线性代数检测(1)及参考答案
华中科技大学线性代数试题及答案 (1)
3.设三阶方阵A的行列式,则= A/3
4.n元齐次线性方程组AX=0有非零解的充要条件是 5.设向量,=正交,则 . .
19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个 不同的解,则它的通解为 . 20.设A是m×n矩阵,A的秩为r(<n),则齐次线性方程组Ax=0的一个基础 解系中含有解的个数为 . 21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,αβ)= . 22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征 值为 . 23.设矩阵A=,已知α=是它的一个特征向量,则α所对应的特征值为 . 24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为 . 三、计算题(本大题共7小题,每小题6分,共42分) 25.设A=,B=.求(1)ABT;(2)|4A|. 26.试计算行列式. 27.设矩阵A=,求矩阵B使其满足矩阵方程AB=A+2B. 28.给定向量组α1=,α2=,α3=,α4=. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。 29.设矩阵A=. 求:(1)秩(A); (2)A的列向量组的一个最大线性无关组。 30.设矩阵A=的全部特征值为1,1和-8.求正交矩阵T和对角矩阵D,使T1AT=D. 31.试用配方法化下列二次型为标准形 f(x1,x2,x3)=, 并写出所用的满秩线性变换。 四、证明题(本大题共2小题,每小题5分,共10分) 32.设方阵A满足A3=0,试证明E-A可逆,且(E-A)-1=E+A+A2. 33.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2是其导出组Ax=0 的一个基础解系.试证明 (1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b的解; (2)η0,η1,η2线性无关。
线性代数试题及详细答案
线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
线性代数试题库(1)答案
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数测试试卷及答案
线性代数测试试卷及答案线性代数(A 卷)⼀﹑选择题(每⼩题3分,共15分)1. 设A ﹑B 是任意n 阶阵,那么下列等式必成⽴的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+2. 如果n 元齐次线性程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4. 设实⼆次型11212222(,)(,)41x f x x x x x ??= ? ?-的矩阵为A ,那么( )(A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ?-?? (D) 1001A ??=5. 若阵A 的⾏列式0A =,则( ) (A) A 的⾏向量组和列向量组均线性相关 (B)A 的⾏向量组线性相关,列向量组线性⽆关 (C) A 的⾏向量组和列向量组均线性⽆关 (D)A 的列向量组线性相关,⾏向量组线性⽆关⼆﹑填空题(每⼩题3分,共30分)1 如果⾏列式D 有两列的元对应成⽐例,那么该⾏列式等于;2. 设100210341A -?? ?=- ? ?-??,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是⾮齐次线性程组AX b =的解,若λαµβ+也是它的解, 那么λµ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则⾏列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为; 9. 若⼆次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值围为;10. 设A 为n 阶阵,且满⾜2240A A I +-=,这⾥I 为n 阶单位矩阵,那么1A -= . 三﹑计算题(每⼩题9分,共27分)1. 已知210121012A ?? ?= ? ,100100B ?? ?= ? ???,求矩阵X 使之满⾜AX X B =+.2. 求⾏列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的⼀个最⼤⽆关组和秩.四﹑(10分)设有齐次线性程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=??-++=??++-=? 问当λ取值时, 上述程组(1)有唯⼀的零解﹔(2)有⽆穷多个解,并求出这些解. 五﹑(12分)求⼀个正交变换X PY =,把下列⼆次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑(6分)已知平⾯上三条不同直线的程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于⼀点的充分必要条件为0a b c ++=.线性代数(A 卷)答案⼀﹑1. D 2. C 3. B 4. A 5. A⼆﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解由AX X B =+得1()X A I B -=-. (2分) 下⾯求1()A I --. 由于110111011A I ?? ?-= ? ???(4分)⽽1()A I --=011111110-?? ?- ? ?-??. (7分)所以10111001()11101111100011X A I B --?????? ??? ?=-=-=- ??? ? ??? ?--??????. (9分)2. 解1234234134124123=10234103411041210123123413411014121123= (4分) 123401131000440004-=-- (8分) 160= (9分) .3. 解由于3112341234011301131301053307330733r r ------ - ------324212345011300212700424r r r r -??---+ ?--?? 43123401132002120000r r -??-- +(6分) 故向量组的秩是 3 ,123,,ααα是它的⼀个最⼤⽆关组。
线性代数复习题带参考答案(一)
线性代数考试题库及答案第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则( )。
成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中( )。
个行向量线性无关必有r a )( 个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是( )n r A r a <=)()(n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组s ααα,,,21 线性无关的充分条件是( ))(a s ααα,,,21 都不是零向量)(b s ααα,,,21 中任一向量均不能由其它向量线性表示 )(c s ααα,,,21 中任意两个向量都不成比例 )(d s ααα,,,21 中有一个部分组线性无关6. n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( ))(a s ααα,,,21 中至少有一个零向量 s b ααα,,,)(21 中至少有两个向量成比例 s c ααα,,,)(21 中任意两个向量不成比例s d ααα,,,)(21 中至少有一向量可由其它向量线性表示7. n 维向量组)3(,,,21n s s ≤≤ααα 线性无关的充要条件是( )s k k k a ,,,)(21 存在一组不全为零的数使得02211≠++s s k k k ααα s b ααα,,,)(21 中任意两个向量都线性无关s c ααα,,,)(21 中存在一个向量,它不能被其余向量线性表示 s d ααα,,,)(21 中任一部分组线性无关8. 设向量组s ααα,,,21 的秩为r ,则( )s a ααα,,,)(21 中至少有一个由r 个向量组成的部分组线性无关 s b ααα,,,)(21 中存在由1+r 个向量组成的部分组线性无关 s c ααα,,,)(21 中由r 个向量组成的部分组都线性无关 s d ααα,,,)(21 中个数小于r 的任意部分组都线性无关9. 设s ααα,,,21 均为n 维向量,那么下列结论正确的是( ))(a 若02211=++s s k k k ααα ,则s ααα,,,21 线性相关 )(b 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则对任意不全为零的数s k k k ,,,21 ,都有02211=++s s k k k ααα)(d 若000021=++s ααα ,则s ααα,,,21 线性无关10. 已知向量组4321,,,αααα线性无关,则向量组( )14433221,,,)(αααααααα++++a 线性无关 14433221,,,)(αααααααα----b 线性无关 14433221,,,)(αααααααα-+++c 线性无关 14433221,,,)(αααααααα--++d 线性无关11. 若向量β可被向量组s ααα,,,21 线性表示,则( ))(a 存在一组不全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(b 存在一组全为零的数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(c 存在一组数s k k k ,,,21 使得s s k k k αααβ ++=2211 )(d 对β的表达式唯一12. 下列说法正确的是( ))(a 若有不全为零的数s k k k ,,,21 ,使得02211=++s s k k k ααα ,则s ααα,,,21 线性无关)(b 若有不全为零的数s k k k ,,,21 ,使得02211≠++s s k k k ααα ,则s ααα,,,21 线性无关)(c 若s ααα,,,21 线性相关,则其中每个向量均可由其余向量线性表示 )(d 任何1+n 个n 维向量必线性相关13. 设β是向量组T )0,0,1(1=α,T )0,1,0(2=α的线性组合,则β=( )T a )0,3,0)(( T b )1,0,2)(( T c )1,0,0)(( T d )1,2,0)((14. 设有向量组()T4,2,1,11-=α,()T2,1,3,02=α,()T 14,7,0,33=α,()T0,2,2,14-=α,()T 10,5,1,25=α,则该向量组的极大线性无关组为( )321,,)(αααa 421,,)(αααb 521,,)(αααc 5421,,,)(ααααd15. 设T a a a ),,(321=α,T b b b ),,(321=β,T a a ),(211=α,T b b ),(211=β,下列正确的是( );,,)(11也线性相关线性相关,则若βαβαa 也线性无关;线性无关,则若11,,)(βαβαb 也线性相关;线性相关,则若βαβα,,)(11c 以上都不对)(d二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁。
线性代数检测(1)参考答案
《线性代数》检测题一. 填空、选择题(每小题3分,共24分)1. 已知α,β,γ为三维列向量,行列式D=|α β γ|=2, 则行列式|3β γ α+β|= ___________。
2. 设三阶方阵A 的特征值为-1,1,3,则1*, .A A -==3. 实二次型2221231231213(,,)222f x x x x x x tx x x x =++-+正定时,t 应满足的 条件是 .4. 设矩阵()nm ija A ⨯=,则0=Ax 仅有零解的充分必要条件是【 】(A) A 的行向量组线性相关 (B) A 的行向量组线性无关 (C) A 的列向量组线性相关 (D) A 的列向量组线性无关 5. 设,A B 为可逆矩阵,则下列说法中不正确的是【 】 (A) ()11AA --= (B) ()111A B A B ---+=+ (C) ()()1110A A λλλ--=≠ (D) ()111AB B A ---=6.设三阶方阵,A B 满足16,A BA A BA -=+且131417A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪⎝⎭,则()B = (A) 321⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 347⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 123⎛⎫ ⎪ ⎪ ⎪⎝⎭(D) 743⎛⎫ ⎪ ⎪ ⎪⎝⎭7.设A 、B 都为n 阶非零矩阵,且AB=0,则A 和B 的秩【 】A. 必有一个等于零.B. 都小于n.C. 一个小于n,一个等于n.D. 都等于n.8. 设12,,,r ααα 为n 维列向量,下列命题不正确的是【 】A. 若对任意的不全为零的数12,,,r k k k ,都有10ri ii k α=≠∑,则12,,,r ααα 线性无关.B. 若12,,,r ααα 线性相关,对任意一组不全为零的数12,,,r k k k ,都有10ri ii k α==∑.C. 12,,,r ααα 线性无关的充要条件是矩阵(12,,,r ααα )的秩等于r.D. 若12,,,r ααα 线性无关,则其中任意两个向量都线性无关. 二.解答题(每小题10分,共40分)1.计算行列式11111234149161827642.已知101210,325A ⎛⎫⎪= ⎪ ⎪--⎝⎭求()1E A --.3. 设1,P AP -=Λ其中1410,,1102P ---⎛⎫⎛⎫=Λ= ⎪ ⎪⎝⎭⎝⎭求()32.A A A E ϕ=+- 4. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求:(1)向量组1234,,,αααα的秩;(2)向量组1234,,,αααα的一个最大无关组;(3)将最大无关组之外的其余向量用此最大无关组线性表示.三.(13分)当a 为何值时,1232312341333(1)0x x x ax x x x a x --+=⎧⎪-=⎨⎪+++=⎩无解、有唯一解、有无穷多解?并在有解时求其所有解。
线性代数试题1及答案
线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。
线性代数试题库(1)答案 (2)
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C )A .A+B B .aA+BC .aA+bBD .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C ) A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数习题及答案1
线性代数测试题(线性代数测试题(--)一、单项选择题(每小题3分,共15分。
)1.1.已知已知B A ,是同阶方阵,下列等式中正确的是 【【 】 A. ||||||B A AB = ; B. T T T B A AB =)(; C.111)(---=B A AB ; D. kk k B A AB =)(.2.2.设设A 是n m ´矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 【 】A.n A r =)(;B.n A r <)(;C.0||=A ;D.n m > .3.3.设设A 是45´矩阵矩阵,,则下列命题正确的是 【 】A.A 的行向量组线性无关;B.A 的行向量组线性相关;C.A 的列向量组线性无关;D.A 的列向量组线性相关的列向量组线性相关..4.4.设设A 是n 阶可逆矩阵,l 是A 的一个特征值,则*A 的一个特征值是 【 】 A.n A ||1-l ; B.||1A -l ; C.||A l ; D.n A ||l .5.5.设设n 阶方阵A 与B 相似,则下列命题不正确的是 【 】A.A 与B 有相同的特征值;B.)()(B r A r =;C.||||B A =;D.A 与B 有相同的特征向量有相同的特征向量. .二、填空题(每小题3分,共15分。
) 1.1.已知已知)1,3,2(),1,1,1(),,2,1(321=-==a a a t ,当t t 时,时,321,,a a a 线性无关线性无关.. 2.yy y y y y f 212112)(---=中3y 的系数是的系数是 .3. .3. .3.设设A 为3阶方阵,A 的特征值为的特征值为-1-1-1,,1,2,则|3|1-A = . 4.设321,,a a a 是三元线性方程组b Ax =的三个解,且2)(=A r ,÷÷÷øöçççèæ=+40221a a ,÷÷÷øöçççèæ=-11132a a ,则b Ax =的通解为 5.设二次型31212322212224x x x tx x x x f ++++=是正定的,则t 的范围是的范围是三、(本题10分)已知÷÷÷øöçççèæ-=221011324A ,矩阵X满足X A AX 2+=,求矩阵X四、(本题10分)求下列向量组的秩和一个最大无关组求下列向量组的秩和一个最大无关组. .)3,4,3,4(,)3,2,1,1(,)1,1,3,2(,)1,1,1,1(4321-=-=--==a a a a . 五、(本题14分) 已知线性方程组ïïîïïíì=+-=-=-=-.,,,41433221k kx x k x kx k x kx k x kx (1)(8分)k 为何值时,方程组有惟一解为何值时,方程组有惟一解? ? ? 无解?无穷多解?无解?无穷多解?无解?无穷多解?(2)(6分)在有无穷多解的情况下求出其通解.六、(本题10分)已知三阶方阵A 的特征值为的特征值为-1-1-1,,1,2.2.设设3223A A I B +-=. (1)(5分)求矩阵A 的行列式及A 的秩;的秩;(2)(5分)求矩阵B 的特征值及其相似对角矩阵的特征值及其相似对角矩阵. .七、(本题14分)设úúúûùêêêëé=011101110A ,求正交矩阵P 使得L =-AP P 1为对角矩阵为对角矩阵. . 八、证明题(本大题2小题,每小题6分,共12分)分)1.1.向量组向量组321,,a a a 线性无关,试证向量组32121132,2,a a a a a a +++ 线性无关线性无关.. 2.2.设设A 为n m ´矩阵矩阵,,B 为m n ´矩阵矩阵,,且n m >. . 证明:证明:.0||=AB线性代数测试题答案线性代数测试题答案((一)一、单项选择题(每小题3分,共15分) 1.A 1.A;; 2.B 2.B;; 3.B 3.B;; 4.B 4.B;; 5.D. 二、填空题(每小题3分,共15分)1.2¹t; 2.-4 2.-4;; 3.227-; 4.)()1,1,1()2,0,1(R k k T T Î+; 5.22<<-t .三、(10分)解:由X A AX 2+=得A X I A =-)(2 ((1分)分)30210113222=--=-|I A | ((2分)所以A I A X 12--=)( (2分)分)÷÷÷øöçççèæ--=--3423111012021//I A )( ((3分)故÷÷÷øöçççèæ--=35432230241//X . . ((2分)分) 四、(10分)解:对A 进行初等行变换进行初等行变换÷÷÷÷÷øöçççççèæ-@÷÷÷÷÷øöçççççèæ----=00001100011041213311421131314121A ((5分)此向量组的秩为:分)此向量组的秩为:3 3 3 ((2分)分) 它的一个最大无关组为.,,321a a a ((3分)分)五、(14分)解:解:(1)(1)(1)系数矩阵系数矩阵A 的行列式为的行列式为10011000100014-=----=k kk k k |A | ((5分)当1±¹k 时,方程组有惟一解;时,方程组有惟一解; ((1分)分) 当1=k 时,4)(,3)(==Ab r A r ,方程组无解;,方程组无解; (1分)当1-=k 时,3)()(==Ab r A r ,方程组有无穷多解;(1分)分)(2)(2)对增广矩阵进行行初等变换:对增广矩阵进行行初等变换:÷÷÷÷øöççççèæ-@÷÷÷÷øöççççèæ------------=0000011100010101100111001111001011010011)Ab ( ((3分)分) \原方程组的通解为:)R k (),,,(k ),,,(x T T Î--+=11110101 ((3分)分)六、(10分)解:解:(1)(1)2-=A (3分)3=)A (r ((2分)分) (2)(2)设设l 为A 的特征值,x 为A 的对应于l 的特征向量,则:的特征向量,则: x x A A I Bx )231()23(3232l l +-=+-=B \的特征值为的特征值为-4-4-4,,0,5 5 ((4分)分)B 的相似对角矩阵为:÷÷÷øöçççèæ-504 . . ((1分)分) 七、解:0)2()1(1111112=+-+=---=-l l l l l l I A 得到特征值2,121=-=l l (3分)11-=l 时,÷÷÷øöçççèæ÷÷÷øöçççèæ=+000000111~111111111I A ,对应于11-=l 的两个正交的特征向量为÷÷÷øöçççèæ-÷÷÷øöçççèæ-101,121 ,单位化得÷÷÷øöçççèæ-÷÷÷øöçççèæ-10121,12161 (6分)22=l 时,÷÷÷øöçççèæ--÷÷÷øöçççèæ---=-000110101~2111211122I A ,对应于22=l 的一个特征向量为÷÷÷øöçççèæ111,位化得÷÷÷øöçççèæ11131(3分)正交阵÷÷÷÷øöççççèæ--=3/12/16/13/106/23/12/16/1P . . ((2分)分)八、(共 12分)1.1.证:令证:令0)32()2(321321211=+++++a a a a a a x x x ((2分)分)整理得:03)22()(332321321=+++++a a a x x x x x x(1分) 由于321,,a a a 线性无关,所以有:.0,0,0321===x x x (2分)则向量组32121132,2,a a a a a a +++线性无关线性无关. . . ((1分)分) 证:A 为n m ´矩阵,B 为m n ´矩阵,且n m >,n AB r n B r n A r £££\)(,)(,)( (4分)分) 又AB 为m 阶方阵,则0||=AB . (2分)分)。
线性代数模拟题一及参考答案
《线性代数》模拟题(一)及参考答案一、填空题1. 行列式3465202081001000D == .2. 若行列式1112132122233132332a a a a a a a a a =,则111112132121222331313233623623623a a a a a a a a a a a a ++=+ . 3. 设三维向量(3,1,2)T α=-,(3,1,4)T β=,若向量γ满足23αγβ+=,则γ= .4. 设A 是三阶方阵,将A 的第一行与第二行交换得到矩阵B ,则||A B -= .5. 三阶方阵A 的逆矩阵的行列式的值为6,则行列式|2|A -= .6. 设200020102A ⎛⎫⎪= ⎪ ⎪⎝⎭,矩阵X 满足关系式2AX E A X +=+,则X = .7. 设4阶方阵520021000012011A ⎛⎫⎪ ⎪= ⎪- ⎪⎝⎭,则A 的逆阵1A -= .8. 设A 是43⨯矩阵,且A 的秩()2R A =,又102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()R AB = .9. 设n 阶矩阵A 中所有元素都为(0)a a ≠,则()R A = .10. 已知1(1,4,3)T α=,2(2,,1)T t α=-,3(2,3,1)T α=-线性相关,则t = .11. 设P 是n 阶正交阵,x 是n 维单位向量,则向量y Px =的长度||||Px = .12. 设1(1,1,1)T α=,2(1,0,1)T α=-,3α是正交向量组,则3α= . 13. 若λ是n 阶方阵A 的特征值,则23A E -的特征值是 .14.设三阶方阵A 有三个不同的特征值,其中两个特征值分别为2,3,已知||48A =,则A 的第三个特征值为 . 15. 已知四阶矩阵A 与B 相似,A 的特征值为2,3,4,5,E 为四阶单位矩阵,则||B E -= .16. 设二阶实对称矩阵A 的特征值为2,2-,则2A = .17.设A 为三阶实对称矩阵,1(1,2,3)T α=和2(2,2,)T k α=分别为A 的对应于不同特征值的特征向量,则数k = . 18.已知三阶实对称矩阵A 的特征多项式为||(1)(2)(5)E A λλλλ-=-+-,则二次型123(,,)T f x x x x Ax =的正惯性指数为 . 19. 二次型222(,,)(1)2f x y z x a y z yz =+++-为正定,则a 应满足条件 .20. 设三阶实对称矩阵A 满足22A A O +=,且()2R A =,若kE A +为正定矩阵,则数k 应满足的条件是 . 二、单项选择题1. 设A 为n 阶方阵,则下列方阵中为对称矩阵的是()A T A A -. ()B (T CAC C 为任意n 阶方阵). ()C T AA . ()D ()(T AA B B 为n 阶方阵). 答 【 】2. 设,A B 是两个n 阶方阵,则下列结论中正确的是()A ()k k k AB A B =. ()B ||||A A -=. ()C ()T T T BA B A =. ()D 22()()E A E A E A -=-+. 答 【 】3. 设齐次线性方程组55510A x ⨯⨯=有非零解,则必有()A ()1R A =. ()B ()5R A =. ()C ||0A =. ()D ||0A ≠. 答【 】 4.设向量组123,,ααα线性无关,则下列向量组中线性无关的是()A 123,2,3ααα. ()B 122331,,αααααα---.()C 1123,2,αααα-. ()D 1223123,,2ααααααα+-+-. 答【 】 5.设向量组1(1,2,3)T α=,2(0,1,2)T α=,3(0,0,1)T α=,(1,3,6)T β=,则下列结论中正确的是()A 123,,,αααβ线性无关. ()B β不能由123,,ααα线性表示.()C β能由123,,ααα线性表示,且表示法唯一. ()D β能由123,,ααα线性表示,但表示法不唯一. 答 【 】 6. 设有向量组1(1,1,2,4)T α=-,2(0,3,1,2)T α=,3(3,0,7,14)T α=,4(1,2,2,0)T α=-,5(2,1,5,10)T α=,则该向量组的最大无关组是()A 123,,ααα. ()B 124,,ααα. ()C 125,,ααα. ()D 1245,,,αααα. 答 【 】7. 设A 是正交矩阵,j α是A 的第j 列,则j α与j α的内积等于()A 0. ()B 1. ()C 2. ()D 3. 答【 】 8. 设三维列向量组123,,ααα线性无关,则123(,,)A ααα=是()A 奇异矩阵. ()B 对称矩阵. ()C 正交矩阵. ()D 可逆矩阵. 答【 】 9. 设二阶矩阵A 满足|2|0E A +=,|3|0A E -=,则||A =()A 32-. ()B 23-. ()C 23. ()D 32. 答【 】 10. 设矩阵10000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与对角阵10000001y ⎛⎫⎪Λ= ⎪ ⎪-⎝⎭相似,则参数,x y 的值分别为()A 0,1x y ==. ()B 1,0x y ==. ()C 0,1x y ==-. ()D 1,0x y =-=. 答【 】 11. 设11012021A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭是正定矩阵,则a 的取值范围是()A 5a <. ()B 5a >. ()C 5a <-. ()D 5a >-. 答 【 】12. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有一个非零特征值为()A 1. ()B 2. ()C 3. ()D 4. 答 【 】 13.设202A ⎛= ⎝⎭,则行列式2|22|A A E --的值为()A 0. ()B 4. ()C 16. ()D 32. 答【 】14. 设2λ=是非奇异矩阵A 的一个特征值,则矩阵211()3A -有一个特征值等于()A43. ()B 34. ()C 12. ()D 14. 答 【 】 15. 设222123123121323(,,)224f x x x x x x x x x x x x =+-+--,令123P ⎛⎫⎪= ⎪ ⎪⎝⎭,则f 经线性变换x Py =后所得到的二次型为 ()A 222123121323494624y y y y y y y y y +-+--. ()B 2221231323264y y y y y y y +---. ()C 22121213446y y y y y y ++-. ()D 222123132349624y y y y y y y +---. 答 【 】 二、计算题:1. 计算下列四阶行列式:(1) 101221010101142D --=--. (2) x a a aax a a D a ax a a a ax=.2. 已知矩阵(2,1,0)A =,(1,2,3)B =,2()51f x x x =-+,求T A B 及()T f A B .3. 设B 为三阶矩阵,且满足2AB A B =+,又301030103A ⎛⎫⎪= ⎪ ⎪-⎝⎭,求矩阵B .4. 求解齐次线性方程组12341234123420,3630,51050.x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩5. 设有非齐次线性方程组123412342341,23,3,x x x x x x x x t x x x +++=⎧⎪+++=⎨⎪-++=⎩问t 取何值时,方程组有解?在方程组有解时,求其通解.6. 已知向量组:A 1(1,2,3)T α=-,2(0,2,5)T α=-,3(1,0,2)T α=-,(1)求该向量组的秩,判别向量组的线性相关性,并求一个最大无关组.(2)将3α表为12,αα的线性组合. 7.设三阶方阵A 的特征值为11λ=,20λ=,31λ=-,所对应的特征向量分别为1(1,2,2)T p =,2(2,2,1)T p =-,3(2,1,p =-- 2)T ,求A .8. 设011101110A -⎛⎫⎪=- ⎪ ⎪⎝⎭,(1) 求一个可逆矩阵P ,使1P AP -=Λ为对角阵. (2) 写出A 对应的二次型123(,,)f x x x .9. 设二次型22212312323(,,)4332f x x x x x x x x =+++. (1) 用矩阵记号写出二次型f ; (2) 求一个正交变换,把二次型化为标准形;(3) 判别二次型的正定性.10. 已知2221231231213(,,)4222f x x x x x x tx x x x =+++-为正定二次型, (1) 确定t 的取值范围; (2) 写出f 的规范形.11. 求二次型2212312121323(,,)3222f x x x x x x x x x x x =--++的规范形. 四、证明题:1. 设123,,ααα是齐次线性方程组0Ax =的一个基础解系,证明:122331,,αααααα+++也是该方程组的一个基础解系.2. 证明:三维向量空间3R 中向量集合{(,,)|0}TV x y z x y z =++=是向量空间,并求出它的维数和一个基. 3. 设α是n 阶矩阵A 的属于特征值λ的特征向量,证明:1P α-一定是1P AP -的属于特征值λ的特征向量.《线性代数》模拟题(一)参考答案一、填空题1.10.2.36.3.(3,5,8)T .4.0.5.43-.6.300030103⎛⎫ ⎪ ⎪ ⎪⎝⎭.7.12002500001230011-⎛⎫ ⎪-⎪ ⎪ ⎪-⎝⎭. 8.2. 9.1. 10.3-. 11.1. 12.(1,2,1)(0)T k k -≠. 13.23λ-. 14.8. 15.24. 16.4004⎛⎫⎪⎝⎭. 17.2-. 18.1. 19.0a >. 20.2k >.二、单项选择题1.C .2.D .3.C .4.A .5.C .6.B .7.B .8.D .9.B . 10.A . 11.B . 12.C . 13.B . 14.B . 15.A . 二、计算题:1.解(1) (法一)(展开法则)221210121121122101221(1)202202(1)(1)22200256142506142D ++-----==⨯--=-=-⨯-=---.(法二)(上三角)10121012101210120125012501250125222112201010026001300130054005400540011D --------=====⨯=-------.(2) 333003000(3)00(3)()300003000x a a a a x a a a a x a x ax a a x a D x a x a x a x a x a ax a x a a x ax a a axx a++-+-===+-=+-+--+-.2.解 22461(1,2,3)1230000T A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.记T C A B =,则2()()5T f A B f C C C E ==-+,其中2()()()T T T T C A B A B A BA B === ()44T T T BA A B A B C ==,故100246146()45010123113001000001T f A B C C E E C ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-+=-=-=--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.解 (法一)由题设,得2AB B A -=,即(2)A E B A -=,其中1012010101A E ⎛⎫⎪-= ⎪ ⎪-⎝⎭,220A E -=≠,知1(2)A E --存 在,则1(2)B A E A -=-.又*101(2)020101A E -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,从而1*10111(2)(2)02022101A E A E A E --⎛⎫ ⎪-=-= ⎪- ⎪⎝⎭.故 10130120110200300302101103102B --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.(法二)由题设,得2AB B A -=,即(2)A E B A -=,其中1012010101A E ⎛⎫ ⎪-= ⎪ ⎪-⎝⎭.由101301101301101301100201(2,)010030~010030~010030~010030101103002204001102001102A E A -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,知2A E -可逆,且1201(2)030102B A E A --⎛⎫⎪=-= ⎪ ⎪⎝⎭.4.解 1211121112013613~0040~00105101500400000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,则124223442,,0,,x x x x x x x x =-+⎧⎪=⎪⎨=⎪⎪=⎩故通解为12122110(,)0001x c c c c R -⎛⎫⎛⎫⎪ ⎪⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 5.解 111111111111111(,)2311~01112~01112011130111300001B A b t t t t ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==------ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,当1t =时,()()2R A R B ==,方程组有无穷多解.此时1111110224~01113~011130000000000B ⎛⎫⎛⎫ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则1342343344224,3,,,x x x x x x x x x x =--+⎧⎪=+-⎪⎨=⎪⎪=⎩故通解为1212224113(,)100010x c c c c R --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.6.解 (1)设123101(,,)220352A ααα-⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,则101101~022~011055000A --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,知()23R A =<,故该向量组的秩为2,123,,ααα线性相关.由于12(,)2R αα=,即12,αα线性无关,故12,αα即为所求的一个最大无关组.(2)若令31122k k ααα=+,则由101~011000A -⎛⎫⎪- ⎪ ⎪⎝⎭,知121,1k k =-=.故所求的表示式为312ααα=-+.7.解 因A 的特征值互不相等,所以A 与对角阵101⎛⎫⎪Λ= ⎪⎪-⎝⎭相似,即有可逆矩阵P ,使1P AP -=Λ,其中123(,,)P p p p = 122221212-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭.故1122112210212210211122102212012210129932121212202212220A P P ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=Λ=---=-= ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 8.解 (1)由22111101001111111(1)(2)(1)(2)111112A E λλλλλλλλλλλλλλλλ------=--=--=---=-+-=--+---,求得A 的 特征值为12λ=-,231λλ==.当12λ=-时,解(2)0A E x +=.由2111012121~011112000A E -⎛⎫⎛⎫ ⎪ ⎪+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得基础解系为1111ξ-⎛⎫⎪=- ⎪ ⎪⎝⎭.当231λλ==时,解()0A E x -=.由111111111~000111000A E ---⎛⎫⎛⎫ ⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得基础解系为2110ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭,3101ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭.故所求的一个可逆矩阵为123111(,,)110101P ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭,并使1211P AP --⎛⎫ ⎪=Λ=⎪ ⎪⎝⎭. (2) 123121323(,,)222f x x x x x x x x x =-++. 9.解 (1) 112323400(,,)031013T x f x Ax x x x x x ⎛⎫⎛⎫⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭.(2) 2240031031(4)(4)(68)(2)(4)13013A E λλλλλλλλλλλλ---=-=-=--+=-----,求得A 的特征值为12λ=,234λλ==.当12λ=时,解(2)0A E x -=.由2001002011~011011000A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得基础解系为1011ξ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,将1ξ单位化,得1011p ⎛⎫⎪=-⎪⎪⎭. 当234λλ==时,解(4)0A E x -=.由0000114011~000011000A E -⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得基础解系为2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,将23,ξξ单位化,得2(1,0,0)T p =,3T p =.故正交矩阵为123010(,,)00P p p p ⎛⎫ ==- ⎝,并使1244P AP -⎛⎫⎪=Λ= ⎪ ⎪⎝⎭.所求的一个正交变换为11223301000x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=-⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝,标准形为222123244f y y y =++. (3) 由于f 的标准形的三个系数全为正(或f 的矩阵A 的特征值全为正),故f 为正定二次型. 10.解 (1) f 的矩阵1140102t A t -⎛⎫⎪= ⎪ ⎪-⎝⎭,则21404t t t =->,211111||404242042102100t t t A t t t t t -===-=->--,即有 22t -<<及t <<t的取值范围为t <<(2) 由于三元二次型f 为正定二次型,所以f 的正惯性指数为3,f 的规范形为222123f y y y =++. 11.解 222222221231231223123232231232233(,,)2()32[()]()32[()]44f x x x x x x x x x x x x x x x x x x x x x x x x x =---+=-----+=---+- 2212323()(2)x x x x x =-+--,据此知原二次型的规范形为2212f y y =-.注 本题中二次型的标准形(即合同标准形)也是2212f y y =-.四、证明题:1. 证明 (法一)设有数123,,k k k ,使112223331()()()0k k k αααααα+++++=,即131122233()()()0k k k k k k ααα+++++=.因123,,ααα线性无关,所以1312230,0,0.k k k k k k +=⎧⎪+=⎨⎪+=⎩ 此方程组的系数行列式为10111020011=≠,则方程组只有零解,即1230k k k ===.因此122331,,αααααα+++线性无关.依题设知123,,ααα是0Ax =的三个线性无关的解向量,则依解向量的性质知12,αα+2331,αααα++也是该方程组的三个解向量.因122331,,αααααα+++是0Ax =的三个线性无关的解向量,故1223,αααα++31,αα+是该方程组的一个基础解系.(法二)122331123101(,,)(,,)110011ααααααααα⎛⎫⎪+++= ⎪ ⎪⎝⎭,记为B AK =.因20K =≠,知K 可逆,所以()()R B R A =.因矩阵A 的列向量组123,,ααα线性无关,则()3R A =,从而()3R B =.故B 的列向量组122331,,αααααα+++线性无关. 依题设知123,,ααα是0Ax =的三个线性无关的解向量,则依解向量的性质知122331,,αααααα+++也是该方程组的三个解 向量.因122331,,αααααα+++是0Ax =的三个线性无关的解向量,故122331,,αααααα+++是该方程组的一个基础解系. 2.解 证明:因齐次线性方程组0x y z ++=的系数矩阵的秩()13R A =<,知0x y z ++=有非零解,所以集合V 是由x y ++0z =的所有解向量构成的非空集合.又根据齐次线性方程组的解向量的性质知,对,a b V ∀∈,有a b V +∈;k R ∀∈,有ka V ∈,即集合V 对向量的加法及乘数封闭,故集合V 是向量空间.因为0x y z ++=的系数矩阵的秩()1R A =,所以0x y z ++=的基础解系中有312-=个线性无关的解向量,即向量空间V 的基中含有2个向量,故向量空间V 的维数dim 2V =.由此知0x y z ++=的任两个线性无关的解向量都是V 的基.3.证明 依题设,有A αλα=,则11P A P αλα--=,即111P APP P αλα---=,111()()P AP P P αλα---=,故依特征值和特征 向量的定义,1P α-一定是1P AP -的属于特征值λ的特征向量.。
线性代数试卷1(完整版带答案,可直接作为考试卷)
(3)当 时,增广矩阵为
~
,此方程组有无穷多解。。。。。。。。。。12分
4、解: )= ~ …….6分
所以 是最大无关组(8分),且 , ……..12分
5.解因 ,故对应的齐次方程组Ax=0的基础解系由
1个非零解构成,且 都是Ax=0的解, 即是Ax=0的基础解系,
所以Ax=b的通解为 (共12分,酌情给分)
1、 ,
2、
3、1,—34、 5、-32,0
二、选择题:(每小题4分,共20分)
1、 2、 3、A4、A5、B
三.计算题(每题12分,共60分)
1解
以上步骤每步3分,共12分。
2.
以上步骤每步4分,共12分。
3、解:因,方程组有唯一解;。。。。。。。。。4分
(2)当 时,方程组的增广矩阵为
1.齐次线性方程组 只有零解,则 应满足条件______。
(A) (B) (C) (D)
2.设A是4阶矩阵,且 ,则 。
(A)16 (B)32 (C)8 (D) 0
3.已知非齐次线性方程组 无解,则a=______。
(A)-1 (B)0 (C)2 (D) 3
4.已知方阵A的列向量组 线性无关,下列结论中正确的是_______。
(A)向量组 的任一部分向量组都线性无关;
(B)向量组 中存在两个向量分量对应成比例;
(C)齐次方程组 有非零解;
(D)向量组 中有一个是零向量
5.设 是可逆矩阵A的一个特征值,则矩阵 有一个特征值为_______。
(A)1 (B) (C)2 (D) 3
三.计算题(每题12分,共60分)
1.计算n阶行列式。
2.解矩阵方程
《线性代数》模拟题(一)及参考答案
线性代数一、单项选择题(本大题共12小题,每小题3分,共36分。
在每小题到出的备选项中只有一项是符合题目要求的,请将其选出)1.若A 为4阶方阵,且|A|=5,则|3A|=( )。
A.15B.60C.405D.45中含有4x 的项目的系数是( )。
2.设A.1B.-1C.2D.-2 3.设A 和B 都是n 阶矩阵,且|A+AB|=0,则有( )。
A.|A|=0 B.|E+B|=0 C.|A|=0 或|E+B|=0 D.|A|=0且 |E+B|=04.若C=AB ,则( )。
A.A 与B 的阶数相同; B.A 与B 的行数相同; C.A 与B 的列数相同;D.C 与A 的行数相同。
5.A *是A 的伴随矩阵,且|A |≠0,刚A 的逆矩阵A -1=( )。
A.AA* B.|A |A * C. D.A'A * 6.当( )时,A =是正交阵。
A.a = 1, b = 2, c = 3B.a = b = c = 1C.a=1,b=0,c ±1D.a=b=1,c=0 7.设A 为三阶方阵,且A 2=0,以下成立的是( )。
A.A=0 B.A 3=0C.R(A)=0D.R(A)=3 8.在下列命题中,正确的是( )。
A. B.若A ≠B ,则|A|≠|B|C.设A,B 是三角矩阵,则A+B 也是三角矩阵;D.A ²-E ²=(A-E )(A+E )9.下列命题中正确的是( )。
A.任意n 个n +1维向量线性相关; B.任意n 个n +1维向量线性无关;C.任意n + 1个n 维向量线性相关;D.任意n + 1个n 维向量线性无关. 10.若4321,,,y y y y 是线性方程组AX=O 的基础解系,则4321y y y y +++是AX=O 的( )。
A.解向量B.基础解系C.通解D.A 的行向量 11.设 λ =-4 是方阵A 的一个特征值, 则矩阵A -5E 的一个特征值是( )。
线性代数练习题及答案1
线性代数综合练习题(一)一、选择题1. 设A 、B 为n 阶矩阵,则下面必成立的是( )。
(A )B A B A +=+ (B )111)(---+=+B A B A (C )BA AB = (D )BA AB = 2. 设A 为n 阶矩阵,且0=kA ,则=--1)(A E ( )。
(A )A E + (B )12-++++k A A A E(C )12-----k AA A E (D )A E -3. 设向量组m ααα,,,21 的秩为3,则( )。
(A )任意三个向量线性无关 (B )m ααα,,,21 中无零向量 (C )任意四个向量线性相关 (D )任意两个向量线性无关 4. 线性方程组11⨯⨯⨯=m n n m b x A ,)0(≠b 有解的充要条件是( )。
(A ))|()(b A R A R = (B )m A R =)( (C )n A R =)( (D ))|()(b A R A R ≠5. n 阶矩阵A 与对角矩阵相似的充要条件是( )。
(A )A 的n 个特征值互不相同 (B )A 可逆(C )A 无零特征值 (D )A 有n 个线性无关的特征向量二、填空题1. 各列元素之和为0的n 阶行列式的值等于 。
2. 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=432A ,则=-1A 。
3. 设矩阵⎪⎭⎫⎝⎛=31211A ,⎪⎪⎪⎭⎫ ⎝⎛=321B ,则=AB ,=BA ,=k BA )( (k 为正整数)。
4. 设2)(43=⨯A R ,⎪⎪⎪⎭⎫ ⎝⎛=300220111P ,则=)(PA R 。
5. 设向量组321,,ααα线性无关,则向量组211ααβ+=,322ααβ+=,133ααβ+=线性 。
6. 设三阶可逆矩阵A 的特征值分别为2、3、5,则=A ,A 的伴随矩阵*A 的特征值为 。
7. 设实二次型3231212322213212222),,(x x x x x x kx x x x x x f +++++=为正定二次型,则参数k 的取值范围是 。
线性代数网络教学活动阶段检验一
一、单项选择题(共20题)1.设多项式则f(x)的常数项为()A.4B.1C.-1D.-4【正确答案】A【答案解析】f(x)=(-1)A12+xA13,故常数项为.2.设A为三阶方阵且()A.-108B.-12C.12D.108【正确答案】D【答案解析】3.设都是三阶方阵,且,则下式()必成立.【正确答案】B【答案解析】方阵行列式的性质4.当a=( )时,行列式的值为零。
A.0B.1C.-2C.2【正确答案】C【答案解析】所以a= -2。
_ 5.设A是n阶方阵,λ为实数,下列各式成立的是().【正确答案】C【答案解析】这是行列式的性质.6.设行列式()A.-3B.-1C.1D.3【正确答案】D【答案解析】7.行列式中第三行第二列元素的代数余子式的值为()A.3B.-2C.0D.1【正确答案】B【答案解析】8.行列式中元素g的代数余子式的值为()。
A.bcf-bdeB.bde-bcfC.acf-adeD.ade-acf【正确答案】B【答案解析】直接计算知应选B9.下列等式成立的是(),其中为常数.【正确答案】D【答案解析】由行列式的性质可以判断D正确.10.设()A.k-1B.kC.1D.k+1【正确答案】B【答案解析】将所求行列的第二行的-1倍加到第一行,这样第一行可以提出一个k,就得到k 乘以已知的行列式,即为k,本题选B.11.计算四阶行列式=( )。
A.(x+3a)(x-a)3B.(x+3a)(x-a)2C.(x+3a)2(x-a)2D.(x+3a)3(x-a)【正确答案】A【您的答案】A 【答案正确】【答案解析】12.设=()。
A.-9mB.9mC.mD.3m【正确答案】B【答案解析】13.设()A.18B.-18C.-6D.6【正确答案】C【答案解析】将所求行列的第一行的-3倍加到第二行,第二行再提出一个-1,就得到-1乘以已知的行列式,即为-6,本题选C.14.行列式()【正确答案】B【答案解析】为将负对角线上的元素换到主对角线上,需将第1与10列对换,2与9列对换,3与8列对换,4与7列对换,5与6列对换,共换5次.故得15.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为().A.3B.15C.-10D.8【正确答案】C【答案解析】16.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为()A.-3B.-7C.3D.7【正确答案】A【答案解析】根据行列式展开定理,得17.设A为3阶方阵,且已知()【正确答案】B【答案解析】18.下列行列式的值为()。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
大一线性代数试卷1含答案
111
3. 设 A 为方阵,满足 A2 A 2E 0 ,则 A1 _________。 4. A, B,C 同阶方阵, A 0 ,若 AB AC ,必有 B C ,则 A 应为_______矩阵。
5. 设 A 为 n 阶方阵, Ax 0 有非零解,则 A 必有一个特征值为_________。
2 2 4
3 1 3
X
2 5
13
1 2 3
3 0 1
求X ?
四. (10 分)设向量组 A:
1 1,4,1,0,2 2,1,1,3,3 1,0,3,1,4 0,2,6,3
求向量组 A 的秩及一个最大无关组.
五. 12 分)讨论方程组的解的情况
x1 x1
x2 x2
x3 x3
9. 二次型 f 5x2 6 y2 4z2 4xy 4xz 的正定性为________。
1 10.若 A 2
0 2
1 3 ,且
RA
3
,则 t
_________。
1 3 t
二. (8 分)计算 2n 阶行列式
a
b
a
0
b
0
ab
0
D2n
cd
c
0
d
c
d
三. (8 分)解矩阵方程
1 2 3
1 (1, 1, 0)T 2
3
3
3, 2 2,2
2
(0,
1, 1)T
,标准化3
1 (0, 1, 1)T 2
因而 P (1 ,2 ,3 ) ,且 f 3 y22 3 y32
九. 令
1
2
3
n
1 1 1 1
2 2
2
线性代数练习题及答案解析(一)
线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。
A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。
行列式的展开只与代数余子式有关。
(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》检测题(1)
一. 填空、选择题(每小题3分,共24分)
1. 已知α,β,γ为三维列向量,行列式D=|α β γ|=2, 则行列式
|3β γ α+β|= ___________。
2. 设三阶方阵A 的特征值为-1,1,3,则1*
, .A A -==
3. 实二次型2221231231213(,,)222f x x x x x x tx x x x =++-+正定时,t 应满足的 条件是 .
4. 设矩阵()
n
m ij
a A ⨯=,则0=Ax 仅有零解的充分必要条件是【 】
(A) A 的行向量组线性相关 (B) A 的行向量组线性无关 (C) A 的列向量组线性相关 (D) A 的列向量组线性无关 5. 设,A B 为可逆矩阵,则下列说法中不正确的是【 】 (A) ()
1
1A
A --= (B) ()1
11A B A B ---+=+ (C) ()
()1
11
0A A λλλ
--=≠ (D) ()1
11AB B A ---=
6.设三阶方阵,A B 满足16,A BA A BA -=+且131417A ⎛⎫ ⎪ ⎪
⎪= ⎪ ⎪
⎪ ⎪⎝⎭
,则()
B = (A) 321⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 347⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 123⎛⎫ ⎪ ⎪ ⎪⎝⎭
(D) 743⎛⎫ ⎪ ⎪ ⎪⎝⎭
7.设A 、B 都为n 阶非零矩阵,且AB=0,则A 和B 的秩【 】
A. 必有一个等于零.
B. 都小于n.
C. 一个小于n,一个等于n.
D. 都等于n.
8. 设12,,,r ααα为n 维列向量,下列命题不正确的是【 】
A. 若对任意的不全为零的数12,,,r k k k ,都有1
0r
i i i k α=≠∑,则12,,
,r ααα线性
无关.
B. 若12,,
,r ααα线性相关,对任意一组不全为零的数12,,,r k k k ,都有
1
0r
i i
i k α
==∑.
C. 12,,
,r ααα线性无关的充要条件是矩阵(12,,,r ααα)的秩等于r.
D. 若12,,,r ααα线性无关,则其中任意两个向量都线性无关.
二.解答题(每小题10分,共40分)
1.计算行列式
1111
1
234149161
82764
2.已知101210,325A ⎛⎫
⎪
= ⎪ ⎪
--⎝⎭
求()1E A --.
3. 设1,P AP -=Λ其中1410,,1102P ---⎛⎫⎛⎫=Λ= ⎪ ⎪
⎝⎭⎝⎭
求()3
2.A A A E ϕ=+- 4. 设.
77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪
⎭
⎫
⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求:(1)向量组1234,,,αααα的秩;
(2)向量组1234,,,αααα的一个最大无关组;
(3)将最大无关组之外的其余向量用此最大无关组线性表示.
三.(13分)当a 为何值时,123231
2341
333(1)0
x x x ax x x x a x --+=⎧⎪
-=⎨⎪+++=⎩无解、有唯一解、有无穷多解?并在有解时求其所有解。
四.(13分)求一个正交相似变换矩阵,将对称阵310121013A -⎛⎫
⎪
=-- ⎪ ⎪-⎝⎭
化为对角阵。
五.(10分)(1)设12112,,,,s s s s s b a b a a b a a a -==+=+++且向量组12,,,s a a a
线性无关,证明向量组12,,
,s b b b 线性无关.
(2)设实对称阵A 的两个不同的特征值为12,λλ,对应的特征向量为12,ξξ,证明:
1ξ与2ξ正交。
【参考答案】注意:请对自己的解答(如方程的解、逆矩阵、特征向量等)作必要的验证后再对答案!
一、1. 6【31
|3|3||3||3|| 6.c c βγαββγαββγααβγ-+=+======】 2. -1/3,9; 3. |t|<1; 4. D; 5. B; 6. A; 7.B; 8. B. 二、1. 12(提示:范德蒙行列式);
2. 10201()1232;4400E A -⎛⎫ ⎪
-=- ⎪ ⎪⎝⎭
3. 121648⎛⎫ ⎪--⎝⎭
4. (1) R=3; (2) 123,,;ααα (3) 412322.αααα=-++
三、当a=1时,该方程组无解;
当a=-3时,原方程有无穷多解:(5,1,1)(3,1,0),.T T T x k k R =-+-∈
当1a ≠且3a ≠-时,原方程有唯一解:1
(10,3,1).1T T x a a
=
+--- 四、特征多项式|A-λE|=(1-λ)(3-λ)(4-λ)【计算过程:①123r r r --;②
2131,c c c c +-.】;特征值:λ=1,3,4;对应的特征向量:
123(1,2,1),
(1,0,1),(1,1,1).
T T T
T T T
ξξξ==-=-
正交相似变换矩阵12
01P ⎛⎫
=⎪⎝
⎭,134T P AP ⎛⎫ ⎪
= ⎪ ⎪⎝⎭.
五、(1)121200
1(,,,)(,,,),011111s s b b b a a a ⎛⎫ ⎪
⎪= ⎪ ⎪⎝⎭
记为B=AK, 则|K|≠0, K 可逆,所以R(B)=R(A)=s,从而B 组向量线性无关. (2) (见教材).。