6整数规划
第5讲 整数规划、非线性规划、多目标规划1
第5讲整数规划、非线性规划、多目标规划一、整数规划1、概念数学规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
整数规划的分类:如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。
2)变量部分限制为整数的,称混合整数规划。
2、整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1原线性规划为21min x x z +=s.t.⎩⎨⎧≥≥=+0,05422121x x x x 其最优实数解为:01=x ,452=x ,45min =z ③有可行解(当然就存在最优解),但最优值变差。
例2原线性规划为21min x x Z +=s.t.⎩⎨⎧≥≥=+0,06422121x x x x 其最优实数解为:01=x ,232=x ,23min =z 若限制整数得:11=x ,12=x ,2min =z 。
(ii )整数规划最优解不能按照实数最优解简单取整而获得。
3、0-1整数规划0−1型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。
这时j x 称为0−1变量,或称二进制变量。
j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,且为整数所代替,是和一般整数规划的约束条件形式一致的。
在实际问题中,如果引入0−1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。
引入10-变量的实际问题:(1)投资场所的选定——相互排斥的计划例3某公司拟在市东、西、南三区建立门市部。
拟议中有7个位置(点))7,,2,1( =i A i 可供选择。
规定在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;在南区:由76,A A 两个点中至少选一个。
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
数模常用算法系列--整数线性规划(分枝定界法)、整数非线性规划(蒙特卡洛法)
数模常⽤算法系列--整数线性规划(分枝定界法)、整数⾮线性规划(蒙特卡洛法)整数线性规划求解----分枝定界法什么是整数规划?线性规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
⽬前所流⾏的求解整数规划的⽅法,往往只适⽤于整数线性规划。
⽬前还没有⼀种⽅法能有效地求解⼀切整数规划。
整数规划的分类- 变量全限制为整数时,称(完全)整数规划- 变量部分限制为整数时,称混合整数规划什么是分枝定界法原理如下:设有最⼤化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优⽬标函数必是A的最优⽬标函数z^*的上界\overline{z};⽽A的任意可⾏解的⽬标函数值将是z^*的⼀个下界\underline z ,分枝定界法就是将B的可⾏域分成⼦区域的⽅法。
逐步减⼩\overline z和增⼤\underline z最终求到z^*本质就是个分治回溯,逼近最⼤值的算法。
Matlab算法如下:(强烈警告,(不会验证)由于⽐较懒,并未对算法正确性验证,思路上验证了⼀下没问题就码上来了,如果有错,请⼀定联系~~)% c,A,Aeq,Beq,LB,UB,是linprog函数的相关参数,知道了它们就可以求出对应的线性规划最优解,% now是⽬前已经知道的整数解的最⼤值function y = control(c,A,Aeq,Beq,LB,UB,now)ret = 0;[x,fval] = linprog(c,A,Aeq,Beq,LB,UB); % x是最优解的解向量,fval是对应的函数值if fval < nowy = fval;return;end % 如果得到的当前最优解fval⼩于已知的now,那说明最优整数解不在这个区间,则剪枝返回。
for i = 1 : length(x)if rem(x(i),1) ~= 0 % rem(x,1)如果返回值不为0,则表⽰是⼩数。
整数规划求解题技巧
整数规划求解题技巧整数规划(Integer Programming,IP)是线性规划(Linear Programming,LP)的扩展,它要求所有变量的取值必须是整数。
整数规划常用于求解实际问题中的最优决策,具有广泛的应用领域,如运输、生产、资源分配等。
下面我将介绍一些整数规划求解题的技巧。
1. 转化为纯整数规划:将实际问题转化为纯整数规划问题可以简化模型。
纯整数规划要求所有变量的取值都必须是整数,没有连续变量的限制。
通过建立合适的约束条件和目标函数,可以将问题转化为纯整数规划问题进行求解。
2. 松弛约束:对于某些约束条件,如果将其从等式形式变为不等式形式且松弛一些限制,可以增加问题的可行解空间。
这样可以使得模型具有更多的可行解,从而提高求解效率。
3. 分枝定界法:分枝定界法是一种常用的求解整数规划问题的方法。
它将整数规划问题划分为多个子问题,通过不断划分和求解这些子问题,逐步逼近最优解。
分枝定界法通常包括两个步骤:分枝和定界。
分枝是指将问题分解为多个子问题,每个子问题都是原问题的一个可能解。
定界是指通过对子问题的求解,确定上界和下界,从而缩小搜索范围。
4. 启发式算法:启发式算法是一种常用的求解整数规划问题的方法,它通过启发式规则和策略来指导搜索过程。
启发式算法不保证找到最优解,但可以在较短时间内找到近似最优解。
常见的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
5. 接近最优策略:在实际问题中,有时求解整数规划问题的时间复杂度非常高,甚至是NP-hard难题。
面对这种情况,可以采取接近最优的策略。
即对于一个相对较大的整数规划问题,先求解一个近似最优解,然后逐步优化,以此来降低问题的复杂度。
6. 问题分解:对于大规模的整数规划问题,可以将问题分解成多个较小的子问题。
通过对这些子问题的求解,可以逐步逼近整体问题的最优解。
问题分解可以提高求解效率,同时可以充分利用问题的结构特点。
7. 约束松弛法:约束松弛法是一种将整数规划问题转化为线性规划问题进行求解的方法。
lingo整数规划
lingo整数规划整数规划是运筹学中的一种优化方法,用于解决决策问题中存在离散决策变量的数学规划问题。
在整数规划中,决策变量的取值只能是整数。
整数规划的应用非常广泛,包括生产计划、资源分配、货物运输等领域。
下面将介绍一些与整数规划相关的术语和技巧。
1. 最优解:整数规划的目标是找到使目标函数最大或最小的整数解。
最优解指的是在满足约束条件的前提下,使目标函数的取值达到最优的决策变量取值。
2. 整数线性规划:整数线性规划是整数规划的一种特殊情况,其中目标函数和约束条件都是线性的。
3. 整数非线性规划:整数非线性规划是整数规划的另一种形式,其中目标函数或约束条件中至少有一项是非线性的。
4. 分枝定界法:分枝定界法是求解整数规划问题的一种常用方法。
它通过将整数规划问题划分为多个子问题,并对每个子问题进行求解,直到找到最优解。
5. 割平面法:割平面法是求解整数规划问题的另一种方法。
它通过加入额外的线性不等式约束,逐步削减可行解空间,直到找到最优解。
6. 整数规划松弛:整数规划松弛是指将整数规划问题中的整数约束条件松弛为连续变量的约束条件,从而将整数规划问题转化为线性规划问题。
7. 整数规划可行解:整数规划问题的可行解是指满足所有约束条件的整数取值。
8. 整数规划解的整数性:整数规划解的整数性是指整数规划问题的解是否满足整数约束条件。
9. 混合整数规划:混合整数规划是一类更一般的整数规划问题,其中决策变量可以是整数或连续变量。
10. 整数规划的应用:整数规划在各种领域中都有广泛的应用,包括生产计划、资源分配、货物运输等。
通过合理的建模和求解技巧,整数规划可以帮助企业优化决策,提高效益。
总之,整数规划是一种应用十分广泛的优化方法,通过对决策变量的整数约束进行建模,帮助解决实际问题中存在的离散决策变量的优化问题。
第6讲整数规划、非线性规划模型
一、模型准备 该问题是在原料数量一定的限制条件下,求商店生产三种口味 蛋糕各多少时,可获得最大收益. 二、模型假设 1.假设在生产过程中没有材料的浪费. 2. 假设生产的面包能全部售出, 且不考虑影响销售价格的因素. 三、变量假设 设商店生产草莓、蓝莓、柠檬三种口味的蛋糕的数量分别为
x1 , x2 , x3 ,获得的总收益为 R 元.
x=intvar(1,2); C=[240 378]; a=[1 0;0 1;1 1];b=[8 6 10]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b')+set(96*x(1)+120*x(2)>=720); solvesdp(F,f) double(f)
double(x)
整
数
规
划
最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
如果线性规划中的所有变量均为整数时,称 这类问题为线性整数规划问题。 整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。 如果决策变量的取值只能为0或1,则这样的 规划问题称为0-1规划。
double(f)
double(x)
非线性规划
非线性规划问题的一般数学模型:
min
f ( x) h j ( x) 0, j 1, 2, , l.
s.t. gi ( x) 0, i 1, 2,, m,
其中, x E n ,
f (x) 为目标函数,
g i ( x), h j ( x) 为约束函数,这些函数中至少有
最优化模型(2)
一、一般的线性规划模型 二、整数规划模型
6第六章 整数规划(3-4节)
max z 7 x1 9 x 2 6 x1 3 x 2 x 3 x 4 35 7 x1 x 2 x 、x 0, 整 数 1 2
x 3 6 x1 3 x 2 x 4 35 7 x1 x 2
第36页
将上式代入割平面约束:
优解为止。
第2页
一、割平面的概念
通过举例来阐述割平面的概念 。
例:
maxz 7 x1 9 x 2 x1 3 x 2 6 7 x1 x 2 35 x 、x 0, 整 数 1 2
第3页
x1
C 3
2 D
B A 4
5
7
x2
可行域:ABCD
1 1 最优解:C点,其坐标为 ( x1 , x2 ) (4 ,3 ) 2 2
第27页
解:(1)利用单纯型法求解原问题的松弛问题 B :
cj
CB XB b
7
x1
9
x2
0
x3
0
x4
θi
9
7
x2
x1
7/2
9/2
0
1
1
0
7/22
-1/22
1/22
3/22
c j– z j
0
0
-28/11 -15/11
第28页
(2)构造割平面约束 x1 = 9/2 = 4 + 1/2 x2 = 7/2 = 3 + 1/2
N
4
5
7
x2 Q
割去的部分 EFGCE 中不包含任何整数解。
第6页
新增加的线性约束条件切割掉了原问题可行域的一
部分,但该可行域内不包含任何整数可行解,所有
整数规划建模方法及应用
整数规划建模方法及应用什么是整数规划?整数规划(Integer Programming,简称IP)是在满足一定的约束条件下,求解使目标函数达到最优的一组整数决策变量的数学规划问题。
与线性规划(Linear Programming,简称LP)不同的是,LP中的决策变量可以取任意实数值,而IP中的决策变量只能取整数值。
因此,整数规划问题通常更为复杂,求解难度更大。
整数规划广泛应用于各种实际问题中,例如制造业生产计划、物流配送优化、网络优化、人员调度等。
整数规划建模方法线性整数规划线性整数规划(Integer Linear Programming,简称ILP)是指目标函数和约束条件都是线性的整数规划问题。
一个典型的线性整数规划问题可以表示为:$max\\{cx|Ax\\le b,x\\in Z^n\\}$其中,$A\\in R^{m*n}$,$b\\in R^m$,$c\\in R^n$,$x\\inZ^n$表示整数决策变量。
指派问题是一个经典的线性整数规划问题。
它是一个求解如下二元匹配问题的整数规划模型:$min\\{cx|cx\\ge\\{1,...,1\\},x_{ij}\\in\\{0,1\\},i=1,...,n,j=1,...,m\\}$其中,c是n∗m维的代价系数向量,x ij表示第i个任务分配给第j个工人的决策变量,x ij=1表示第i个任务分配给第j个工人,x ij=0表示不分配。
非线性整数规划非线性整数规划(Nonlinear Integer Programming,简称NLIP)是指目标函数或/和约束条件中存在非线性项的整数规划问题。
一个典型的非线性整数规划问题可以表示为:$max\\{f(x)|g(x)\\le0,x\\in Z\\}$其中,f(x)是目标函数,g(x)代表约束条件,x是整数决策变量。
整数规划求解方法前向分支定界法前向分支定界法(Branch and Bound,简称B&B)是一种广泛应用于整数规划求解的算法。
求解整数规划的方法
求解整数规划的方法整数规划是一种最优化问题,其解决方案限制了决策变量必须取整数值。
整数规划的应用非常广泛,涉及到许多实际问题,如制造业生产调度、物流优化、资源分配等。
在本文中,我们将介绍几种常用的整数规划方法。
一、分支定界法分支定界法是一种常用的整数规划求解方法,它通过不断将解空间分割为子问题并求解这些子问题,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则选择一个变量将其分割为两个子问题,并分别求解这两个子问题。
4. 对每个子问题,递归地应用上述步骤,直到找到一个整数解或者确定当前子问题的上界小于当前最优解。
5. 最终,得到整数规划的最优解。
分支定界法的优点是能够保证找到最优解,但其缺点是计算复杂度较高,特别是在问题规模较大时,会导致计算时间过长。
二、整数规划的近似算法当整数规划问题规模较大时,找到精确解的计算复杂度可能变得非常高,此时可以考虑使用近似算法来求解。
近似算法的思想是通过放松整数约束条件,将整数规划问题转化为一个线性规划问题,并对线性规划问题进行求解。
然后,根据线性规划问题的解,对整数规划问题进行修正,得到整数规划问题的一个近似解。
三、割平面法割平面法是一种常用的整数规划求解方法,它通过添加一系列线性不等式(割平面)来逐步减小可行解空间,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则根据当前松弛解所对应的目标函数值,添加一系列线性不等式(割平面)来限制可行解空间。
4. 对添加了割平面约束的线性规划问题,继续求解,并更新最优解。
5. 重复以上步骤,直到找到一个整数解或者确定当前问题的上界小于当前最优解。
整数规划
i=1 j=1
整数规划的特点及应用
例1 现有资金总额为B。可供选择的投资项目有n个,项目 j所需投资额和预期收益分别为aj和cj(j=1,2,..,n),此 外由于种种原因,有三个附加条件: 若选择项目1,就必须同时选择项目2。反之不一定
7
项目3和4中至少选择一个;
项目5,6,7中恰好选择2个。 应该怎样选择投资项目,才能使总预期收益最大。
14
x2
3
⑴
⑵
(3/2,10/3)
标函数值最大,即为Z=4。
3
x1
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法
15
割平面法
匈牙利法(指派问题)
分支定界法
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下一步; 2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。 新的松弛问题具有特征:当原问题是求最大值时,目标值是分枝问题的上界;当 原问题是求最小值时,目标值是分枝问题的下界。 3) 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数值大于 (max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若还存在非整数 解并且目标值大于(max)整数解的目标值,需要继续分枝,再检查,直到得到最优 解。
整数规划的特点及应用
min z =
6
邋
4
4
c ij x ij + [1200y 1 + 1500y 2 ]
ì x 11 + x 21 + x 31 + x 41 = 350 ï ï ï ï x 12 + x 22 + x 32 + x 42 = 400 ï ï ï ï x 13 + x 23 + x 33 + x 43 = 300 ï ï ï x 14 + x 24 + x 34 + x 44 = 150 ï ï ï ï ï x 11 + x 12 + x 13 + x 14 = 400 s .t . í ï x 21 + x 22 + x 23 + x 24 = 600 ï ï ï x 31 + x 32 + x 33 + x 34 = 200y 1 ï ï ï ï x 41 + x 42 + x 43 + x 44 = 200y 2 ï ï ï x ij ? 0 (i , j 1, 2, 3, 4) ï ï ï ï y = 0,1 (i = 1, 2) ï ï î i
整数规划
第二章整数规划§1 概论定义规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
目前所流行的求解整数规划的方法,往往只适用于整数线性规划。
目前还没有一种方法能有效地求解一切整数规划。
1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1o 变量全限制为整数时,称纯(完全)整数规划。
2o 变量部分限制为整数的,称混合整数规划。
1.2 整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1 原线性规划为 其最优实数解为:45min ,45,021===z x x 。
③有可行解(当然就存在最优解),但最优解值变差。
例2 原线性规划为 其最优实数解为:23min ,23,021===z x x 。
若限制整数得:2m in ,1,121===z x x 。
(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。
求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。
(ii )割平面法—可求纯或混合整数线性规划。
(iii )隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。
(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(v)蒙特卡洛法—求解各种类型规划。
下面将简要介绍常用的几种求解整数规划的方法。
§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。
通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。
在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。
第六章 运筹学 整数规划案例
第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。
1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。
3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。
整数规划
货物
甲
每件体积
195
每件重量 每件利润
4 2
乙
273
40
140
3
托运限制 1365
解:设甲乙托运数为x1,x2件,则 max z= 2x1+3x2
s.t. 195x1+273x2<=1365
4x1+40x2<=140 x1<=4 x1,x2>=0,且x1,x2为整数。
2x1+3x2=14.66 3
整数规划
案例
有一旅行团从 v0 出发要遍游城市 v1 , v 2 ,...,v n ,已知从 v i 到 v j 的旅费 为cij ,问应如何安排行程使总费 用最小?
整数规划
模型
变量—是否从i第个城市到第j个城市 xij 1,0;
约束 每个城市只能到达一次、离开一次
x
j 0 n
n
ij
整数规划
背包问题
背景
案例 模型
整数规划
背景
邮递包裹 把形状可变的包裹用尽量少的车辆运走 旅行背包 容量一定的背包里装尽可能的多的物品
整数规划
实例
某人出国留学打点行李,现有三个旅行包,容 积大小分别为1000毫升、1500毫升和2000毫 升,根据需要列出需带物品清单,其中一些物 品是必带物品共有7件,其体积大小分别为400、 300、150、250、450、760、190、(单位毫 升)。尚有10件可带可不带物品,如果不带将 在目的地购买,通过网络查询可以得知其在目 的地的价格(单位美元)。这些物品的容量及 价格分别见下表,试给出一个合理的安排方案 把物品放在三个旅行包里。
整数规划问题的数学算法设计与实现
整数规划问题的数学算法设计与实现整数规划问题是数学中的一个重要分支,它在实际问题中有着广泛的应用。
整数规划问题的数学算法设计与实现是解决这类问题的关键步骤,本文将对整数规划问题的数学算法进行探讨。
一、整数规划问题的定义与特点整数规划问题是指在约束条件下,目标函数为线性函数,决策变量为整数的优化问题。
与线性规划问题相比,整数规划问题更加复杂,其解空间是离散的,求解难度较大。
整数规划问题的特点在于,它能够描述现实生活中的离散决策问题。
例如,在生产调度中,我们可能需要决定生产多少个产品,而不能生产部分产品。
这就是一个典型的整数规划问题。
二、整数规划问题的常用算法1. 分支定界法分支定界法是解决整数规划问题最常用的算法之一。
它通过将整数规划问题分解成一系列子问题,并对子问题进行求解,最终得到整数规划问题的最优解。
分支定界法的基本思想是通过不断分割问题的解空间,将问题转化为一系列线性规划问题。
通过求解线性规划问题,可以得到问题的下界和上界,从而缩小解空间,提高求解效率。
2. 割平面法割平面法是另一种常用的整数规划问题求解算法。
它通过引入一系列线性不等式,将问题的解空间切割成更小的区域,从而提高求解效率。
割平面法的基本思想是通过求解线性规划问题,得到问题的一个可行解。
然后,通过添加一系列线性不等式,将可行解排除,直到得到整数规划问题的最优解。
三、整数规划问题的实现技巧1. 线性松弛线性松弛是整数规划问题求解中常用的技巧之一。
它通过将整数规划问题转化为线性规划问题,求解线性规划问题的松弛问题,得到问题的一个可行解。
线性松弛的基本思想是将整数规划问题的整数约束放松,将决策变量变为连续变量。
通过求解松弛问题,可以得到问题的一个可行解。
然后,通过对可行解进行修正,得到整数规划问题的最优解。
2. 启发式算法启发式算法是整数规划问题求解中另一种常用的技巧。
它通过引入一系列启发式规则,对问题进行近似求解,得到问题的一个近似最优解。
第6章-整数规划 ppt课件
ppt课件
14
ppt课件
莫高瑞割平面法
• 割平面法,即通过添加约束条件,逐步切割可行区域的边角 余料,让其整数解逐步的露到边界或顶点上来,只要整数解 能曝露到顶点上来,则就可以利用单纯形法求出来。
• 关键是通过添加什么样的约束条件,既能让整数解往边界露, 同时又不要切去整数解,这个条件就是Gomory约束条件。
数值等于z的A的那个整数可行解;否则进行第四步。
10
10
ppt课件
第四步:在B的最优解中任选一个(或最远离整数要求的变量),不妨 设此变量为xj,以[bj]表示小于bj的最大整数,构造以下两个约束条件,并 加入问题B,得到B的两个分枝B1和B2。
xj ≤[bj]和xj ≥ [bj]+1
第五步:求解B1和B2 。修改A问题的最优目标函数值z*的上下界,z 和 z。
4. 再求解这些子区域上的线性规划问题。
5. 不断缩小整数规划上下界的距离,最后得整数规划的最优解。
9
ppt课件
用分枝定界法求解目标函数值最大的整数规划的步骤,我们将求解的整数规划 z 问题称为A,将与其相对应的线性规划问题称为பைடு நூலகம்:
第一步:求解问题B,可得以下情况之一:
1.B没有可行解,则A也没有可行解,求解过程停止。
1/ 2x2 2 / 3x3 x5 1/ 2
例6-5 19
ppt课件
6.3 0-1规划
0 1型整数规划是整数规划中的特殊情形,它的变量x j 仅取值 0 或 1。这时x j 称为0 1变量,或称二进制变量。 0-1规划的分支定界法
引入0-1变量的实际问题 ①双态变量的归一化(变量) ②不相容约束的归一化(约束条件) ③分段线性函数的归一化(目标函数)
整数规划问题的近似算法设计与分析
整数规划问题的近似算法设计与分析整数规划问题是数学规划中的一种重要问题,在实际应用中具有广泛的应用价值。
然而,由于整数规划问题的求解过程中涉及到的变量必须取整数值,导致问题变得相当复杂。
为了解决这一类问题,许多学者提出了近似算法,并对其进行了深入的研究与分析。
一、背景介绍整数规划是一类在约束条件下需要寻找整数解的优化问题。
它具有许多重要的应用,例如任务分配、旅行商问题、资源分配等。
然而,由于整数规划问题是NP困难问题,因此很难找到多项式时间复杂度的精确求解算法。
为了解决这一问题,近似算法成为了一种有效的解决方案。
二、贪心算法贪心算法是一种常用的近似算法,它的基本思想是通过每一步的局部最优选择来达到整体的最优解。
在整数规划问题中,贪心算法可以通过将实数解取整来求得整数解。
然而,贪心算法并不能保证找到最优解,只能得到一个近似解。
三、基于松弛线性规划的算法基于松弛线性规划的算法是另一种常见的近似算法。
它的思想是先对整数规划问题进行线性规划松弛,得到一个最优解,然后通过某种方法将松弛解转化为整数解。
这种方法通常需要额外的约束条件或启发式算法来保证最优解的整数性。
四、近似比分析对于设计的近似算法,我们需要对其性能进行评估。
常用的评估指标是近似比,即算法得到的解与最优解之间的差距。
近似比可以用一个常数来表示,例如2-近似算法表示算法得到的解与最优解之间的差距不超过最优解的两倍。
五、应用案例整数规划问题的近似算法在实际应用中取得了显著的成果。
以任务分配问题为例,通过设计有效的近似算法,可以实现任务与资源之间的快速匹配,提高工作效率。
类似地,旅行商问题的近似算法可以帮助旅行商优化路径规划,减少时间与成本。
六、总结与展望整数规划问题的近似算法在实际应用中具有重要的意义。
贪心算法和基于松弛线性规划的算法是常用的近似算法,它们分别通过局部最优和线性规划松弛来求解整数规划问题。
近似比分析是评估算法性能的重要工具,可以帮助我们了解算法的效果与性能。
整数规划的产生和发展报告
整数规划的产生和发展报告整数规划(Integer Programming,简称IP)是运筹学中的重要分支之一,主要研究目标函数和约束条件皆为整数的最优化问题。
整数规划的发展经历了多个阶段,从最早的线性规划发展到目前应用广泛的混合整数规划和二次整数规划等。
整数规划最早起源于20世纪40年代的工程优化问题。
在实际问题中,人们发现很多问题的决策变量只能取整数值,线性规划并不能完全满足这些实际需求。
因此,研究者开始探索能够解决这些整数限制问题的方法。
最早的整数规划方法是通过枚举法,对所有可能的整数解进行遍历,找出最优解。
然而,这种方法在计算复杂度上具有指数级的增长,对于大规模问题求解效率较低。
为了提高整数规划问题的求解效率,研究者陆续提出了一系列剪枝法和分支策略。
其中,分支定界法(Branch and Bound)是应用最广泛的方法之一、分支定界法利用线性规划松弛问题的解来提供一个整数规划问题的上界,并通过将解空间划分为多个子问题来逐步缩小最优解的范围。
通过剪枝和分支策略,可以有效地减少无效的,进而提高整数规划问题的求解效率。
随着计算机技术的发展,整数规划的求解能力得到了显著提高。
1990年代,随机和启发式算法开始应用于整数规划问题的求解中。
这些方法通过引入随机性和局部策略,能够在可接受的时间内找到较优的整数解。
典型的随机算法包括模拟退火算法、遗传算法等。
这些算法被广泛应用于组合优化等领域,并取得了良好的效果。
近年来,整数规划研究向更复杂的问题领域发展,如混合整数规划(Mixed Integer Programming,简称MIP)和二次整数规划(Quadratic Integer Programming)。
混合整数规划是同时包含整数变量和实数变量的最优化问题,广泛应用于物流优化、资源分配等领域。
二次整数规划则是目标函数中包含二次项,并且变量要求为整数的最优化问题。
这些问题在实际应用中具有较高的难度,需要研究者不断提出新的求解方法和算法来解决。
第6章 python 整数规划与非线性规划
目前,没有一种方法可以有效求解一切整数规划。常见的整数规划求解 算法有:
(1)分枝定界法:可求纯或混合整数线性规划; (2)割平面法:可求纯或混合整数线性规划; (3)隐枚举法:用于求解0 1整数规划,有过滤隐枚举法和分枝隐枚 举法; (4)匈牙利法:解决指派问题(0 1整数规划特殊情形); (5)蒙特卡罗法:求解各种类型规划。
i1
xij
0或1,
i, j 1,2,
, n,
第 13 页
(6.1)
第6章
6.1整数规划
第 14 页
这是一个纯0 1整数规划模型。 若将模型(6.1)中的cij组成一个n阶方阵C (cij )nn,则称C 为效率矩阵。 这样,标准指派问题中的工作效率就可以很方便地用矩阵C 来表示,并且效 率矩阵C 与标准指派问题一一对应。同样地,模型(6.1)的最优解也可以用 n阶方阵 X *的形式来表示,我们称之为指派问题的最优解方阵。由于标准指 派问题要求“每项工作需且仅需一个人去完成,每个人需完成且仅需完成一 项工作”,故最优解方阵一定是一个置换矩阵,即矩阵的每一行、每一列都 恰好有一个“1”,其余元素均为 0。
标准指派问题的一般提法是:拟分派n个人 A1, A2 , , An去完成n项工作 B1, B2 , , Bn,要求每项工作需且仅需一个人去完成,每个人需完成且仅需完 成一项工作。已知人 Ai 完成工作Bj的时间或费用等成本型指标值为cij,则应 如何指派才能使总的工作效率最高?
第6章
6.1整数规划
第6章
6.1整数规划
第 15 页
标准指派问题的数学模型表现为0 1整数规划的形式,当然可以通过整 数规划的分支定界法或0 1整数规划的隐枚举法来求得最优解。但标准指派 问题的数学模型具有独特的结构,因此,为提高求解的效率,1955 年美国 数学家 H. W. Kuhn 根据匈牙利数学家 D. König 关于矩阵中独立零元素定 理,提出了一个求解标准指派模型的有效算法—匈牙利算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max Z (或 min Z ) c j x j
j 1
n
n aij x j bi (i 1.2 m) j 1 x 0 (j 1.2 n) 且部分或全部为整数 j
依照决策变量取整要求的不同,整数规划可分为纯整 数规划、全整数规划、混合整数规划、0-1整数规划。
用 图 解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
3
⑴
⑵
(3/2,10/3)
现求整数解(最优解): 如用“舍入取整法”可得 到4个点即(1,3) (2, 3)(1,4)(2,4)。显然, 它们都不可能是整数规划 的最优解。
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。
只要求出(LP3)和(LP4)的最优解即可。
⑵
先求(LP3),如图所示。 此时D 在点取得最优解。
x2
A 3 B C
⑴
(18/11,40/11)
D ⑶
即 x1=12/5≈2.4, x2 =3,
Z(3)=-87/5≈-17.4<Z≈-19.8
但x1=12/5不是整数,可继 续分枝。即 3≤x1≤2。
单 销地 厂址 价
A 1 A2 Am
销量
B1 c11 c21 cm1 b1
B2 Bn c12 c1n a1 c22 c2 n a2 cm 2 cmn am b2 bn
生产 能力
建设 费用
f1 f2 fm
设: xij 表示从工厂运往销地的运量(i=1.2…m、 j=1.2…n), 1 在Ai建厂 又设 Yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
(三)、整数规划与线性规划的关系
从数学模型上看整数规划似乎是线 性规划的一种特殊形式,求解只需在线 性规划的基础上,通过舍入取整,寻求 满足整数要求的解即可。但实际上两者 却有很大的不同,通过舍入得到的解 (整数)也不一定就是最优解,有时甚 至不能保证所得倒的解是整数可行解。 举例说明。
例:设整数规划问题如下
用图解法求(LP)的最 优解,如图所示。
x1=18/11, x2 =40/11 Z(0) =-218/11≈(-19.8) 即Z 也是(IP)最小值的下 限。 对于x1=18/11≈1.64,
⑵
x2
3
⑴
(18/11,40/11)
⑶
3
x1
取值x1 ≤1, x1 ≥2
对于x2 =40/11 ≈3.64,取值x2 ≤3 ,x2 ≥4
i 1
n xij ai yi (i 1.2 m) j 1 m xij b j (j 1.2 n) i 1 x 0, y 0 或 1 (i 1.2 m、j 1.2 n) i ij
例三、机床分配问题 设有m台同类机床,要加工n种零件。已知各种零件 的加工时间分别为a1,a2,…an ,问如何分配,使各机床 的总加工任务相等,或者说尽可能平衡。
只要求出(LP5)和(LP6)的最优解即可。
先求(LP5),如图所示。 x2 此时E 在点取得最优解。
即 x1=2, x2 =3, Z(5)=-17
零件 方 个数 式 零件
一、整数规划的模型
B1
Bn
零 件 毛坯数
A1 Am
a11 a1n am1 amn
b1 bm
设:xj 表示用Bj (j=1.2…n) 种方式下料根数 模型: min Z x j
j 1 n
n a ij x j bi (i 1.2 m ) j 1 x 0 (j 1.2 n)且为整数 j
j 1 n
n aij x j bi (i 1.2 m) ( IP ) j 1 x 0, ( j 1.2 m)且为整数 j
max Z c j x j
n j 1
整数问题的松弛问题:
n aij x j bi (i 1.2 m) ( LP ) j 1 x j 0, ( j 1.2 m)
min Z max( a j x1 j , n a j x2 j a j xmj )
j 1 j 1 j 1
n
n
n
m (j 1.2 n) xij 1 i 1 xij 0 或 1 (i 1.2 m, j 1.2 n)
(二)、整数规划的数学模型
x1
Z(2) =-56/3≈-18.7 ∵Z2 < Z1=-16 ∴原问题有比 (-16)更小的最优解,但 x2 不是整数,故利用 3 ≥ 10/3≥4 加入条件。
加入条件: x2≤3, x2≥4
有下式:
min Z x1 5 x2 min Z x1 5 x2 x1 x2 2 x1 x2 2 5 x 6 x 30 5 x 6 x 30 2 2 1 1 4 4 x1 x1 ( IP 4) ( IP 3) 2 2 x1 x1 4 3 x2 x2 x , x 0且为整数 x , x 0且为整数 1 2 1 2
先将(LP)划分为(LP1)和(LP2),取x1 ≤1, x1 ≥2
有下式:
min Z x1 5 x2 min Z x1 5 x2 x1 x2 2 x1 x2 2 5 x 6 x 30 5 x 6 x 30 2 2 1 1 ( IP1) x1 4 ( IP 2) x1 4 x1 x1 1 2 x1 , x2 0且为整数 x1 , x2 0且为整数
设: 分配第i台机床加工第j种零件; xij= (i=1.2…m,j=1.2…n) 0 相反。 于是,第i台机床加工各种零件的总时间为: 1
a x
ห้องสมุดไป่ตู้j 1
n
j ij
(i 1.2 m)
又由于一个零件只能在一台机床上加工,所以有
x
i 1
m
ij
1 (i 1.2 m)
因此,求xij ,使得
例二、某公司计划在m个地点建厂,可供选择的地点 有A1,A2…Am ,他们的生产能力分别是a1,a2,…am(假设 生产同一产品)。第i个工厂的建设费用为fi (i=1.2…m),又有n个地点B1,B2, … Bn 需要销售这种产品, 其销量分别为b1.b2…bn 。从工厂运往销地的单位运费 为Cij。试决定应在哪些地方建厂,即满足各地需要, 又使总建设费用和总运输费用最省?
现在只要求出(LP1)和(LP2)的最优解即可。
先求(LP1),如图所示。 x2 此时B 在点取得最优解。
x1=1, x2 =3, Z(1)=-16
3
⑵ A B
⑴
(18/11,40/11)
C ⑶
找到整数解,问题已探 明,此枝停止计算。 同理求(LP2) ,如图所示。1
在C 点取得最优解。
1 3
即x1=2, x2 =10/3,
整
数
规 划
(Integer Programming)
整数规划的模型
分支定界法 割平面法 0-1 整数规划
指派问题
(一)、整数规划问题实例
例一、合理下料问题
设用某型号的圆钢下零件A1, A2,…,Am 的毛坯。在一根圆钢 上下料的方式有B1,B2, … Bn 种,每种下料方式可以得到各 种零件的毛坯数以及每种零件的需要量,如表所示。问怎 样安排下料方式,使得即满足需要,所用的原材料又最少?
1、先不考虑整数约束,解( IP )的松弛问题( LP ), 可能得到以下情况之一: ⑴.若( LP )没有可行解,则( IP )也没有可行解,停止 计算。 ⑵.若( LP )有最优解,并符合( IP )的整数条件,则 ( LP )的最优解即为( IP )的最优解,停止计算。 ⑶.若( LP )有最优解,但不符合( IP )的整数条件,转 入下一步。为讨论方便,设( LP )的最优解为:
3、分枝:
在( LP )的最优解 X(0)中,任选一个不符合整数条件 的变量,例如xr= br(不为整数),以 br 表示不超过
br 的最大整数。构造两个约束条件 xr≤ br 和xr≥ br+1
将这两个约束条件分别加入问题( IP ) ,形成两个子 问题( IP1)和( IP2 ) ,再解这两个问题的松弛问题( LP1) 和( LP2) 。 4、修改上、下界:按照以下两点规则进行。 ⑴.在各分枝问题中,找出目标函数值最大者作为 新的上界; ⑵.从已符合整数条件的分枝中,找出目标函数值 最大者作为新的下界。 5、比较与剪枝 :
求(LP4),如图所示。 无可行解,不再分枝。
1
1
3
x1
在(LP3)的基础上继续分枝。加入条件3≤x1≤2有 下式: min Z x1 5 x2 min Z x1 5 x2 x1 x2 2 x1 x2 2 5 x 6 x 30 5 x 6 x 30 2 1 2 1 4 4 x1 x1 ( IP 6) x1 2 ( IP 5) x1 2 x2 3 x2 3 3 x1 2 x1 x1 , x2 0且为整数 x1 , x2 0且为整数
max Z x1 x2 14 x1 9 x2 51 6 x1 3 x2 1 x , x 0且为整数 1 2
首先不考虑整数约束,得到线性规划问题(一般称 为松弛问题)。 max Z x x
1 2
14 x1 9 x2 51 6 x1 3 x2 1 x1 , x2 0