用尺规作线段和角

合集下载

用尺规作线段和角教学反思

用尺规作线段和角教学反思

用尺规作线段和角教学反思反思一:用尺规作线段和角>教学反思尺规作图七年级才开始接触的,有必要讲清他的意图,首先要强调直尺和刻度尺的不同,这样在讲画一条线段与已知线段相等的时候,学生就会明白为什么不能用尺子直接量出长度,而且也避免学生在以后的作图中,还是习惯性的用到刻度尺进行测量。

而教盲生画图,我在课前就预设了各种困难,针对盲生动手能力差,学生差异性大的特点做好准备,分成小组,让每个小组的小组长组织小组内学习。

譬如有的盲生不会用尺子画直线,主要存在问题是不懂得如何将尺子用手固定起来,固定起来之后如何沿着尺子的一边画直线,很多同学的手不知道是如何放在尺子上,例如用手按住的直尺的时候,手会挡住要画直线的笔,如果手不按那么多的话,很难将尺子固定住,所以我想下次教画直线的时候,可能借三角板给学生,他们手抓的地方更大,可能更容易操作。

而且胶纸都很难固定在胶版上,作图对盲生的难度还是远远大于正常学生的。

尺规作图,往往很枯燥。

要牢牢记住画图的步骤,否则就画不出你要的图形。

我反问了自己以下几个问题:但是通过本次尺规作图的教学,学生对尺规作图有了一个具体直观的认识,我觉得效果很是不错的。

反思二:用尺规作线段和角教学反思1.利用现实情景引入新课,既能体现数学知识与客观世界的良好结合,又能唤起学生的求知欲望和探求意识。

而在了解基础知识以后,将其进行一定的升华,也能使学生明白学以致用的道理、体会知识的渐进发展过程,增强思维能力的培养。

同时,在整个探究过程中,怎样团结协作、如何共同寻找解题的突破口,也是学生逐步提高的一个途径。

2. 虽然在教材当中只是提出了如何用尺规来作一个角等于已知角,但是对于教材的适当补充和拓展是十分有必要。

教材只是为教师提供了最基本的教学素材,教师完全可以根据学生的实际情况进行适当的调整,要学会创造性的使用教材。

对于本节课有关角的和、差、倍的补充,既是对于学生知识的补充,也是对于学生活动经验进一步积累的一种提高。

用尺规作线段和角同步练习

用尺规作线段和角同步练习

4.用尺规作线段和角同步练习一、判断题1.尺规作图是指用刻度尺和圆规作图.( )2.尺规中的尺是指没有刻度的直尺.( )3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图.( )4.最基本的尺规作图是作线段和角.( )二、选择题:(每题10分,共30分)1. 如图1,射线OA 表示的方向 是( ) A.西北方向; B.西南方向; C.西偏南10°;D.南偏西10°2.如图2所示,下列说法正确的 是( )A.OA 的方向是北偏东30°;B.OB 的方向是北偏西60° (1) (2)C.OC 的方向是北偏西75°;D.OC 的方向是南偏西75°3.画一个钝角∠AOB ,然后以O 为顶点,以OA 为一边, 在角的内部画一条射线OC , 使∠AOC =90°,正确的图形是( )BCDAO BCAOBC AO BC ACBAO三、填空题1.已知线段AB ,求作:线段A ′B ′,使A ′B ′= A B .作法:(1)作 A ′C ′.(2)以点A ′为圆心,以________ ____交A ′C ′于点B ′, (3)_________就是所作的线段.A80︒O 东南北西30︒15︒CB A60︒O 东南北西2.已知:∠A O B.求作:∠A′O′B′,使∠A′O′B′=∠A O B.作法:(1)作O′A′(2)以点O为圆心,以_________长为半径画弧交OA于点C,交OB于点D.(3)以点O′为圆心,以_________长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以_________长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角.三、作图用尺规完成下列作图.1.已知线段a ,b (a >b ),利用尺规作线段c ,使c =2a -b . ab2.已知∠α、∠β(∠α>∠β),求作一个角,使它等于2∠α-∠β.3.已知,直线AB 和AB 外一点P ,作一条经过点P 的直线CD ,使C D ∥A B 。

五种基本的尺规作图

五种基本的尺规作图
建筑学
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。

用尺规作角的原理

用尺规作角的原理

用尺规作角的原理尺规作角,是一种仅采用尺和规这两种简单的几何工具,构造各种角的方法。

这一原理可以追溯到古希腊时期,是学习几何学中的重要知识点之一。

在这篇文章中,我们将分步骤阐述这一原理的具体步骤。

首先,我们需要了解尺和规这两种工具的用途。

尺是一种制作直线以及测量长度的工具,而规则则可以用来量取精确的比例,也可以用来勾画圆形和弧线。

尺与规是勾画几何图形的最基本工具。

接下来,我们来解释尺规作角的步骤。

首先,我们需要做一些准备工作。

准备工作包括在平面上画出一个直线L,然后在这条线上选择两个点A和B,并通过规画出线段AB的倍分数线段AD和BD。

接下来,我们需要用规和尺来完成尺规作角的过程。

1. 选择一段已知线段和一个已知点作为起点。

我们选择点A和线段AD 作为起点。

2. 利用规画出线段AE的长度,其长度应该是已知线段的1倍。

此时,AE和AD将共线。

3. 以点E为圆心,以线段AE为半径,使用规画出一个圆。

4. 选择圆上另一个点F,并从点E引出线段EF。

5. 使用规测量线段EF的长度,并将其应用到原有的线段上。

即,将EF的长度应用到线段BD,得到线段BG。

6. 以点G为圆心,以线段GB为半径,使用规画出另一个圆。

7. 选择圆上的另一个点H,并从点G引出线段GH。

8. 将线段GH的长度应用到线段AD上,得到线段AI。

9. 将线段AD和线段AI连接起来,即可得到所求角度。

尺规作角的原理可以用来构造各种不同的角度,包括锐角、直角和钝角等。

由于只需使用简单的尺和规这两个工具,因此尺规作角的方法具有广泛的应用性和实用性。

通过理解并掌握尺规作角的原理,我们可以更加深入地了解几何学的基础知识,拓展我们的数学能力,以及在现实生活中应用这些知识。

七年级数学上册《用尺规作线段与角》教案、教学设计

七年级数学上册《用尺规作线段与角》教案、教学设计
b.设计丰富多样的练习题,让学生在课后巩固所学知识,提高作图技能。
c.开展小组讨论和分享,促进学生之间的交流与合作,提高学生的沟通能力。
4.关注个体差异,因材施教:
a.对基础薄弱的学生,进行个别辅导,帮助他们掌握基本的尺规作图方法。
b.对学有余力的学生,提供拓展性学习资源,提高他们的几何作图技能。
5.融入情感态度与价值观教育:
2.尺规作线段的方法:
a.作给定长度的线段:利用尺子和圆规,按照步骤进行操作,边讲解边示范。
b.作等分线段:介绍等分线段的原理,演示等分线段的尺规作图方法。
3.尺规作角的方法:
a.作直角:利用圆规和直尺,按照步骤作出直角。
b.作等角:以已知的角为基准,利用圆规和直尺作出与之相等的角度。
4.结合实际例子,讲解尺规作图在实际问题中的应用。
1.引入:教师出示一张白纸,提出问题:“如何用最简单的方法在纸上画出一条指定长度的线段?”引导学生思考并回答。
2.背景知识:简要介绍尺规作图的历史和在实际生活中的应用,让学生了解尺规作图的价值和意义。
3.导入新课:通过以上铺垫,引出本节课的主题——《用尺规作线段与角》。
(二)讲授新知
1.尺规作图的基本概念:介绍尺子和圆规在几何作图中的作用,讲解基本的作图方法。
4.能够运用尺规作图方法探索数学规律,发现几何图形中的对称美和几何关系。
(二)过程与方法
1.通过观察、实践、探索,让学生掌握尺规作图的基本方法和技巧。
2.培养学生的动手操作能力,提高空间想象力和逻辑思维能力。
3.引导学生运用尺规作图方法解决实际问题,培养学生分析问题、解决问题的能力。
4.鼓励学生在尺规作图过程中,积极与他人交流与合作,提高沟通能力。

4.6用尺规作线段与角QQQ

4.6用尺规作线段与角QQQ

O ’ O ’
C’
A’
∠A’O’B’就是所求的角.
随堂练习 随堂练习
独立思考、合作交流; 口述作法、保留作图痕迹。
1、已知: ∠AOB。 利用尺规作∠A’O’B’ 使∠A’O’B’=2∠AOB
法二:
DB C A
。: 作法一
B’
C B B’ O
E C’
O
A’ A
O’
A
∠A’O’B’为所求.
∠A’O’B’为所求.
4.6 做线段和角
尺规作图:用无刻度的直尺 和圆规画图,这种画法叫尺 规画法
1、作一条线段等于已知线段
利用没有刻度的直尺和圆规作一条线段等于已知线段.
已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. A 作法与示范: 作 法 示 范
B
(1) 作射线A’C’ ; (2) 以点A’为圆心, 以AB的长为半径画弧, 交射线A’ C’于点 A B’ 就是所求作的线段 B’ ’,

D B

(1) 作射线O’A’; (2) 以点O为圆心, 任意长为半径 画弧, 交OA于点C, 交OB于点D; (3) 以点O’为圆心, 同样(OC)长为半径画弧, 交O’A’于点C’; (4) 以点C’为圆心, CD长为半径画弧, 交前面的弧于点D’ , (5) 过点D’作射线O’B’.
O
C A ’ D’BB ’
A’
B’
C’
例2、已知线段a,b画一条线段AB,使它的
长度等于两条已知线段的长度的和。
画法:
a
b
1.画射线AD 2.用圆规在射线AD上截取AC=a 3.用圆规在射线AD上截取CB=b
结论 不能 少
A
c a C b B D

《用尺规作角》教案 (公开课)2022年

《用尺规作角》教案 (公开课)2022年

用尺规作线段和角教学案例本课时内容的设计意图:本课知识属于“空间与图形〞局部,在学会利用尺规作线段的根底上进一步运用尺规作一个角等于角。

通过这节课的学习,增强学生运用尺规作图的技能。

本课时内容的设计思路:首先展示与本课内容密切联系的问题情境,作为新知的切入点,表达“数学是现实的〞课标精神。

利用情境问题激发学生的探究意识,在探索过程中体会知识的形成过程,将新知自然渗透纳入到学生的知识体系中,在此根底上,引导学生利用所学新知解决问题,从而将数学知识转化为数学技能。

一、创设情境,激趣导入出示课件和图形,提出问题:(1)请学生拿出收集的长方形纸板模型,标出相应的线段AB和点C。

(2)请过点C画出与AB平行的另一条线。

(3)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?学生活动:对于问题(1) (2),学生自主完成;对于问题(3),学生自主探索后,引导学生进行分组讨论,产生质疑。

教师活动:利用实物投影仪展示学生完成的作业,并请学生答复作图过程,针对答复的情况,师生共同给予及时适当的评价。

(设计意图:课前要求学生从生活中寻找一些废弃的长方形纸板模型。

如牙膏盒、玩具盒、各种包装盒等,让学生体验“数学知识来源于现实生活〞,并学会从实际事物中抽象出几何模型。

在问题(3)的讨论中,引发了学生的认知冲突,从而自然导入了新课。

(二)实验探究,归纳总结:∠AOB。

求作:∠A′O′B′,使∠A′O′B′=∠AOB。

学生活动1:学生在教师的示范操作下,利用尺规进行画图实践。

教师活动:教师在黑板上用尺规引导学生一步步进行画图示范,利用实物投影仪展示学生的作业,针对学生的画图情况给予评价。

最后请学生概述自己的画图过程。

学生活动2:利用量角器验证自己所作的角与角是否相等,学生答复自己所验证的结果。

(设计意图:学生在教师的示范下,亲身实践,感受知识的形成过程,在画图操作中培养了学生的动手、动脑、动口的能力。

(三)解决问题,完善结构随堂练习第1题。

初中数学五种基本作图技巧(含数学语言规范)

初中数学五种基本作图技巧(含数学语言规范)

初中数学五种基本作图技巧(含数学语言规范)尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线。

《用尺规作线段和角》第一课时导学案

《用尺规作线段和角》第一课时导学案

2.4.1 用尺规作线段和角
一、学习目标
1.会用尺规作一条线段等于已知线段.
2.利用尺规作一条线段等于已知线段的应用.
会用尺规作一条线段等于已知线段;并了解它在尺规作图中的简单应用. 二、课前探究:
用尺规作图具有以下四个步骤:
(1)已知,即:已知的条件是什么.
(2)求作,即:所要作的最终的结果是什么,满足什么条件.
(3)分析,即:分析如何作出所要求作的图形,一般不用写出来.
(4)作法,这是作图的主要步骤,在这里要写清作图的过程.
在今后的作图中,要注意作图步骤的书写.就现在来说,只要求大家了解尺规作图的步骤.下面我们共同用尺规作一条线段等于已知线段(教师一边叙述,一边书写、画;学生只画图).
三、典型例题:
如图2-54,已知线段a和两条互相垂直的直线AB、CD.
图2-54
(1)利用圆规,在射线OA、OB、OC、OD上作线段OA′、OB′、OC′、OD′,使它们分别与线段a相等.
(2)依次连接A′、C′、B′、D′、A′.
你得到了一个怎样的图形?与同伴进行交流.
四、基础练习
1.如图,已知线段a和b,直线AB与CD垂直且相交于点O.
利用尺规,按下列要求作图:
(1)在射线OA、OB、OC上作线段OA′、OB′、OC′,使它们分别与线段a 相等.
(2)在射线OD上作线段OD′,使OD′等于b.
(3)依次连接A′、C′、B′、D′、A′.
你得到了一个怎样的图形?与同伴进行交流.
2.如下图的“雏菊图案”漂亮吗?你想自己画出它吗?那就让我们从最初的步骤开始吧!
五、能力提高
3b,用圆规和直尺求作一条线段x,使x=2a-3b.
已知线段a、b,且a>
2。

七年级数学用尺规作线段和角

七年级数学用尺规作线段和角

04
用尺规解决实际问题
实际问题中的线段和角
实际问题中的线段
在日常生活和工作中,我们经常遇到需要测量线段长度的问题,例如计算两点 之间的距离、测量地块的长和宽等。
实际问题中的角
角度是几何学中一个重要的概念,在很多实际问题中都需要测量或计算角度, 例如确定方位角、计算角度差等。
如何用尺规解决实际问题
04
在作图过程中,要注意 保持几何图形的规范性 和美观性。
03
用尺规进行线段和角的测 量
线段和角的测量方法
测量线段长度
使用直尺或卷尺,将一端对齐线 段的起点,另一端对齐线段的终 点,读取刻度值即为线段长度。
测量角的大小
使用量角器,将量角器的中心点 对准角的顶点,量角器的刻度与 角的一条边重合,读取刻度值即 为角的大小。
七年级数学尺规作 线段和角
目录
• 用尺规作线段 • 用尺规作角 • 用尺规进行线段和角的测量 • 用尺规解决实际问题
01
用尺规作线段
尺规作线段的定义
01
尺规作线段是指使用无刻度的直 尺和圆规按照给定的条件和要求 画出线段。
02
尺规作图是一种基本的几何作图 方法,它利用了直尺的直线功能 和圆规的半径功能来完成作图。
01
02
03
确定作图步骤
在解决实际问题时,首先 需要明确作图的步骤,包 括确定线段的长度、确定 角度的大小等。
使用尺规作图
根据确定的作图步骤,使 用尺规进行作图,确保作 出的线段和角符合实际问 题的要求。
检验作图结果
完成作图后,需要对结果 进行检验,确保作出的线 段和角满足实际问题的需 求。
解决实际问题时的注意事项
第二步
以顶点为圆心,以适当长度为 半径,用圆规画弧。

用尺规作线段和角的教学重点与难点

用尺规作线段和角的教学重点与难点

用尺规作线段和角的教学重点与难点
在生活实践中和学习各种知识的过程中,经常需要借助于几何图形解决问题.几何学是研究图形的,学习几何更离不开画图.在几何里,利用图形,可帮助我们研究它的性质,反过来,作图方法也是几何研究的成果.因此尺规作图是几何的重要内容,而基本作图是其他复杂作图的基础.作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形.学习尺规作图,一方面可以培养学生正确的作图思想与方法,另一方面在以后做题中经常用到,同时也给实际的技术制图打下了理论基础.由于学生刚刚学习作图问题,首先感到困难的是作图语言的叙述,经常出现不准确、不严密的现象.由于学生还不能完全作图的依据,还不能分析作图方法的来源及作图过程的推理,因此本节的重点是掌握尺规作图的基本方法.难点是几何作图语言的掌握.这里关键是正确理解基本作图的原理.要让学生首先明确已知、求作,然后在此基础上给出草图分析,找出作图的步骤,准确叙述作法,作后完成作图.。

用尺规作线段和角(1对1辅导精品)

用尺规作线段和角(1对1辅导精品)

用尺规作线段和角知识要点(1) 解题前要写“解”;(2) 严格按作图要求操作;(3) 保留作图痕迹;(4) 下结论.2、用尺规作角:例1:用尺规作一条线段等于已知线段.已知:线段ABA B求作:线段A′B′,使得A′B′=AB.例2 用尺规作一条线段等于已知线段的倍数:已知:线段AB .A B求作:线段A′B′,使得A′B′=2AB.例3 用尺规作一条线段等于已知线段的和:(1) 已知:线段a,b a b求作:线段AD,使得AD=a+b .(2) 已知:线段AB .CD .EF ..A B C D E F 求作:线段A ′F ′,使得A ′F ′=AB+CD+EF.例4、用尺规作一条线段等于已知线段的差:(5) 已知:线段AB .CDA B C D求作:线段A ′D ′,使得A ′D ′=AB -CD .例5、 用尺规作一个角等于已知角.(1) 已知:∠AOB求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB(2) 已知:∠α求作:∠AOB ,使∠AOB=∠α例6、用尺规作一个角等于已知角的倍数:(3) 已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1例7、 用尺规作一个角等于已知角的和:已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2例、 用尺规作一个角等于已知角的差:已知:∠α、∠β、∠γ α1132求作:①∠AOB ,使∠AOB=∠α-∠β②∠POQ ,使∠POQ=∠α-∠β-∠γ③求作一个角,使它等于2∠β-∠γ综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的!)(1)已知:线段AB 、 ∠α、∠β求作:分别过点A 、点B 作∠CAB=∠α 、∠CBA=∠β(2)如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC(3) 已知:直线l 和l 外一点P ,求作:一条直线,使它经过点P ,并与已知直线l 平行αβγA αβl(4)已知:△ABC求作:直线MN,使MN经过点A,且MN//BC(5)如图,以点B为顶点,射线BA为一边,在∠ABC外再作一个角,使其等于∠ABC。

【志鸿优化设计】2013-2014学年七年级数学上册 第4章4.6 用尺规作线段与角例题与讲解 (新

【志鸿优化设计】2013-2014学年七年级数学上册 第4章4.6 用尺规作线段与角例题与讲解 (新

4.6 用尺规作线段与角1.尺规作图的概念几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫做尺规作图.(1)尺规作图与画图虽然都是指按要求画出符合条件的正确图形,但两者还是有本质上的区别.尺规作图是画图的一种特殊的表现形式,它要求只能限定用直尺和圆规这两种工具完成画图过程,而画图一般不限定工具.既可用直尺和圆规,也可以用其他的辅助工具,比如量角器、三角板、刻度尺等.(2)直尺的功能:在两点间连接一条线段;将线段向两边延长.圆规的功能:以任意一点为圆心,适当长为半径作一个圆;以任意一点为圆心,适当长为半径画一段弧.【例1】 下列说法中,正确的是( ).A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使AC =12AB D .延长线段AB 到C ,使AC =2AB 解析:A 项:射线不可以延长,只能反向延长;B 项:直线没有延长线和反向延长线;C项:如果延长AB 到C ,则AC >AB ,不可能AC =12AB . 答案:D2.作一条线段等于已知线段(1)已知:线段a求作:线段AB ,使AB =a .作法:①作一条直线l ;②在l 上任取一点A ,以点A 为圆心,以线段a 的长度为半径画弧,交直线l 于点B . 线段AB 就是所求作的线段.(2)常用的基本作图语言有:①过点×和点×作射线××(或作直线××);②在射线××上截取××=××;③在射线上顺次截取××=××=××;④以点×为圆心,××长为半径作弧,交××于点×.谈重点作图的要求作图题的作图要求:(1)要根据问题把已知条件具体化;(2)要写明作什么图形,满足什么要求;(3)在作法中要使用规X 语句,按照作图的顺序逐一写明;(4)最后要指出结论.【例2】 已知线段a ,如图:求作:线段AB ,使AB =3a .分析:先作一条直线,在这条直线上连续作出三条线段都等于a 即可.作法:(1)作一条直线l ;(2)在l 上任取一点A ,以点A 为圆心,以线段a 的长度为半径作弧,交直线l 于C ;(3)以点C 为圆心,以线段a 的长度为半径作弧,在同一方向上交直线l 于D ;(4)以点D 为圆心,以线段a 的长度为半径作弧,在同一方向上交直线l 于B .所以线段AB就是所求的线段.释疑点截取线段的方法沿着某一个方向依次截取几次,结果所得到的线段就是原线段的几倍.3.作一个角等于已知角已知:∠AOB.如图所示:求作:∠DEF,使∠DEF=∠AOB.作法:(1)在∠AOB上以点O为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF.则∠DEF即为所求作的角.【例3】如图,已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.作法:(1)以O为圆心,以任意长为半径画弧交OA于点C,交OB于点D;(2)作射线O′A′,以O′为圆心,以OC长为半径画弧交O′C′于点C′;(3)以C′为圆心,以CD的长为半径画弧交前弧于E点,接着以E为圆心,同样的长为半径画弧交前面弧于点B′;(4)过点B′作射线O′B′,∠A′O′B′就是所求作的角.如图.辨误区作留作图痕迹作图痕迹是尺规作图必不可少的部分,不可擦去.4.作线段的和、差“作一条线段等于已知线段”是基本作图之一,它是作线段和、差的依据,因此我们要对“作一条线段等于已知线段”的过程和操作方法非常熟练.作线段的和时,是沿着某一点按照一个方向依次截取每一条线段,这条直线上的始点与终点组成的线段就是所作的几条线段的和;作线段的差时,先作被减线段,然后以这条线段的一个端点为端点,在这条线段内部作出要减的线段,其余的两个端点组成的线段就是要求作的线段.【例4】如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.分析:先作2a+b,然后再减去c.作法:(1)作射线AF;(2)在射线AF上顺次截取AB=BC=a,CD=b;(3)在线段AD上截取DE=c.所以线段AE即为所求.5.作角的和、差“作一个角等于已知角”是基本作图之一,它是作角和、差的依据,因此我们要对“作一个角等于已知角”的过程和操作方法非常熟练.作角的和时,是沿着角的一边按照一个方向依次作出每一个角,这个角的始边与终边组成的角就是所作的几个角的和;作角的差时,先作被减的角,然后以这个角的一条边为一边,在这个角的内部作出要减的角,其余的两条边所组成的角就是要求作的角.【例5】如图,已知∠α和∠β(∠α>∠β),求作∠AOB,使∠AOB=∠α-∠β.作法:(1)作射线OA;(2)以射线OA为一边作∠AOC=∠α;(3)以O为顶点,以射线OC为一边,在∠AOC的内部作∠BOC=∠β,则∠AOB就是所求作的角.6.“作一个角等于已知角”的应用在小学时,我们知道三角形的三个内角之和为180°,现在我们学习了“作一个角等于已知角”,我们可以利用“作一个角等于已知角”作出一个三角形的三个内角的和,利用图形来说明这一结论.析规律尺规作图步骤用尺规作图来说明问题时,根据要解决的问题先写出已知、求作,再作图并写出作法.作图要力求准确.作复杂的图形时,一般先根据题意画出草图,再写出已知、求作和作法.【例6】任意作一个三角形,用尺规作图作出它的三个内角的和,并用量角器度量出三个内角的和.解:已知如图所示,任意△ABC,求作∠MON=∠A+∠B+∠C,并测量∠MON的大小.作法:(1)作∠MOD=∠A;(2)以OD为一边,在∠MOD的外部作∠DOE=∠B;(3)以OE为一边,在∠MOE的外部作∠EON=∠C;则∠MON为所求作的角.用量角器度量出∠A+∠B+∠C=∠MON=180°.。

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计

沪科版数学七年级上册4.6《用尺规作线段与角》教学设计一. 教材分析《沪科版数学七年级上册4.6》这一节主要介绍了如何使用尺规作线段与角的方法。

在教材中,学生已经学习了线段与角的基本概念,本节课将进一步引导学生了解并掌握用尺规作线段与角的方法,培养学生的动手操作能力和几何思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对线段与角的概念有一定的了解。

但学生在用尺规作图方面可能存在一定的困难,因此,在教学过程中,教师需要耐心引导学生,让学生在动手操作中掌握用尺规作线段与角的方法。

三. 教学目标1.让学生了解并掌握用尺规作线段与角的方法。

2.培养学生的动手操作能力和几何思维能力。

3.提高学生解决实际问题的能力。

四. 教学重难点1.重点:用尺规作线段与角的方法。

2.难点:如何引导学生动手操作,并熟练运用尺规作线段与角。

五. 教学方法1.采用问题驱动法,引导学生主动探究用尺规作线段与角的方法。

2.利用多媒体辅助教学,展示尺规作图的过程,增强学生的直观感受。

3.采用分组合作学习,让学生在动手操作中相互交流、探讨,共同解决问题。

4.教师引导学生总结用尺规作线段与角的方法,提高学生的归纳总结能力。

六. 教学准备1.准备多媒体教学课件,展示尺规作图的过程。

2.准备尺规作图的练习题,让学生在课堂上动手操作。

3.准备黑板,用于板书重点知识点。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如:“如何用尺规作一条长度为5厘米的线段?”引发学生的思考,激发学生的学习兴趣。

2.呈现(10分钟)教师利用多媒体课件展示尺规作线段与角的过程,让学生直观地了解尺规作图的方法。

同时,教师讲解相关知识点,如线段、角的概念,以及尺规作图的基本原理。

3.操练(10分钟)教师引导学生分组合作,进行尺规作图的练习。

每组选取一条线段和一种角,用尺规作出相应的线段和角,并互相检查、讨论。

教师巡回指导,解答学生遇到的问题。

尺规作图总结

尺规作图总结

尺规作图.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差. 五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a .题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点).题目二:过一点做已知线段的垂线。

已知:如图,O 点、线段MN.求作:过O 点作OP ⊥线段MN.题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

题目四:作一个角等于已知角。

已知:如图,∠AOB ,求作:∠M0N, 使∠MON =∠BOA题目五:已知三边作三角形。

已知:如图,线段a ,b ,c.求作:△ABC ,使AB = c ,AC = b ,BC = a.题目六:已知两边及夹角作三角形。

已知:如图,线段m ,n, ∠α.求作:△ABC,使∠A=∠α,AB=m ,AC=n.M N O A B O A BM N O题目七:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.题目八:已知一个三角形,作一个点到各个顶点距离相等已知:如图,△ABC求作:一个点到三个顶点的距离相等题目九:已知一个三角形,做一个点到三边的距离相等已知:如图,△ABC求作:一个点到三条边的距离相等。

初中尺规作图典型例题归纳1、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)2、如图,△ABC是等腰三角形,AB=AC。

用尺规作线段和角(2)练习

用尺规作线段和角(2)练习

用尺规作线段和角(2)练习一.目标导航1.经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2.能按作图语言来完成作图动作,能用尺规作一个角等于已知角.二.基础过关1.下列作图属于尺规作图的是( )A.用量角器,画出∠MON 的平分线OQB.作∠AOB ,使∠AOB=2αC.画线段MN=6cmD.用三角尺过点P 作AB 的垂线2.下列各作法中,正确的是( )A.以点O 为圆心,以任意长为半径画弧,交线段OA 于点BB.以∠AOB 的边OB 为一边作∠BOCC.以点O 为圆心画弧,交射线OA 于点BD.在线段AB 的延长线上截取线段BC=3cm3.如图,已知∠1,∠2,求作一个角,使它等于∠1+∠24.如图,已知∠1,∠2 (∠1>∠2),求作一个角,使它等于∠1-∠25.如图,已知∠1,求作一个角,使它等于2∠16.如图,已知∠1,∠2 (∠1>∠2),求作一个角,使它等于2∠1-∠2 212212217.如图,已知∠AOB 及其两边上的点C 、D ,①过点C 作直线CE ∥OB②过点D 作直线DF ∥OA ,CE 、DF 交于点P③探究∠DPC 与∠AOB 的大小关系.8.某大饭店的墙砖掉了一块(如图①中阴影部分),工人师傅想在一块完整的壁砖上裁下一块补上,请你帮助工人师傅在图②的壁砖上裁下一块和墙上掉的完全一样可以吗?若行,请用尺规作图画出来.9.已知∠α和线段a,b ,如图所示.(1)作∠DBE=∠α;(2)以B 为圆心,a 为半径画弧,交BD (3)以B 为圆心,b 为半径画弧,交BE 于C ;(4)连接AC.问所得到的是什么图形?9题图10.如图所示,是某施工队的一张破损的图纸,已知a 、b 是一个角的两边(这个角的其它部分已丢失),现在要在图纸上量出这个角的度数,请你帮助他们解决这个问题.212ab10题图四.聚沙成塔一张地图上有A 、B 、C 三个城市,但在地图上C 城市被墨迹污染了,如图所示,只知道∠BAC=∠α,∠ABC=∠β,你能用尺规帮他在图中确定C 城市的具体位置吗?ba C B A α。

数学课件用尺规作线段和角

数学课件用尺规作线段和角
文化传承与创新
通过尺规作图,可以传承和发展古代数学文化,同时也可以推动现 代数学的创新和发展。
跨学科的交流与合作
尺规作图涉及数学、艺术、工程等多个学科领域,促进了不同学科 之间的交流与合作,推动了跨学科研究的进展。
尺规作图在现代数学中的地位
1 2
基础教育的核心内容
尺规作图是中学数学课程中的重要内容,对于培 养学生的几何直觉和空间思维能力具有重要作用 。
数学课件用尺规作 线段和角
contents
目录
• 用尺规作线段 • 用尺规作角 • 用尺规作线段和角的应用 • 尺规作图的历史与文化
01
CATALOGUE
用尺规作线段
尺规作线段的定义
01
02
03
尺规作图
在几何学中,尺规作图是 一种使用无刻度的直尺和 圆规来构造几何图形的方 法。
线段
线段是由两个点确定,并 且连接这两个点的所有点 的集合。
尺规作角的基本步骤
第一步
根据题目要求,确定角的顶点和角的 度数。
02
第二步
使用圆规在角的一侧取一个点,作为 角的顶点。
01
第五步
检查所画的角是否符合题目要求,如 果符合则结束作图,否则需要重新调 整。
05
03
第三步
以这个顶点为圆心,用圆规量取相应 的半径长度,在角的另一侧画弧,得 到一条边。
04
第四步
验证几何定理
构造特殊图形
使用尺规作图可以构造一些特殊的几 何图形,如正方形、等边三角形等, 这些图形在几何问题解决中有广泛应 用。
通过用尺规作线段和角,可以验证几 何定理的正确性。例如,通过作图可 以证明等腰三角形的性质定理。
在日常生活中的应用

2、4用尺规作线段和角(二)备课

2、4用尺规作线段和角(二)备课

课题用尺规作线段和角(二)课型新授课课标与教材教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

而这仅是一个近期目标,数学教学是一个循序渐进的过程,所以每一堂课的教学都是具有密切联系的。

作一条线段等于已知线段和作一个角等于已知角都是尺规作图的基础,这为今后学习更为复杂的尺规作图奠定了基础。

我们应该更为注意数学教学的远期目标,并注意学生在活动当中所积累的数学经验。

重点会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

难点会解决一些简单的作图问题,感受尺规作图在数学当中的一定作用,获得从事尺规作图活动的一些数学活动经验,培养合作与交流的能力学情知识储备:学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。

学习优势:在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。

在相关知识的学习过程中,学生已经经历了一些尺规作图的活动,解决了一些简单的问题,感受到尺规作图在数学当中的一定作用,获得了从事尺规作图活动的一些数学活动经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

学困生分析:学生数学语言表达能力和动手能力有待提高教学目标知识目标.能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

能力目标1.能利用尺规作角的和、差、倍。

2.能够通过尺规设计并绘制简单的图案。

情感目标.在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。

教学方法与媒体动手实践、自主探索与合作交流。

多媒体教具准备三角板第一环节回顾与思考活动内容:1. 怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?2. 练习:已知线段a,b,c,作一条线段m,使得m=a+b-cabc通过课堂提问引起学生对上节课所学知识的回顾,对已学知识得以巩固落实,同时通过一个练习落实到学生的实际动手操作上,适合七年级学生的心理特征,可以调动学生的学习积极性,为后面的学习奠定了良好的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A’ A a C C’ B’ O D’ B
图2-13
D
哈哈,是一个正方形,你对了吗?
随堂练习 随堂练习
p 64
1、如图,已知线段a和b,直线AB与CD垂直且相交于点O. 利用尺规,按下列要求作图: (1) 在射线OA , OB , a C OC上作线段O A’,OB’ ,OC’, C’ b 使它们分别与线段a 相等; (2) 在射线OD上作线段 OD’,使OD’ 等于b;
A
B



A’
B’
C’
做一做 做一做
如图2-13,已知 线段a 和两 条互相垂直的直线AB,CD。 (1) 利用圆规,在射线OA,OB, OC,OD上作线段O’A’,O’B’,O’C’, O’D’,使它们分别与 线段a 相等。 (2) 依次连接A’,C’ ,B’,D’,A’. 你得到了一个怎样的图形? 与同伴进行交流。
北师大七年级(下) 《数学》七年级 下册
4
回顾 & 思考 考 回顾与思 ☞
1、作一条线段等于已知线段
利用没有刻度的直尺和圆规可以作出很多几何图形, 你还记得我们是如何用圆规和直尺作一条线段等于已知线 段的吗? 已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. 作法与示范: 作
(1) 作射线A’C’ ; (2) 以点A’为圆心, 以AB的长为半径画弧, 交射线A’ C’于点B’, A’B’ 就是所求作的线段。
A A’ O B’ B
(3) 依次连接A’,C’, B’,D’,A’. 你得到了一个怎样的图形? 与同伴进行交流.
D’
D
已知线段a、b,求作线段c=a+b
aHale Waihona Puke b能否作线段c = a – b ?
本节课你的收获是什么?
本节课主要学习了用无刻度的直尺和圆规作一线段等 于已知线段, 不要看似简单, 它却是最基本的几何作图 的方法. 数学中历史称之为几何基本作图法(一);
课外还要加强基本作图工具的使用, 特别是圆规的使 用要领与技巧要勤加操练. 练习中还要注意 几何语言表述的规范、 书写格式的规范 的训练.
作业
作业
教材p.64 习题2.5 第 1、2 题。
相关文档
最新文档