B 90.
证明: 2 1 1 , 2ac b(a c ).
b a
c a 2 c 2 b2 2ac b2 cos B ≥ 2ac 2ac
直接证明与间接证明
要点梳理
1.直接证明 (1)综合法
忆一忆知识要点
①定义:利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论成 立,这种证明方法叫做综合法. ②框图表示: P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其中 P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论).
综合法
2 7 在 x∈(a,+∞)上恒 例 1.(1)已知关于 x 的不等式 2x+ x-a 成立,求实数 a 的取值范围; (2)已知|x|<1,|y|<1,求证:|1-xy|>|x-y|.
2 2 3 7,∴2(x-a)+ 7-2a⇒7-2a 4,∴a 2 (1)∵2x+ x-a x-a (2)因为|1-xy|2-|x-y|2=(xy)2+1-x2-y2=(x2-1)(y2-1)>0 所以|1-xy|>|x-y|
形式推理的直接证明与间接证明方法
形式推理的直接证明与间接证明方法形式推理作为数理逻辑的重要分支,通过严密的推理方法,可以从已知的前提推导出合理的结论。
在形式推理中,直接证明和间接证明是两种常见的证明方法。
本文将就这两种方法进行详细探讨,并分析其适用场景和特点。
一、直接证明方法直接证明方法是一种简单直接的推理方式,通过从已知的前提出发,逐步推导到目标结论,以达到证明的目的。
下面以一个具体的例子来说明直接证明的思路和步骤。
假设要证明一个命题P蕴含命题Q,即P→Q。
首先,我们可以从已知P的前提出发,通过逻辑推理得到Q的结论,即推导出Q。
在直接证明中,推导过程中的每一步都必须建立在已知的前提和已证明的结论之上,每一步都要经过严格的逻辑推导,确保推导过程的准确性和有效性。
直接证明方法的优点是简单直观,容易理解和掌握,推理过程清晰明了。
然而,直接证明适用于简单明了的命题,对于复杂或者繁琐的命题,推导过程可能会非常冗长和复杂,不利于推理的简化和提高效率。
二、间接证明方法间接证明方法是一种通过反证法来证明命题的推理方式。
当我们希望证明一个命题P时,可以先假设P不成立,即假设非P为真,然后从这一假设出发,推导出矛盾的结论,再通过排除法得出非P为假,即P成立的结论。
反证法的基本思想是,通过假设命题的反面来推导出矛盾,从而可以得出命题成立。
这种方法在一些特定的证明中非常有效,特别是当直接证明非常困难或者不可行时。
与直接证明方法相比,间接证明方法的优点在于,可以简化复杂的推理过程,通过将问题转化为矛盾的形式,更容易找到解决方案。
然而,间接证明的缺点是需要注意推导步骤的准确性,避免出现漏洞或者错误的推理过程。
三、直接证明与间接证明的比较分析直接证明和间接证明是形式推理中常用的两种方法,它们各有优劣,适用于不同的推理场景。
直接证明方法适用于简单清晰的命题,推导过程相对直接明了,容易理解和掌握。
对于直接证明适用的命题,我们可以通过逐步推导的方式来得到结论。
直接证明与间接证明数学归纳法
直接证明与间接证明、数学归纳法 结 束
(2)若曲线 y=f(x)在点(1,f(1))处的切线与直线 x+y+1=0 垂
直,证明:xf-x1>0.
[解] 证明:由题可得,f′(x)=λln
x+λx+x 1-1.
由题设条件,得 f′(1)=1,即 λ=1.
要证…,只需证…,即证…
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
直接证明与间接证明、数学归纳法 结 束
考点贯通
抓高考命题的“形”与“神”
综合法
综合法是从已知条件出发,逐步推向结论,综合法的适 用范围是:
(1)定义明确的问题,如证明函数的单调性、奇偶性,求 证无条件的等式或不等式;
直接证明与间接证明、数学归纳法 结 束
2.[考点一](2017·广州调研)若 a,b,c 为实数,且 a<b<0,则
下列命题正确的是
()
A.ac2<bc2
B.a2>ab>b2
C.1a<1b
D.ba>ab
解析:a2-ab=a(a-b),
∵a<b<0,∴a-b<0,
∴a(a-b)>0,即 a2-ab>0,∴a2>ab.①
分析法 分析法是逆向思维,当已知条件与结论之间的联系不够 明显、直接,或证明过程中需要用到的知识不太明确、具体 时,往往采用分析法,特别是含有根号、绝对值的等式或不 等式,从正面不易推导时,常考虑用分析法.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
直接证明与间接证明、数学归纳法 结 束
所以 2·2r-q=2r-p+1.
(*)
又因为 p<q<r,
2011年高考试题分类考点30 直接证明与间接证明
考点30 直接证明与间接证明解答题1.(2011·湖南高考理科·T22)(13分) 已知函数f(x)=,3x g(x)=x+x . (Ⅰ)求函数h(x)=f(x)-g(x)的零点个数,并说明理由;(Ⅱ)设数列{a n }(*N n ∈)满足)0(1>=a a a ,f(a 1+n )=g(n a ),证明:存在常数M ,使得对于任意的*N n ∈,都有.M a n ≤【思路点拨】本题以函数为载体,考查函数的零点、方程的解、函数图象的交点之间的相互转化,兼顾考查导数的运用.进而以函数为载体引出数列再考查数列.函数和方程思想、数形结合思想、等价转化思想,由线问题转化为点问题.综合能力很强,要求学生有深层次的思维能力和逻辑推理能力.较好的数学素养是解决本题的关键. 【精讲精析】(I )由3()h x x x =-[0,)x ∈+∞,而(0)0h =,且(1)10,(2)60h h =-<=>,则0x =为()h x 的一个零点,且()h x 在12(,)内有零点,因此()h x 至少有两个零点 解法1:1221'()312h x x x -=--,记1221()312x x x ϕ-=--,则321'()64x x x ϕ-=+.当(0,)x ∈+∞时,'()0x ϕ>,因此()x ϕ在(0,)+∞上单调递增,则()x ϕ在(0,)+∞内至多只有一个零点.又因为(1)0,0ϕϕ><,则()x ϕ在内有零点,所以()x ϕ在(0,)+∞内有且只有一个零点.记此零点为1x ,则当1(0,)x x ∈时,1()()0<=x x ϕϕ;当1(,)x x ∈+∞时,1()()0>=x x ϕϕ; 所以,当1(0,)x x ∈时,()h x 单调递减,而(0)0h =,则()h x 在1(0,]x 内无零点; 当1(,)x x ∈+∞时,()h x 单调递增,则()h x 在1(,)x +∞内至多只有一个零点; 从而()h x 在(0,)+∞内至多只有一个零点.综上所述,()h x 有且只有两个零点.解法2:122()(1)h x x x x -=--,记122()1x x x ϕ-=--,则321'()22x x x ϕ-=+.当(0,)x ∈+∞时,'()0x ϕ>,因此()x ϕ在(0,)+∞上单调递增,则()x ϕ在(0,)+∞内至多只有一个零点.因此()h x 在(0,)+∞内也至多只有一个零点,综上所述,()h x 有且只有两个零点.(II )记()h x 的正零点为0x ,即300x x =.(1)当0a x <时,由1a a =,即10a x <.而332100a a x x =<=,因此20a x <,由此猜测:0n a x <.下面用数学归纳法证明: ①当1n =时,10a x <显然成立;②假设当(1)n k k =≥时,有0k a x <成立,则当1n k =+时,由33100k k a a x x +=+<+=知,10k a x +<,因此,当1n k =+时,10k a x +<成立.故对任意的*n N ∈,0n a x <成立.(2)当0a x ≥时,由(1)知,()h x 在0(,)x +∞上单调递增.则0()()0h a h x ≥=,即3a a ≥+从而3321a a a a ==≤,即2a a ≤,由此猜测:n a a ≤.下面用数学归纳法证明:①当1n =时,1a a ≤显然成立;②假设当(1)n k k =≥时,有k a a ≤成立,则当1n k =+时,由331k k a a a a +=+≤知,1k a a +≤,因此,当1n k =+时,1k a a +≤成立.故对任意的*n N ∈,n a a ≤成立.综上所述,存在常数0max{,}M x a =,使得对于任意的*n N ∈,都有n a M ≤.。
数学证明中的直接证明与间接证明
数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。
数学证明通常可以分为直接证明和间接证明两种形式。
本文将介绍直接证明和间接证明的含义、特点以及应用。
一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。
直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 列出已知条件和前提条件。
3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。
4. 分析并验证证明过程中的每一步是否严谨、正确。
5. 结束证明,得出所要证明的命题。
直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。
因此,直接证明在数学证明中广泛应用于各个领域。
例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。
定理:若a和b为偶数,则a+b为偶数。
证明:设a=2m,b=2n,其中m和n为整数。
则a+b=2m+2n=2(m+n)。
由于m和n为整数,所以m+n也是整数。
因此,a+b=2(m+n)为偶数。
证毕。
二、间接证明间接证明是一种通过反证法推导出结论的证明方法。
它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。
间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 假设所要证明的命题为假。
3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。
4. 推断出所要证明的命题为真。
5. 结束证明,得出所要证明的命题。
间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。
它常常用于证明一些与质数、无理数、等级等有关的命题。
例如,我们来证明一个著名的数学定理:根号2是一个无理数。
定理:根号2是一个无理数。
证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点30 直接证明与间接证明
一、选择题
1.(2014·山东高考理科·T4)
用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( )
A 、方程20x ax b ++=没有实根.
B 、方程20x ax b ++=至多有一个实根.
C 、方程20x ax b ++=至多有两个实根.
D 、方程20x ax b ++=恰好有两个实根.
【解题指南】本题考查了反证法,从问题的反面出发进行假设.一元二次方程根的个数为0,1,2.因此至少有一个实根包含1根或两根,它的反面为0根.
【解析】选 A.“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”的反面是“方程02=++b ax x 没有实根.”故选A.
2.(2014·山东高考文科·T4)与(2014·山东高考理科·T4)相同
用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( )
A 、方程20x ax b ++=没有实根.
B 、方程20x ax b ++=至多有一个实根.
C 、方程20x ax b ++=至多有两个实根.
D 、方程20x ax b ++=恰好有两个实根.
【解题指南】本题考查了反证法,从问题的反面出发进行假设.一元二次方程根的个数为0,1,2.因此至少有一个实根包含1根或两根,它的反面为0根.
【解析】选 A.“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”的反面是“方
程02=++b ax x 没有实根.”故选A.
二、解答题
3.(2013·北京高考理科·T20)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +…的最小值记为B n ,d n =A n -B n .
(1)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;
(2)设d 为非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列;
(3)证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1
【解题指南】(1)根据{d n }的定义求.
(2)充分性:先证明{a n }是不减数列,再利用定义求d n ; 必要性:先证明{a n }是不减数列,再利用定义证明等差. (3)可通过取特殊值和反证法进行证明.
【解析】(1)111211d A B =-=-=,222211d A B =-=-=,
333413d A B =-=-=,444413d A B =-=-=。
(2) 充分性:
若{}n a 为公差为d 的等差数列,则1(1)n a a n d =+-. 因为d 是非负整数,所以{}n a 是常数列或递增数列.
1(1)n n A a a n d ==+-所以,11n n B a a nd +==+, n n n d A B d =-=-所以(n=1,2,3,…).
必要性:
若(1,2,3,)n d d n =-= ,假设k a 是第一个使得10n n a a --<的项,则
1221k k k a a a a a --≤≤≤≤> ,1,k k k k A a B a -=≤所以,
110k k k k k k k d A B a B a a --=-=-≥->所以,这与0n d d =-≤矛盾.
所以{}n a 是不减数列.
1n n n n n d A B a a d +=-=-=-所以,即1n n a a d +-=, {}n a 所以是公差为d 的等差数列.
(3)①首先{}n a 中的项不能是0,否则1102d a =-=,与已知矛盾. ②{}n a 中的项不能超过2,用反证法证明如下: 若{}n a 中有超过2的项,设k a 是第一个大于2的项,
{}n a 中一定存在项为1,否则与1n d =矛盾.
当n k ≥时,2n a ≥,否则与1k d =矛盾.
因此存在最大的i 在2到k-1之间,使得1i a =, 此时2220i i i i d A B B =-=-≤-=,矛盾. 综上{}n a 中没有超过2的项. 综合①②,{}n a 中的项只能是1或2. 下面证明1有无数个,用反证法证明如下: 若k a 为最后一个1,则220k k k d A B =-=-=,矛盾. 因此1有无数个.
4.(2013·北京高考文科·T20)给定数列a 1,a 2,…,a n 。
对i=1,2,…n-l ,该数列前i 项的最大值记为A i ,后n-i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i -B i .
(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值.
(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:
d 1,d 2,…d n-1是等比数列。
(3)设d 1,d 2,…d n-1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n-1是等差数列。
【解题指南】(1)利用d i 的公式,求d 1,d 2,d 3的值.
(2)先求出{d n }的通项,再利用等比数列的定义证明{d n }是等比数列. (3)先证明{a n }是单调递增数列,再证明a n 是数列{a n }的最小项,最后证明{a n }是等差数列.
【解析】(1)111312d A B =-=-=,222413d A B =-=-=,333=7-1=6d A B =-。
(2)由12,,,(4)n a a a n ≥ 是公比大于1的等比数列,且a 1>0,可得{}n a 的通项为11n n a a q -=⋅且为单调递增数列。
于是当2,3,1k n =- 时,
111121
1111k k
k k k k k k k k d a a a q a q q d a a a q a q -+------===--为定值。
因此d 1,d 2,…d n-1构成首项112d a a =-,公比q 的等比数列。
(3)若d 1,d 2,…,d n-1是公差大于0的等差数列,则0<d 1<d 2<…<d n-1, 先证明a 1,a 2,…,a n-1是单调递增数列,否则,设a k 是第一个使得a k ≤a k-1成立的项,则
A k-1=A k ,
B k-1≤B k ,因此d k-1=A k-1-B k-1≥A k -B k =d k ,矛盾. 因此a 1,a 2,…,a n-1是单调递增数列.
再证明a n 为数列{a n }中的最小项,否则设a k <a n (k=1,2,…,n-1), 显然k ≠1,否则d 1=A 1-B 1=a 1-B 1≤a 1-a 1=0,与d i >0矛盾. 因而k ≥2,此时考虑d k-1=A k-1-B k-1=a k-1-a k <0,矛盾. 因此,a n 为数列{a n }中的最小项.
综上,d k =A k -B k =a k -a n (k=1,2,…,n -1),于是a k =d k +a n ,
从而a1,a2,…,a n-1是等差数列.
关闭Word文档返回原板块。