2014年中考数学复习试卷(圆)含答案解析
2014年全国中考数学试题分类汇编32 点直线与圆的位置关系(含解析)
点直线与圆的位置关系一、选择题1.(2014年天津市,第7题3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC 经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.2.(2014•邵阳,第8题3分)如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()AOB3. (2014•益阳,第8题,4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()(第1题图)4.(2014年山东泰安,第18题3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O 相切,切点为C,点D是⊙上一点,连接P D.已知PC=PD=B C.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D. 1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.二.填空题1. (2014•广西玉林市、防城港市,第16题3分)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.故答案为2.(2014•温州,第16题5分)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=A B.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是.=::,则,解得:AB3.(2014•四川自贡,第14题4分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.底边高的,即24.(2014•浙江湖州,第9题3分)如图,已知正方形ABCD,点E是边AB的中点,点O 是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.M N=AM+CN分析:(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AMO∽△DMN.(3)作BP⊥MN于点P,利用RT△MAB≌RT△MPB和RT△BPN≌RT△BCN来证明C,D 成立.解:(1)如图,作MP∥AO交ON于点P,∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA=(OA+DN)•ADS△MNO=MP•AD,∵(OA+DN)=MP,∴S△MNO=S梯形ONDA,∴S1=S2+S3,∴不一定有S1>S2+S3,(2)∵MN是⊙O的切线,∴OM⊥MN,又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,∴∠AOM=∠DMN,在△AMO和△DMN中,,∴△AMO∽△DMN.故B成立,(3)如图,作BP⊥MN于点P,∵MN,BC是⊙O的切线,∴∠PMB=∠MOB,∠CBM=∠MOB,∵AD∥BC,∴∠CBM=∠AMB,∴∠AMB=∠PMB,在Rt△MAB和Rt△MPB中,∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP,∠ABM=∠MBP,BP=AB=BC,在Rt△BPN和Rt△BCN中,∴Rt△BPN≌Rt△BCN(HL)∴PN=CN,∠PBN=∠CBN,∴∠MBN=∠MBP+∠PBN,MN=MN+PN=AM+CN.故C,D成立,综上所述,A不一定成立,故选:A.点评:本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.5.(2014·浙江金华,第16题4分)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG—GH—HE—EF表示楼梯,CH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边相切,且AO∥GH.(1)如图2①,若点H在线段OB上,则BHOH的值是▲ .(2)如果一级楼梯的高度()HE 2cm =,点H 到线段OB 的距离d 满足条件d 3cm ≤,那么小轮子半径r 的取值范围是 ▲ .【答案】(1(2)11r 8-≤≤. 【解析】∴r d MIIJ MI r HM 2d cos t 3030an ︒==⇒===-︒.考点:1. 直角三角形的构造;2.锐角三角函数定义;3.特殊角的三角函数值;4. 矩形的判定和性质;5.切线的性质;6.二次根式化简.6. (2014•湘潭,第14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,P A切⊙O于A点,则P A=4.(第1题图)=4三.解答题1. (2014•广东,第24题9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OP A,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OP A=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OP A,∵∠OP A+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.2. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.,;=,即=,﹣;=,即BD=×2=重叠(阴影)部分的面积为3. (2014•广西贺州,第25题10分)如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥C D.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF 和∠BCG,也就得出了∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°.从而证得∠BOC 是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据RT△BOF∽RT△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.解答:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.点评:本题主要考查了直角梯形的性质和切线长定理的综合运用.属于基础题.4. (2014•广西玉林市、防城港市,第23题9分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.=,即=5.(2014年四川资阳,第21题9分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接A D.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.菁优网专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.6.(2014•新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.,由,根据圆周角定理得∠由=得∠,= =,==×,=4AC×7.(2014•毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于点D,连接C D.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.8.(2014·云南昆明,第22题8分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D . (1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)第22题图C9. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第1题图),×=×的面积为= ==.=,,=的长度为10. (2014•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b 为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第2题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.xx(,((﹣(b﹣(bFG﹣(﹣(﹣﹣与x(,11 (2014•扬州,第25题,10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.(第3题图),12.(2014•滨州,第21题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积..中,∵.13.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.=8×10=514.(2014•菏泽,第18题10分)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.)由=2= =.=.)解:由==2k=.==.==.。
2014年黑龙江省哈尔滨市中考数学试卷(含答案和解析)
2014年黑龙江省哈尔滨市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×1033.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab34.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<16.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+39.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.310.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=_________.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是_________.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是_________.14.(3分)(2014•哈尔滨)不等式组的解集是_________.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为_________.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________度.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为_________.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为_________.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.28.(10分)(2014•哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.2014年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃考点:有理数的减法.分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k ﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y 随x的增大而增大.6.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=CD.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.故答案为:.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.。
中考数学专题复习《圆的证明与计算》检测题(含答案)
专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
【2014中考复习方案】(苏科版)中考数学复习权威课件 :28 圆的有关性质(41张ppt,含13年试题)
推论
总结
考点聚焦
归类探究
回归教材
第28课时┃考点聚焦
考点5
圆心角、弧、弦之间的关系
定理
弧 在同圆或等圆中,相等的圆心角所对的______相 弦 等,所对的______相等
在同圆或等圆中,如果两个圆心角﹑两条弧、两
推论
条弦中有一组量相等,那么它们所对应的其余各
组量都分别相等
考点聚焦
归类探究
回归教材
第28课时┃考点聚焦
步骤
(2)从假设的结论出发,推出矛盾;
(3)由矛盾的结果说明假设不成立,从而肯定原命题的结 论正确
考点聚焦
归类探究
回归教材
第28课时┃归类探究
归 类 探 究
探究一、确定圆的条件
命题角度: 1.确定圆的圆心、半径; 2.三角形的外接圆圆心的性质. 例1.[2012•资阳] 直角三角形的两边长分别为16和12,则此三 10或8 角形的外接圆半径是________.
2 2 2
考点聚焦 归类探究 回归教材
第28课时┃归类探究
方法点析
在具体作图时一般需要以下几个步骤:
是直角,即可得∠ACB=90°.又由在同圆或等圆中,同弧或 等弧所对的圆周角相等,可得∠A=∠P,即可证明相似. (2)由△PCD∽△ABC, 可知当 PC=AB 时, △PCD≌△ABC, 利用的是相似比等于 1 的相似三角形全等; 1 (3)由∠ACB=90°,AC= AB,可求得∠ABC 的度数,利 2 用同弧所对的圆周角相等得∠P=∠A=60°,通过证△PCB 为等边三角形,由 CD⊥PB,即可求出∠BCD 的度数.
考点聚焦 归类探究 回归教材
第28课时┃归类探究
综合运用 在你所作的图中, 相切 (1)AB与⊙O的位置关系是________(直接写出答案); (2)若AC=5,BC=12,求⊙O的半径. 图28-4
2014年山西省中考数学试卷(附答案与解析)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。
2014年浙江省宁波市中考数学试题(含答案)
浙江省宁波市2014年中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)(2014•宁波)下列各数中,既不是正数也不是负数的是()A.0B.﹣1 C.D.2考点:实数;正数和负数.分析:根据实数的分类,可得答案.解答:解:0既不是正数也不是负数,故选:A.点评:本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.(4分)(2014•宁波)宁波轨道交通1号线、2号线建设总投资亿元,其中亿用科学记数法表示为()A.×108B.×109C.×1010D.×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:亿×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2014•宁波)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.考点:翻折变换(折叠问题).分析:根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解答:解:A.当长方形如A所示对折时,其重叠部分两角的和一个顶点处小于90°,另一顶点处大于90°,故本选项错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故本选项错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故本选项错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,正确.故选:D.点评:本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.4.(4分)(2014•宁波)杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为A.千克B.千克C.千克D.千克考点:正数和负数分析:根据有理数的加法,可得答案.解答:﹣)+5×(千克),故选:C.点评:本题考查了正数和负数,有理数的加法运算是解题关键.5.(4分)(2014•宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π考点:圆锥的计算专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=•4•2π•2=8π.故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(4分)(2014•宁波)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10 B.8C.6D.5考点:菱形的性质;勾股定理.分析:根据菱形的性质及勾股定理即可求得菱形的边长.解答:解:∵四边形ABCD是菱形,AC=8,BD=6,∴OB=OD=3,OA=OC=4,AC⊥BD,在Rt△AOB中,由勾股定理得:AB===5,即菱形ABCD的边长AB=BC=CD=AD=5,故选D.点评:本题考查了菱形的性质和勾股定理,关键是求出OA、O B的长,注意:菱形的对角线互相平分且垂直.7.(4分)(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.考点:概率公式专题:网格型.分析:找到可以组成直角三角形的点,根据概率公式解答即可.解答:解:如图,C1,C2,C3,均可与点A和B组成直角三角形.P=,故选C.点评:本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(4分)(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,A.2:3 B.2:5 C.4:9 D.:考点:相似三角形的判定与性质.分析:先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出△ABC与△DCA的面积比=.解答:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比=.9.(4分)(2014•宁波)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0考点:命题与定理;根的判别式专题:常规题型.分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解答:解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.10.(4分)(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.11.(4分)(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.(4分)(2014•宁波)已知点A(a﹣2b,2﹣4ab)在抛物线y=x+4x+10上,则点A A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)考点:二次函数图象上点的坐标特征;坐标与图形变化-对称.分析:把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.解答:解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,(a+2)2+4(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴a﹣2b=﹣2﹣2×1=﹣4,2﹣4ab=2﹣4×(﹣2)×1=10,∴点A的坐标为(﹣4,10),∵对称轴为直线x=﹣=﹣2,∴点A关于对称轴的对称点的坐标为(0,10).故选D.点评:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2014•宁波)﹣4的绝对值是4.考点:绝对值专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣4|=4.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(4分)(2014•宁波)方程=的根x= ﹣1.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)(2014•宁波)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是150支.考点:扇形统计图分析:首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.解答:解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%,∴售出雪糕总量为200÷40%=500支,∵水果口味的占30%,∴水果口味的有500×30%=150支,故答案为150.点评:本题考查了扇形统计图的知识,解题的关键是正确的从扇形统计图中整理出进一步解题的有关信息.16.(4分)(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.点评:本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.17.(4分)(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.()考点:解直角三角形的应用.分析:如图,根据三角函数可求BC,CE,则BE=BC+CE可求,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:×sin45°×米,CE=5×sin45°=5×米,BE=BC+CE≈,÷sin45°÷米,(56﹣)÷÷≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.18.(4分)(2014•宁波)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6cm2.考点:垂径定理;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:作三角形DBF的轴对称图形,得到三角形AGE,三角形AGE的面积就是阴影部分的面积.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.点评:本题考查了平行线的性质,垂径定理,勾股定理的应用.三、解答题(本大题有8小题,共78分)19.(6分)(2014•宁波)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;考点:整式的混合运算;解一元一次不等式分析:(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.解答:解:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,移项、合并同类项得3x>15,系数化为1,得x>5.点评:本题考查了整式的混合运算以及解一元一次不等式,是基础知识要熟练掌握.20.(8分)(2014•宁波)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费元,求2014年租车费收入占总投入的百分率(精确到).考点:条形统计图;加权平均数;中位数;众数专题:计算题.分析:(1)找出租车量中车次最多的即为众数,将数据按照从小到大顺序排列,找出中间的数即为中位数,求出数据的平均数即可;(2)由(1)求出的平均数乘以30即可得到结果;(3)求出2014年的租车费,除以总投入即可得到结果.解答:解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;,8,8,8,9,9,10,中位数为8;)÷;(2)根据题意得:30×(万车次),则估计4月份(30天)共租车255万车次;(3)根据题意得:=,则2014年租车费收入占总投入的百分率为.点评:此题考查了条形统计图,加权平均数,中位数,以及众数,熟练掌握各自的定义是解本题的关键.21.(8分)(2014•宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;考点:解直角三角形的应用分析:(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.解答:解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×千米,AH=AC•cos∠CAB=AC•cos25°≈10×千米,在Rt△BCH中,BH=CH÷tan∠÷tan37°≈÷千米,∴千米.故改直的公路AB的长千米;(2)在Rt△BCH中,BC=CH÷sin∠÷sin37°≈÷千米,则AC+BC﹣AB=10+7﹣千米.千米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.22.(10分)(2014•宁波)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)利用“HL”证明△AOB≌△DCA;(2)先利用勾股定理计算出AC=1,再确定C点坐标,然后根据点E为CD的中点可得到点E的坐标为(3,1),则可根据反比例函数图象上点的坐标特征求得k=3;(3)根据中心对称的性质得△BFG≌△DCA,所以FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,则可得到G点坐标为(1,3),然后根据反比例函数图象上点的坐标特征判断G点是否在函数y=的图象上.解答:(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x 轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,∴Rt△AOB≌Rt△DCA;(2)解:在Rt△ACD中,CD=2,AD=,∴AC==1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),∴k=3×1=3;(3)解:点G是否在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y=的图象上.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、中心对称的性质和三角形全等的判定与性质;会利用勾股定理进行几何计算.23.(10分)(2014•宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.考点:待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组)分析:(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.解答:解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C (4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.点评:本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?考点:一元一次方程的应用;列代数式.分析:(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.解答:解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三考点:相似形综合题;图形的剪拼分析:(1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和°,再以°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾AEC在同一直线上,易得2种三角形ABC.根据图形易得x的值.(3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.(3)如图4,CD、AE就是所求的三分线.设∠B=a,则∠DCB=∠DCA=∠EAC=a,∠ADE=∠AED=2a,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2x=(x+y):2,所以联立得方程组,解得,即三分线长分别是和.点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.考点:圆的综合题分析:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值.(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论.②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论.解答:解:(1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点.方案二:设半径为r,在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r,∴(2r)2=22+(3﹣2r)2,解得r=.方案三:设半径为r,在△AOM和△OFN中,,∴△AOM∽△OFN,∴,∴,解得r=.比较知,方案三半径较大.(3)方案四:①∵EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x.类似(1),所截出圆的直径最大为3﹣x或2+x较小的.1.当3﹣x<2+x时,即当x>时,r=(3﹣x);2.当3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当3﹣x>2+x时,即当x<时,r=(2+x).②当x>时,r=(3﹣x)<(3﹣)=;当x=时,r=(3﹣)=;当x<时,r=(2+x)<(2+)=,∴方案四,当x=时,r最大为.∵1<<<,∴方案四时可取的圆桌面积最大.点评:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.。
2014年江苏省南通市中考数学试卷(含答案和解析)
2014年江苏省南通市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕〔2014•南通〕﹣4的相反数〔〕A.4B.﹣4 C.D.﹣2.〔3分〕〔2014•南通〕如图,∠1=40°,如果CD∥BE,那么∠B的度数为〔〕A.160°B.140°C.60°D.50°3.〔3分〕〔2014•南通〕已知一个几何体的三视图如下图,则该几何体是〔〕A.圆柱B.圆锥C.球D.棱柱4.〔3分〕〔2014•南通〕假设在实数范围内有意义,则x的取值范围是〔〕A.x ≥B.x≥﹣C.x >D.x ≠5.〔3分〕〔2014•南通〕点P〔2,﹣5〕关于x轴对称的点的坐标为〔〕A.〔﹣2,5〕B.〔2,5〕C.〔﹣2,﹣5〕D.〔2,﹣5〕6.〔3分〕〔2014•南通〕化简的结果是〔〕A.x+1 B.x﹣1 C.﹣x D.x7.〔3分〕〔2014•南通〕已知一次函数y=kx﹣1,假设y随x的增大而增大,则它的图象经过〔〕A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.〔3分〕〔2014•南通〕假设关于x 的一元一次不等式组无解,则a的取值范围是〔〕A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣19.〔3分〕〔2014•南通〕如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为〔〕A.1B.2C.12﹣6 D.6﹣610.〔3分〕〔2014•南通〕如图,一个半径为r的圆形纸片在边长为a〔〕的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是〔〕A.B.C.D.πr2二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2014•南通〕我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为_________吨.12.〔3分〕〔2014•南通〕因式分解a3b﹣ab=_________.13.〔3分〕〔2014•南通〕如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=_________.14.〔3分〕〔2014•南通〕已知抛物线y=ax2+bx+c与x轴的公共点是〔﹣4,0〕,〔2,0〕,则这条抛物线的对称轴是直线_________.15.〔3分〕〔2014•南通〕如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.假设BC=4cm,AD=5cm,则AB=_________cm.16.〔3分〕〔2014•南通〕在如下图〔A,B,C三个区域〕的图形中随机地撒一把豆子,豆子落在_________区域的可能性最大〔填A或B或C〕.17.〔3分〕〔2014•南通〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_________°.18.〔3分〕〔2014•南通〕已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.三、解答题〔本大题共10小题,共96分〕19.〔10分〕〔2014•南通〕计算:〔1〕〔﹣2〕2+〔〕0﹣﹣〔〕﹣1;〔2〕[x〔x2y2﹣xy〕﹣y〔x2﹣x3y〕]÷x2y.20.〔8分〕〔2014•南通〕如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A〔m,2〕,B两点.〔1〕求反比例函数的表达式及点B的坐标;〔2〕结合图象直接写出当﹣2x>时,x的取值范围.21.〔8分〕〔2014•南通〕如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?22.〔8分〕〔2014•南通〕九年级〔1〕班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间〔单位:小时〕分成5组:≤x<1 B.1≤x<1.5 C.1.5≤x<2 D.2≤x<2.5 E.2.5≤x<3;并制成两幅不完整的统计图〔如图〕:请根据图中提供的信息,解答以下问题:〔1〕这次活动中学生做家务时间的中位数所在的组是_________;〔2〕补全频数分布直方图;〔3〕该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.23.〔8分〕〔2014•南通〕盒中有x个黑球和y个白球,这些球除颜色外无其他差异.假设从盒中随机取一个球,它是黑球的概率是;假设往盒中再放进1个黑球,这时取得黑球的概率变为.〔1〕填空:x=_________,y=_________;〔2〕小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,假设两球颜色相同则小王胜,假设颜色不同则小林胜.求两个人获胜的概率各是多少?24.〔8分〕〔2014•南通〕如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.〔1〕假设CD=16,BE=4,求⊙O的直径;〔2〕假设∠M=∠D,求∠D的度数.25.〔9分〕〔2014•南通〕如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h〔cm〕与注水时间t〔s〕之间的关系如图②所示.请根据图中提供的信息,解答以下问题:〔1〕圆柱形容器的高为_________cm,匀速注水的水流速度为_________cm3/s;〔2〕假设“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.〔10分〕〔2014•南通〕如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.〔1〕求证:EB=GD;〔2〕假设∠DAB=60°,AB=2,AG=,求GD的长.27.〔13分〕〔2014•南通〕如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a〔a为大于0的常数〕,直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.〔1〕假设M为边AD中点,求证:△EFG是等腰三角形;〔2〕假设点G与点C重合,求线段MG的长;〔3〕请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.28.〔14分〕〔2014•南通〕如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.〔1〕求线段DE的长;〔2〕设过E的直线与抛物线相交于M〔x1,y1〕,N〔x2,y2〕,试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;〔3〕设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.2014年江苏省南通市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕〔2014•南通〕﹣4的相反数〔〕A.4B.﹣4 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选A.点评:此题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.〔3分〕〔2014•南通〕如图,∠1=40°,如果CD∥BE,那么∠B的度数为〔〕A.160°B.140°C.60°D.50°考点:平行线的性质.专题:计算题.分析:先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.解答:解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选B.点评:此题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.〔3分〕〔2014•南通〕已知一个几何体的三视图如下图,则该几何体是〔〕A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选A.点评:此题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.〔3分〕〔2014•南通〕假设在实数范围内有意义,则x的取值范围是〔〕A.x≥B.x≥﹣C.x>D.x≠考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x﹣1>0,解得x>.故选C.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.〔3分〕〔2014•南通〕点P〔2,﹣5〕关于x轴对称的点的坐标为〔〕A.〔﹣2,5〕B.〔2,5〕C.〔﹣2,﹣5〕D.〔2,﹣5〕考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P〔x,y〕关于x轴的对称点P′的坐标是〔x,﹣y〕,进而得出答案.解答:解:∵点P〔2,﹣5〕关于x轴对称,∴对称点的坐标为:〔2,5〕.故选:B.点评:此题主要考查了关于x轴对称点的坐标性质,正确记忆坐标变化规律是解题关键.6.〔3分〕〔2014•南通〕化简的结果是〔〕A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.专题:计算题.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:此题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.7.〔3分〕〔2014•南通〕已知一次函数y=kx﹣1,假设y随x的增大而增大,则它的图象经过〔〕A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.解答:解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.点评:此题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.8.〔3分〕〔2014•南通〕假设关于x的一元一次不等式组无解,则a的取值范围是〔〕A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1考点:解一元一次不等式组.分析:将不等式组解出来,根据不等式组无解,求出a的取值范围.解答:解:解得,,∵无解,∴a≥1.故选A.点评:此题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.9.〔3分〕〔2014•南通〕如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为〔〕A.1B.2C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AB,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.〔3分〕〔2014•南通〕如图,一个半径为r的圆形纸片在边长为a〔〕的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是〔〕A.B.C.D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选C.点评:此题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2014•南通〕我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.〔3分〕〔2014•南通〕因式分解a3b﹣ab=ab〔a+1〕〔a﹣1〕.考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差继续分解.解答:解:a3b﹣ab=ab〔a2﹣1〕=ab〔a+1〕〔a﹣1〕.故答案是:ab〔a+1〕〔a﹣1〕.点评:此题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.〔3分〕〔2014•南通〕如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.考点:根的判别式.分析:因为一元二次方程有两个相等的实数根,所以△=b2﹣4ac=0,根据判别式列出方程求解即可.解答:解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即〔﹣6〕2﹣4×1×m=0,解得m=9点评:总结:一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.14.〔3分〕〔2014•南通〕已知抛物线y=ax2+bx+c与x轴的公共点是〔﹣4,0〕,〔2,0〕,则这条抛物线的对称轴是直线x=﹣1.考点:抛物线与x轴的交点.分析:因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.解答:解:∵抛物线与x轴的交点为〔﹣1,0〕,〔3,0〕,∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==﹣1,即x=﹣1.故答案是:x=﹣1.点评:此题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是〔x1,0〕,〔x2,0〕,则抛物线的对称轴为直线x=.15.〔3分〕〔2014•南通〕如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.假设BC=4cm,AD=5cm,则AB=8cm.考点:勾股定理;直角梯形.分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.解答:解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3〔cm〕,∵AB∥CD,∴∠DCA=∠BAC,∴BE=5cm,∴AB=AE+BE=8〔cm〕.故答案为:8.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.〔3分〕〔2014•南通〕在如下图〔A,B,C三个区域〕的图形中随机地撒一把豆子,豆子落在A区域的可能性最大〔填A或B或C〕.考点:几何概率.分析:根据哪个区域的面积大落在那个区域的可能性就大解答即可.解答:解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.点评:此题考查了几何概率,解题的关键是了解那个区域的面积大落在那个区域的可能性就大.17.〔3分〕〔2014•南通〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.考点:圆周角定理;平行四边形的性质.专题:压轴题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=〔∠1+∠2〕﹣〔∠ADO+∠CDO〕=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60°.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.〔3分〕〔2014•南通〕已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.考点:配方法的应用;非负数的性质:偶次方.专题:计算题.分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=〔m+3〕2﹣12≥﹣12,则代数式m2+2n2+4m﹣1的最小值等于﹣12,故答案为:﹣12.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解此题的关键.三、解答题〔本大题共10小题,共96分〕19.〔10分〕〔2014•南通〕计算:〔1〕〔﹣2〕2+〔〕0﹣﹣〔〕﹣1;〔2〕[x〔x2y2﹣xy〕﹣y〔x2﹣x3y〕]÷x2y.考点:整式的混合运算;零指数幂;负整数指数幂.分析:〔1〕先求出每一部分的值,再代入求出即可;〔2〕先算括号内的乘法,再合并同类项,最后算除法即可.解答:解:〔1〕原式=4+1﹣2﹣2=1;〔2〕原式=[x2y〔xy﹣1〕﹣x2y〔1﹣xy〕]÷x2y=[x2y〔2xy﹣2〕]÷x2y=2xy﹣2.点评:此题考查了零指数幂,负整数指数幂,二次根式的性质,有理数的混合运算,整式的混合运算的应用,主要考查学生的计算和化简能力.20.〔8分〕〔2014•南通〕如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A〔m,2〕,B两点.〔1〕求反比例函数的表达式及点B的坐标;考点:反比例函数与一次函数的交点问题.专题:计算题.分析:〔1〕先把A〔m,2〕代入y=﹣2x可计算出m,得到A点坐标为〔﹣1,2〕,再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;〔2〕观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.解答:解:〔1〕把A〔m,2〕代入y=﹣2x得﹣2m=2,解得m=﹣1,所以A点坐标为〔﹣1,2〕,把A〔﹣1,2〕代入y=得k=﹣1×2=﹣2,所以反比例函数解析式为y=﹣,点A与点B关于原点对称,所以B点坐标为〔1,﹣2〕;〔2〕当x<﹣1或0<x<1时,﹣2x>.点评:此题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.〔8分〕〔2014•南通〕如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?考点:解直角三角形的应用-方向角问题.分析:易证△ABP是等腰三角形,过P作PD⊥AB,求得PD的长,与6海里比较大小即可.解答:解:过P作PD⊥AB.AB=18×=12海里.∵∠PAB=30°,∠PBD=60°∴∠PAB=∠APB∴AB=BP=12海里.∵6>8∴海轮不改变方向继续前进没有触礁的危险.点评:此题主要考查了方向角含义,正确作出高线,转化为直角三角形的计算是解决此题的关键.22.〔8分〕〔2014•南通〕九年级〔1〕班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间〔单位:小时〕分成5组:≤x<1 B.1≤x<1.5 C.1.5≤x<2 D.2≤x<2.5 E.2.5≤x<3;并制成两幅不完整的统计图〔如图〕:请根据图中提供的信息,解答以下问题:〔1〕这次活动中学生做家务时间的中位数所在的组是C;〔2〕补全频数分布直方图;〔3〕该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.考点:频数〔率〕分布直方图;扇形统计图;中位数.专题:图表型.分析:〔1〕可根据中位数的概念求值;〔2〕根据〔1〕的计算结果补全统计图即可;〔3〕根据中位数的意义判断.解答:解:〔1〕C组的人数是:50×40%=20〔人〕,B组的人数是:50﹣3﹣20﹣9﹣1=7〔人〕,把这组数据按从小到大排列为,由于共有50个数,第25、26位都落在1.5≤x<2范围内,则中位数落在C 组;故答案为:C;〔2〕根据〔1〕得出的数据补图如下:〔3〕符合实际.设中位数为m,根据题意,m的取值范围是1.5≤m<2,∵小明帮父母做家务的时间大于中位数,∴他帮父母做家务的时间比班级中一半以上的同学多.点评:此题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.〔8分〕〔2014•南通〕盒中有x个黑球和y个白球,这些球除颜色外无其他差异.假设从盒中随机取一个球,它是黑球的概率是;假设往盒中再放进1个黑球,这时取得黑球的概率变为.〔1〕填空:x=2,y=3;〔2〕小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,假设两球颜色相同则小王胜,假设颜色不同则小林胜.求两个人获胜的概率各是多少?考点:列表法与树状图法;概率公式.分析:〔1〕根据题意得:,解此方程即可求得答案;〔2〕首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.解答:解:〔1〕根据题意得:,解得:;故答案为:2,3;〔2〕画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,∴P〔小王胜〕==,P〔小林胜〕==.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.〔8分〕〔2014•南通〕如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.考点:垂径定理;勾股定理;圆周角定理.分析:〔1〕先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;〔2〕由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:〔1〕∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=〔x﹣4〕2+82,解得:x=10,∴⊙O的直径是20.〔2〕∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:此题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;25.〔9分〕〔2014•南通〕如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h〔cm〕与注水时间t〔s〕之间的关系如图②所示.请根据图中提供的信息,解答以下问题:〔1〕圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;〔2〕假设“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.考点:一次函数的应用.专题:应用题.分析:〔1〕根据图象,分三个部分:满过“几何体”下方圆柱需18s,满过“几何体”上方圆柱需24s﹣18s=6s,注满“几何体”上面的空圆柱形容器需42s﹣24s=18s,再设匀速注水的水流速度为xcm3/s,根据圆柱的体积公式列方程,再解方程;解答:解:〔1〕根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从满过由两个实心圆柱组成的“几何体”到注满用了42s﹣24s=18s,设匀速注水的水流速度为xcm3/s,则18•x=30•3,解得x=5,即匀速注水的水流速度为5cm3/s;故答案为14,5;〔2〕“几何体”下方圆柱的高为a,则a•〔30﹣15〕=18•5,解得a=6,所以“几何体”上方圆柱的高为11cm﹣6cm=5cm,设“几何体”上方圆柱的底面积为Scm2,根据题意得5•〔30﹣S〕=5•〔24﹣18〕,解得S=24,即“几何体”上方圆柱的底面积为24cm2.点评:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.26.〔10分〕〔2014•南通〕如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.〔1〕求证:EB=GD;〔2〕假设∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.分析:〔1〕利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;〔2〕连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:〔1〕证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;〔2〕解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP AB=1,AP==,AE=AG=,∴EP=2,∴EB===,点评:此题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.27.〔13分〕〔2014•南通〕如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a〔a为大于0的常数〕,直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.〔1〕假设M为边AD中点,求证:△EFG是等腰三角形;〔2〕假设点G与点C重合,求线段MG的长;〔3〕请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.考点:四边形综合题.分析:〔1〕利用△MAE≌△MDF,求出EM=FM,再由MG⊥EM,得出EG=FG,所以△EFG是等腰三角形;〔2〕利用勾股定理EM2=AE2+AM2,EC2=BE2+BC2,得出CM2=EC2﹣EM2,利用线段关系求出CM.〔3〕作MN⊥BC,交BC于点N,先求出EM,再利用△MAE∽△MDF求出FM,得到EF的值,再由△MNG∽△MAE得出MG的长度,然后用含a的代数式表示△EFG的面积S,指出S的最小整数值.解答:〔1〕证明:∵四边形ABCD是矩形,∴∠A=∠MDF=90°,∵M为边AD中点,∴MA=MD在△MAE和△MDF中,∴△MAE≌△MDF〔ASA〕,∴EM=FM,又∵MG⊥EM,∴EG=FG,∴△EFG是等腰三角形;〔2〕解:如图1,∴BE=AB﹣AE=3﹣1=2,BC=AD=4,∴EM2=AE2+AM2,EC2=BE2+BC2,∴EM2=1+a2,EC2=4+16=20,∵CM2=EC2﹣EM2,∴CM2=20﹣1﹣a2=19﹣a2,∴CM=.〔3〕解:如图2,作MN⊥BC,交BC于点N,∵AB=3,AD=4,AE=1,AM=a∴EM==,MD=AD﹣AM=4﹣a,∵∠A=∠MDF=90°,∠AME=∠DMF,∴△MAE∽△MDF∴=,∴=,∴FM=,∴EF=EM+FM=+=,∵AD∥BC,∴∠MGN=∠DMG,∵∠AME+∠AEM=90°,∠AME+∠DMG=90°,∴∠AME=∠DMG,∴∠MGN=∠AME,∵∠MNG=∠MAE=90°,∴△MNG∽△MAE∴=,∴=,∴MG=,∴S=EF•MG=××=+6,当a=时,S有最小整数值,S=1+6=7.点评:此题主要考查了四边形的综合题,解题的关键是利用三角形相似求出线段的长度.28.〔14分〕〔2014•南通〕如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.〔1〕求线段DE的长;〔2〕设过E的直线与抛物线相交于M〔x1,y1〕,N〔x2,y2〕,试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;〔3〕设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.考点:二次函数综合题.分析:〔1〕根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析式,把对称轴代入直线BC的解析式即可求得.〔2〕设直线MN的解析式为y=kx+b,依据E〔1,2〕的坐标即可表示出直线MN的解析式y=〔2﹣b〕x+b,根据直线MN的解析式和抛物线的解析式即可求得x2﹣bx+b﹣3=0,所以x1+x2=b,x1 x2=b﹣3;根据完全平方公式即可求得∵|x1﹣x2|====,所以当b=2时,|x1﹣x2|最小值=2,因为b=2时,y=〔2﹣b〕x+b=2,所以直线MN∥x轴.〔3〕由D〔1,4〕,则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AO•AP,从而求得OP的长,进而求得P点坐标.解答:解:由抛物线y=﹣x2+2x+3可知,C〔0,3〕,令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A〔﹣1,0〕,B〔3,0〕;∴顶点x=1,y=4,即D〔1,4〕;∴DF=4设直线BC的解析式为y=kx+b,代入B〔3,0〕,C〔0,3〕得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E〔1,2〕,∴EF=2,∴DE=DF﹣EF=4﹣2=2.〔2〕设直线MN的解析式为y=kx+b,∵E〔1,2〕,∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=〔2﹣b〕x+b,。
浙江省金华市2014年中考数学试卷及答案【Word解析版】
浙江省金华市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•金华)在数1,0,﹣1,﹣2中,最小的数是()A.1B.0C.﹣1 D.﹣2考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<﹣1<0<1,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线.故选A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(3分)(2014•金华)一个几何体的三视图如图,那么这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.点评:考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.(3分)(2014•金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.考点:概率公式.分析:用红球的个数除以球的总个数即可.解答:解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.点评:本题考查了概率公式:概率=所求情况数与总情况数之比.5.(3分)(2014•金华)在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、x﹣2≠0,解得:x≠2,故选项错误;B、x﹣3≠0,解得:x≠3,选项错误;C、x﹣2≥0,解得:x≥2,则x可以取2和3,选项正确;D、x﹣3≥0,解得:x≥3,x不能取2,选项错误.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.3考点:锐角三角函数的定义;坐标与图形性质.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.(3分)(2014•金华)把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解答:解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选:C.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.8.(3分)(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得,∠B=∠A′B′C=65°.故选B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.(3分)(2014•金华)如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3考点:二次函数与不等式(组).分析:根据函数图象写出直线y=1下方部分的x的取值范围即可.解答:解:由图可知,x≤﹣1或x≥3时,y≤1.故选D.点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.10.(3分)(2014•金华)一张圆心角为45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:考点:正多边形和圆;勾股定理.分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.解答:解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴π÷(π)=,故选A.点评:本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014•金华)写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专开放型.题:分析:根据不等式的解集,可得不等式.解答:解:写出一个解为x≥1的一元一次不等式 x+1≥2,故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.(4分)(2014•金华)分式方程=1的解是x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2014•金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.考点:函数的图象.分析:先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.解答:解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.点评:本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14.(4分)(2014•金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.考点:扇形统计图.分析:用周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数.解答:解:表示“一水多用”的扇形圆心角的度数是360°×=240°,故答案为:240°.点评:本题考查了扇形统计图的知识,能够从统计图中整理出进一步解题的信息是解答本题的关键.15.(4分)(2014•金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.考点:全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.解答:解:∵G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.点评:本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.16.(4分)(2014•金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm.考点:圆的综合题.分析:(1)作P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,由△LDH∽△LPB,得出=,再根据30°的直角三角形得出线段的关系,得到DH和r的关系式,根据0≤d≤3的限制条件,列不等式组求范围.解答:解:(1)如图2①,P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH 于点M,∴∠BPH=∠BPL=90°,∵AO∥GH,∴BL∥AO∥GH,∵∠AOB=120°,∴∠OBL=60°,在RT△BPH中,HP=BP=r,∴ML=HP=r,OM=r,∵BL∥GH,∴===,故答案为:.(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,∴∠LDH=∠LPB=90°,∴△LDH∽△LPB,∴=,∵AO∥PB,∠AOD=120°∴∠B=60°,∴∠BLP=30°,∴DL=DH,LH=2DH,∵HE=(8+2)cm∴HP=8+2﹣r,PL=HP+LH=8+2﹣r+2DH,∴=,解得DH=r﹣4﹣1,∵0cm≤DH≤3cm,∴0≤r﹣4﹣1≤3,解得:(11﹣3)cm≤r≤8cm.故答案为:(11﹣3)cm≤r≤8cm.点评:本题主要考查了圆的综合题,解决本题的关键是作出辅助线,运用30°的直角三角形得出线段的关系.三、解答题(共8小题,满分66分)17.(6分)(2014•金华)计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•金华)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014•金华)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)考利用轴对称设计图案;坐标与图形性质.点:分析:(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.解答:解:(1)如图2所示:直线l即为所求;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.点评:此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.20.(8分)(2014•金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?考点:规律型:图形的变化类.分析:(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可;(2)由(1)中的规律列方程解答即可.解答:解:(1)1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;所以4张长方形餐桌的四周可坐4×4+2=18人,8张长方形餐桌的四周可坐4×8+2=34人.(2)设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.点评:此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.21.(8分)(2014•金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?考点:折线统计图;条形统计图;加权平均数;方差.分析:(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.解答:解:(1)总人数:(5+6)÷55%=20,第三次的优秀率:(8+5)÷20×100%=65%,20×85%﹣8=17﹣8=9.补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2乙组=×【(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2】=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.点评:本本题考查了优秀率、平均数和方差等概念以及运用.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(10分)(2014•金华)【合作学习】如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标时多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)①先根据矩形的性质得到D(2,3),然后利用反比例函数图象上点的坐标特征计算出k=6,则得到反比例函数解析式为y=;②设正方形AEGF的边长为a,则AE=AF=6,根据坐标与图形的关系得到B(2+a,0)),A(2+a,3),所以F点坐标为(2+a,3﹣a),于是利用反比例函数图象上点的坐标特征得(2+a)(3﹣a)=6,然后解一元二次方程可确定a的值,从而得到F点坐标;(2)当AE>EG时,假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,则得到F点坐标为(3,3),根据反比例函数图象上点的坐标特征可判断点F(3,3)不在反比例函数y=的图象上,由此得到矩形AEGF与矩形DOHE不能全等;当AE>EG时,若矩形AEGF与矩形DOHE相似,根据相似的性质得AE:OD=AF:DE,即==,设AE=3t,则AF=2t,得到F点坐标为(2+3t,3﹣2t),利用反比例函数图象上点的坐标特征得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,则AE=3t=,于是得到相似比==.解答:解:(1)①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=(x>0);②设正方形AEGF的边长为a,则AE=AF=6,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2);(2)当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(3,3),而3×3=9≠6,∴F点不在反比例函数y=的图象上,∴矩形AEGF与矩形DOHE不能全等;当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴==,设AE=3t,则AF=2t,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,∴AE=3t=,∴相似比===.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、矩形的性质和图形全等的性质、相似的性质;理解图形与坐标的关系;会解一元二次方程.23.(10分)(2014•金华)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF 的长度,再用平行线分线段成比例定理或者三角形相似及求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=120°.②如图,过点E作EH∥BC,交AF于H,AM⊥BC,垂足为M,∵AE=CF=2,△ABC为等边三角形,AB=BC=AC=6,∴MF=1,AM=,根据勾股定理,AF=;∵EH∥BC,∴,∴,∴,∴AP•AF===12.(2)①当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC 的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠ABP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.(2)点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径的长度为:.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.24.(12分)(2014•金华)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S△OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.解答:解:(1)由题意得:A(4,0),C(0,4).设抛物线的解析式为y=ax2+bx+c,则有,解得,∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•OP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(﹣3,0).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P(0,3).b)当点P在BC边上时,如答图2所示,此时PE=4.设CP=a(0≤a≤2),则P(a,4);设直线PE与直线l交点为Q,则Q(a,a﹣3),∴PQ=7﹣a.∴PF=(7﹣a).与a)同理,可求得:EF=.若PE=PF,则(7﹣a)=4,解得a=7﹣4>2,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即4=•(7﹣a),解得a=3>2,故此种情形不存在;若PE=EF,则PE=,整理得PF=PE,即(7﹣a)=4,解得a=﹣1,故此种情形不存在.∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BC与直线l交于点K,则K(,).c)当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(1+2,6﹣4).点评:本题是二次函数压轴题,涉及二次函数的图象与性质、待定系数法、图形面积、勾股定理、角平分线性质等知识点,重点考查了分类讨论的数学思想.第(2)②问中涉及复杂的分类讨论,使得试题的难度较大.。
2014广州中考数学试题(含答案解析版)
2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. (0)a a ≠的相反数是 ( )A .a -B .2a C .||aD .1a【答案】:A 【分析】:考察了相反数的定义,是一条信度很高的试题。
但相较往年试题,这题的难度还是有点高,因为过去几年中考的第一题都是在实数基础上考察学生对有理数概念的理解,今年是首次出现在字母的基础上考察学生对有理数概念的理解。
2.下列图形中,是中心对称图形的是 ( )A .B .C .D .【答案】:D【分析】:考察了中心对称图形的定义,是一条信度很高的习题3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .43【答案】:D 【分析】:考察了三角函数的定义,是一条信度很高的习题。
2014年全国中考数学试题分类汇编48 与圆有关的压轴题(含答案)
2014年中考数学分类汇编——与圆有关的压轴题2014年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等.数学思想涉及:数形结合;分类讨论;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014年江苏南京,26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【分析】:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.【题2】(2014•泸州24题)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD 相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.,得=,=,==4==2=中有,【题3】(2014•济宁21题)阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.、++=.==20=126===.【题4】(2014.福州20题)如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =D 为BA 延长线上的一点,且∠D =∠ACB ,⊙O 为△ABC 的外接圆.(1)求BC 的长; (2)求⊙O 的半径. 【解析】∴BC 3=(2)由(1)得,在Rt △ACE 中,∵∠EAC =30°,EC ,∴AC =.∵∠D =∠ACB ,∠B =∠B ,∴△BAC ∽△BCD . ∴AB AC CB CD ==∴DM=4.∴⊙O的半径为2.【考点】:1. 锐角三角函数定义;2.特殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.【题5】(2014.广州25题)如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值.【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图2,交于点,与关于对称,则有:,又又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得则又解得:(舍去)①②③【题6】(2014•湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.【解答】:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.【题7】(2014•宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.度.则选择最小跨度,取其..>时,(﹣<>=)<﹣时,(﹣=时,=)<(),时,最大为.<<,【题8】(2014•苏州28)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).cm=,=4==2==2=+2﹣﹣(=2+2﹣.【题9】(2014•泰州25题)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.﹣=b bb bb﹣(FG﹣(b b b b 有两个交点x﹣,)【题10】(2014年江苏徐州28) 如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质.【分析】:(1)只要证到三个内角等于90°即可.(2)易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S的范围.根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G 矩形ABCD的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【点评】: 本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强.而发现∠CDG =∠ADB 及∠FCE =∠ADB 是解决本题的关键.【题11】(2014.连云港25题)为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O 为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n 年,冰川的边界线P 1P 2移动的距离为s (km ),并且s 与n (n 为正整数)的关系是2575092032+-=n n s .以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3). (1)求线段P 1P 2所在的直线对应的函数关系式; (2)求冰川的边界线移动到考察区域所需要的最短时间.【解答】(第25题图)。
2014年数学中考试题及答案word版
16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,
若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直
角三角形的概率为_______.
17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(+1),第2位同学报(+1),第1位同学报(+1)……这样得到的20个数的积为___________.
C.必有5次正面向上D.不可能有10次正面向上
7.如图3,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是()
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
8.用配方法解方程x2+4x+1=0,配方后的方程是()
2014数学中考复习资料
数学试卷
卷Ⅰ(选择题,共30分)
一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各数中,为负数的是()
A.0B.-2C.1D.
2.计算(ab)3的结果是()A.ab3B.a3bC.a3b3D.3ab
19.(本小题满分8分)
计算:|-5|-(-3)0+6×(-)+(-1)2.
20.(本小题满分8分)
如图10,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.
2014年苏州市初中中考数学试卷含答案解析
2014年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(-3)×3的结果是A.-9 B.0 C.9 D.-62.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为A.30°B.60°C.70°D.150°3.有一组数据:1,3.3,4,5,这组数据的众数为A.1 B.3 C.4 D.544x x的取值范围是A.x≤-4 B.x≥-4 C.x≤4 D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是A.14B.13C.12D.236.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为A.30°B.40°C.45°D.60°7.下列关于x的方程有实数根的是A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=08.一次函数y=ax2+bx-1(a≠0)的图象经过点(1,1).则代数式1-a-b的值为A.-3 B.-1 C.2 D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为A.4km B.C.km D.1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(25,底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为A.(203,103)B.(16345)C.(20345)D.(163,3二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.32的倒数是▲.12已知地球的表而积约为510000000km2.数510000000用科学记数法可以表示为▲.13.已知正方形ABCD的对角线AC2ABCD的周长为▲.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学牛中随机抽取了部分学牛进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有▲人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=12∠BAC,则tan∠BPC=▲.16.某地准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天,设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为▲.17.如图,在矩形ABCD中,35ABBC,以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=43,则矩形ABCD的面积为▲.18.如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA =x ,PB =y ,则(x -y )的最大值是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:2214+-20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩.21.(本题满分5分)先化简,再求值:21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 21.22.(本题满分6分)解分式方程:2311x x x+=--.23.(本题满分6分)如图,在Rt △ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)求证:△BCD ≌△FCE ; (2)若EF ∥CD .求∠BDC 的度数.24.(本题满分7分)如图,已知函数y =-12x +b 的图象与x 轴、y 轴分别交于点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a>2),过点P 作x 轴的垂线,分别交函数y =-12x +b 和y =x 的图象于点C ,D . (1)求点A 的坐标; (2)若OB =CD ,求a 的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.26(本题满分8分)如图,已知函数y =kx(x>0)的图象经过点A ,B ,点A 的坐标为 (1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=12AC时,求CE的长.27.(本题满分8分)如图,已知⊙O上依次有A,B,C,D四个点,AD BC,连接AB,AD,BD,弦AB 不经过圆心O.延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧BD的长;(2)求证:BF=12 BD;(3)设G是BD的中点探索:在⊙O上是否存在点P(小同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(本题满分9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=3cm,AD=4cm.若⊙O与矩形ABCD沿l1同时..向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为▲°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分10分)如图,一次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x 轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:ADAE为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.。
2014年河北中考《数学考试说明》圆部分精典解析(九年级一轮复习老师必备)
一、《新课程标准》及《2014年中考说明》中与圆有关知识解读知识点有:切线的判定与性质;圆心角、圆周角、弧的关系;垂径定理;圆柱、圆锥、扇形面积。
过定点到圆上的距离的最值。
频率较低的有圆的定义、圆的对称性。
未出现的考点有:三角形的内切圆;尺规作图三角形的外心、内心;新增弧、弦、直径之间的关系;直径所对圆周角的特征; 切线长定理。
补充说明:2011版新课标中圆的部分删掉圆与圆的位置关系,但在《2014年河北中考说明》中,题型示例最后一道题第20题最后一问探讨的是元和圆的位置关系。
二、《2014年河北中考说明》与《2013年河北中考说明》的不同点在考试内容中新增弧、弦、直径之间的关系,很明显加强对垂径定理的重视;在考试要求中新增“知道圆内接四边形的对角互补”、“知道过圆外一点所画圆的两条切线长相等”,加强了对圆心角与圆周角的关系和直线与圆相切的性质的重视《2014年河北中考说明》与《2013年河北中考说明》题型示例的变化总题数没有变化:2013年的78道题;2014年的78道题;圆增加了5道题。
删掉两道题(圆与特殊四边形的综合图形),增加7道题。
1、选择题由《2013年河北中考说明》中的25道题增加15道题《2014年河北中考说明》变为40道题;其中圆由4道变为6道(12新增2013年中考题垂径定理和扇形面积、14全等和直线与圆相交、24切线的性质和角的计算、26直线和圆的位置关系和计算、29圆锥侧面展开图和最短距离、30新增隐形圆圆心角和圆周角)2、填空题由《2013年河北中考说明》中的20道题减少2道题《2014年河北中考说明》变为18道题;其中圆由2道变为3道(13垂径定理和勾股定理、14圆心角和圆周角、17圆的切线的性质均为新增题)3、解答题由《2013年河北中考说明》中的33道题减少13道题《2014年河北中考说明》变为20道题;其中等题由27道题减少到13道题,较难题由6道题增加到7道题;圆由2道题(一道中等题、一道较难题)增加到4道题(2道中等题、2道较难题).9题新增:切线的性质、切线长定理及二次函数最值计算;12题新增:材料阅读,尺规作图确定外心,相切时角最大;15题新增:切线性质、勾股定理计算、直径所对圆周角为直角、相似、直线和圆的位置关系;20题新增:第③问圆和圆的位置关系。
2014年泸州市中考数学试卷及答案(解析版)
2014年四川省泸州市中考数学试题参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分. 只有一项是符合题目要求的.)1.5的倒数为(A)A.B.5C.D.﹣52.计算x2•x3的结果为(B)A.2x2B.x5C.2x3D.x63.如图的几何图形的俯视图为(C )A.B.C.D.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是(C)A.38 B.39 C.40 D.425.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为(C)A.30°B.60°C.120°D.150°6.已知实数x、y 满足+|y+3|=0,则x+y的值为(A)A.﹣2 B.2C.4D.﹣47.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为(B)A.9cm B.12cm C.15cm D.18cm8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是(A)A.B.C.D.9.“五一节"期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(C)10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是(D)A.外切B.相交C.内含D.内切11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是(C)A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.二、填空题(本大题共4小题,每小题3分,共12分. 请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.16.如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).解答:解:命题①错误.理由如下:∵k=4,∴E(,3),F(4,1),∴CE=4﹣=,CF=3﹣1=2.∴S△OEF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△CEF=S矩形AOBC﹣OA•AE﹣OB•BF﹣CE•CF=4×3﹣×3×﹣×4×1﹣××2=12﹣2﹣2﹣=,∴S△OEF≠,故命题①错误;命题②正确.理由如下:∵k=,∴E(,3),F(4,),∴CE=4﹣=,CF=3﹣=.如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;在线段BM上取一点N,使得EN=CE=,连接NF.在Rt△EMN中,由勾股定理得:MN===,∴BN=OB﹣OM﹣MN=4﹣﹣=.在Rt△BFN中,由勾股定理得:NF===.∴NF=CF,又∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称, 故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的解析式为y=ax+b,则有,解得,∴y=x+3m+3.令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=AD=OD﹣OA=3m,AE=4m,由勾股定理得:DE=5m;在Rt△MEG中,MG=OG﹣OM=(4m+4)﹣4m=4,EM=3,由勾股定理得:EG=5.∴DE•EG=5m×5=25m=,解得m=,∴k=12m=1,故命题④正确.综上所述,正确的命题是:②④,故答案为:②④.三、(本大题共3小题,每题6分,共18分)17.计算:﹣4sin60°+(π+2)0+()﹣2.解答:解:原式=2﹣4×+1+4=5.18.计算:(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣)=﹣•=﹣.19.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.解答:证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=90°∠ABG+∠CBF=90°,∵∠ABG+∠FNC=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.四、(本大题共2小题,每小题7分,共14分)20.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.解答:解:(1)∵x%+15%+10%+45%=1,∴x=30;∵调查的总人数=90÷45%=200(人),∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),如图:(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,所以选出的2人来自不同小组的概率==.21.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解答:解:(1)y=700x+1200(50﹣x),即y=﹣500x+60000;(2)由题意得,解得16≤x≤30y=﹣500x+60000,y随x的增大而减小,当x=16时,y最大=58000,生产B种产品34件,A种产品16件,总利润y有最大值,y最大=58000元.五、(本大题共2小题,每小题8分,共16分)22.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)解答:解:如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,过点A作AF⊥FD,垂足为F,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°===,解得:x=15(+1),∵tan30°=,∴=,解得:BN=15+5,∴AB=AN+BN=15(+1)+15+5=30+20,答:灯塔A、B间的距离为(30+20)海里.23.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.六、(本大题共2小题,每小题12分,共24分)24.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.解答:(1)证明:∵DC2=CE•CA,∴=,∴△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=,∴PC=4又∵PC•PD=PB•PA,∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°,∴∠FDA+∠BDC=90°,∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°,∴△AFD∽△ACB,∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.25.如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).。
2014年安徽省中考数学试卷(附答案与解析)
数学试卷第2页(共22页)绝密★启用前安徽省2014年初中毕业学业考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2)3-⨯的结果是()A.5-B.1C.6-D.62.23x x=()A.5xB.6xC.8xD.9x3.如下左图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是 ()A B C D4.下列四个多项式中,能因式分解的是()A.2+1a B.269a a-+C.25x y+D.25x y-5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在832x≤<这个范围的频率为()棉花纤维长度x频数08x≤<1816x≤<21624x≤<82432x≤<63240x≤<3A.0,8B.0,7C.0,4D.0,26.设n为正整数,且651n n+<<,则n的值为()A.5B.6C.7D.87.已知2230x x--=,则224x x-的值为()A.6-B.6C.2-或6D.2-或308.如图,Rt ABC△中,9AB=,6BC=,90B∠=,将ABC△折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.59.如下左图,矩形ABCD中,3AB=,4BC=,动点P从A点出发,按A B C→→的方向在AB和BC上移动,记PA x=,点D到直线PA的距离为y,则y关于x的函数图象大致是()A B C D10.如图,正方形ABCD的对角线BD长为22,若直线l满足:①点D到直线l的距离为3;②A,C两点到直线l的距离相等,则符合题意的直线l的条数为( )A.1B.2C.3D.4毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上) 11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .12.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y = .13.方程41232x x -=-的解是x = .14.如图,在□ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上).①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S =△△;④3DFE AEF ∠=∠.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)0|3|(π)2013---+.16.(本小题满分8分)观察下列关于自然数的等式: (1)223415-⨯= ① (2)225429-⨯= ② (3)2274313-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式:294-⨯( )2=( ); (2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.17.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC △(顶点是网格线的交点).(1)将ABC △向上平移3个单位得到111A B C △,请画出111A B C △; (2)请画一个格点222A B C △,使222A B C ABC △∽△,且相似比不为1.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)18.(本小题满分8分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30,长为20km ;BC 段与AB ,CD 段都垂直,长为10km ;CD 段长为30km ,求两高速公路间的距离(结果保留根号).19.(本小题满分10分)如图,在O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与O 的交点.若4OE =,6OF =.求O 的半径和CD 的长.20.(本小题满分10分)2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?21.(本小题满分12分)如图,管中放置着三根同样绳子1AA ,1BB ,1CC .(1)小明从这三根绳子中随机选一根,恰好选中绳子1AA 的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端1A ,1B ,1C 三个绳头中随机选两个打一个结,求这三根绳子连结成一根长绳的概率.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)22.(本小题满分12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++,和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求当03x ≤≤时,2y 的最大值.23.(本小题满分14分)如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM AB ∥交AF 于M ,作PN CD ∥交DE 于N .图1图2图3(1)①MPN ∠=;②求证:3PM PN a +=;(2)如图2,点O 是AD 的中点,连接OM ,ON .求证:OM ON =;(3)如图3,点O 是AD 的中点,OG 平分MON ∠,判断四边形OMGN 是否为特殊四边形,并说明理由.安徽省2014年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题35x x=,故选【解析】根据题目给定图形的形状即可确定其俯视图是一个半圆,故选5/ 11数学试卷 第11页(共22页)数学试卷 第12页(共22页)【解析】根据题目可分段考虑,当点P 在A B →运动时,4y AD ==(03x <≤);当点P 在B C →运动时,ABP △与以边AD 为斜边的直角三角形相似,可得=AB xy AD,3412yx AB AD =⨯=⨯=,所以12y x=(35x <≤),故选B. 【考点】动点问题,相似三角形,反比例函数图象. 10.【答案】B【解析】根据①得,直线l 与以D 为圆心,D 相切;根据②可判断,这样的直线l 有2条,分别与D 相切且垂直于直线BD ,故选B.【考点】圆的概念,点到直线的距离.第Ⅱ卷二、填空题11.【答案】72.510⨯【解析】科学计数法是将一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,其中a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).所以725000000 2.510=⨯.【考点】科学计数法. 12.【答案】2(1)a x +【解析】2(1)(1)(1)y a x x a x =++=+7 / 11【考点】二次函数的实际的应用. 13.【答案】6【解析】去分母得4123(2)x x -=-,去括号得41236x x -=-,移项得43612x x -=-+,合并同类项得6x =,经检验,6x =是原方程的根,所以原方程的根是6x =.【考点】解分式方程. 14.【答案】①②④ 【解析】12FD AD CD ==,CFD DCF ∴=∠∠,而BCF CFD =∠∠,12DCF BCF BCD ∴==∠∠∠,故①正确;延长EF 交CD 的延长线于点G ,A FDG =∠∠,AF FD =,AFE DFG =∠∠,AFE DFG ∴△≌△(ASA ),12EF GF EG ∴==在Rt ECG △中,斜边上的中线12CF EG =,EF CF ∴=,故②正确;过点F 作FM EC ⊥,垂足为点M ,CE AB ⊥,如果③正确,则2BE FM =,而12EF EG =,FM CG ∥,12FM CG ∴=,BE CG CD DG AB AE ∴==+=+,而BE AB ≤,得出0AE ≤,这显然是错误的,所以③不正确;EF FC =,∴在等腰EFC △中,EFM CFM =∠∠,FM CG ∥,CFM FCD DFC ∴==∠∠∠,13EFM CFM DFC DFE ∴===∠∠∠∠,又AB FM ∥,13AFE EFM DFE ∴==∠∠∠,故④正确.综上,故填①②④.【考点】平行四边形,直角三角形中线的性质,三角形面积.【提示】本题应善于观察图形和题目中给定的条件“点F 为AD 的中点”,构建CF 为直角三角形的中线,这样很自然地想到辅助线的作法. 三、解答题15.【答案】解:原式53120132014=--+=. 【考点】二次根式、绝对值和零指数幂的运算. 16.【答案】(1)4;17.(2)第n 个等式为22(21)441n n n +-⨯=+.左边22441441n n n n =++-=+=右边,∴第n 个等式成立.【考点】归纳探究的能力.17.【答案】(1)作出111A B C △如图所示.数学试卷 第15页(共22页)数学试卷 第16页(共22页)(2)本题是开放题,答案不唯一,只要作出的222A B C △满足条件即可. 【考点】平移,相似,作图.18.【答案】如图,过点A 作AB 的垂线交DC 延长线于点E ,过点E 作1l 的垂线与1l ,2l 分别交于点H ,F ,则2HF l ⊥.由题意知AB BC ⊥,BC CD ⊥,又AE AB ⊥,∴四边形ABCE 为矩形.=AE BC ∴,AB EC =.50DE DC CE DC AB ∴=+=+=.又AB 与1l 成30︒角,30EDF ∴=︒∠,60EAH =︒∠.在Rt DEF △中,1sin30=50=252EF DE =︒⨯在Rt AEH △中,sin 6010EH AE =︒==25HF EF HE =+=+即两高速公路间距离为.【考点】直角三角形的应用. 19.【答案】OC 为小圆的直径,90OFC ∴=∠,CF DF =.OE AB ⊥,90OEF OFC ∴==∠∠,又=FOE COF ∠∠,OEF OFC ∴△△,则OE OF OF OC =.22694OF OC OE ∴===.又CF ===2CD CF ∴==.【考点】垂径定理和相似三角形的应用.20.【答案】(1)设 2 013年该企业处理的餐厨垃圾为x 吨,建筑垃圾为y 吨,根据题意,得9 / 1125165200,1003052008800.x y x y +=⎧⎨+=+⎩解得80,200.x y =⎧⎨=⎩即2 013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨.(2)设2 014年该企业处理的餐厨垃圾为x 吨,建筑垃圾为y 吨,需要支付的这两种垃圾处理费是z 元. 根据题意,得240x y +=,且3y x ≤,解得60x ≥.1003010030(240)707200z x y x x x =+=+-=+,由于z 的值随x 的增大而增大,所以当60x =时,z 最小,最小值7060720011400=⨯+=元,即2 014年该企业最少需要支付这两种垃圾处理费共11 400元. 【考点】二元一次方程组和一次函数的应用.21.【答案】(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子1AA 的情况为一种,所以小明恰好选中绳子1AA 概率13P =. (2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表如下,每种发生的可能性相等.其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连接AB ,右端连接11A C ,或11B C ;②左端连接BC ,右端连接11A B 或11A C ;③左端连接AC ,右端连接11A B 或11B C .故这三根绳子连接成为一根长绳的概率6293P ==. 【考点】可能情形下的随机事件的概率,列表法或画树状图计算随机事件的概率. 22.【答案】(1)本题是开放题,答案不唯一,符合题意即可.(2)∵函数1y 的图象经过点(1,1)A ,则224211m m -++=,解得=1m .2212432(1)1y x x x ∴=-+=-+.解法一:12y y +与1y 为“同簇二次函数”,∴可设212(1)1y y k x +=-+(0k >),则2221(1)1(2)(1)y k x y k x =-+-=-- .由题可知函数2y 的图象经过点(0,5),则2(2)15k -⨯=,25k ∴-=,数学试卷 第19页(共22页)数学试卷 第20页(共22页)2225(1)5105y x x x ∴=-=-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值25(31)20=⨯-=.解法二:12y y +与1y 为“同簇二次函数”,则212(2)(4)8y y a x b x +=++-+(20a +>).412(2)b a -∴=+-,化简得2b a =-.又232(2)(4)14(2)a b a +--=+,将2b a =-代入,解得5a =,10b =-.所以22=5105y x x -+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值253103520=⨯-⨯+=. 【考点】二次函数的性质、新函数的定义性问题. 23.【答案】(1)②证明:如图1,连接BE 交MP 于H 点.在正六边形ABCDEF 中,PN CD ∥,又BE CD AF ∥∥,所以BE PN AF ∥∥.又PM AB ∥,所以四边形AM HB 、四边形HENP 为平行四边形,BPH △为等边三角形.所以3PM PN MH HP PN AB BH HE AB BE a +=++=++=+=. (2)证明:如图2,由(1)知AM EN =且AO EO =,60MAO NEO ==∠∠,所以MAO NEO ≅△△.所以OM ON =. (3)四边形OMGN 是菱形.理由如下:如图3,连接OE ,OF ,由(2)知MOA NOE =∠∠.11 / 11又因为120AOE =︒∠,所以120MON AOE MOA NOE =-+=︒∠∠∠∠.由已知OG 平分MON ∠,所以 60MOG =∠.又60FOA =∠,所以MOA GOF =∠∠.又AO FO =,==60MAO GFO ∠∠,所以MAO GFO ≅△△.所以MO GO =.又60MOG =∠,所以MGO △为等边三角形.同理可证NGO △为等边三 角形,所以四边形OMGN 为菱形.【考点】正六边形的性质,三角形的全等,等边三角形的性质,菱形的判断.。
河南省2014年中考数学真题试题(含答案)
2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放置,则所构成的几何体的左视图可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC →CB →BA运动,最终回到A点。
设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.2-= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是 .11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC ,则图中阴影部分的面积为 . 15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中17.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。
2014年天津市中考数学试卷-含答案详解
2014年天津市中考数学试卷1. 计算(−6)×(−1)的结果等于( )A. 6B. −6C. 1D. −12. cos60°的值等于( )A. 12B. √22C. √32D. √333. 下列标志中,可以看作是轴对称图形的是( )A. B. C. D.4. 为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为( )A. 160.8×107B. 16.08×108C. 1.608×109D. 0.1608×10105. 如图,从左面观察这个立体图形,能得到的平面图形是( )A. B. C. D.6. 正六边形的边心距为√3,则该正六边形的边长是( )A. √3B. 2C. 3D. 2√37. 如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( )A. 20°B. 25°C. 40°D. 50°8. 如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )A. 3:2B. 3:1C. 1:1D. 1:29. 已知反比例函数y =10x,当1<x<2时,y的取值范围是( )A. 0<y<5B. 1<y<2C. 5<y<10D. y>1010. 要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为( )A. 12x(x+1)=28 B. 12x(x−1)=28 C. x(x+1)=28 D. x(x−1)=2811. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( )A. 甲B. 乙C. 丙D. 丁12. 已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+ c−m=0没有实数根,有下列结论:①b2−4ac>0;②abc<0;③m>2.其中,正确结论的个数是( )A. 0B. 1C. 2D. 313. 计算x5÷x2的结果等于______.14. 已知反比例函数y =k(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条x件的k的值为______.15. 如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为______.16. 抛物线y=x2−2x+3的顶点坐标是_________.17. 如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为______(度).18. 如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于______;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)______.19. 解不等式组{2x+1≥−1, ①2x+1≤3, ②请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为______.20. 为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中m的值为______;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21. 已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.22. 解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至AC′的位置时,AC′的长为______m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23. “黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5______ 16______ …(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24. 在平面直角坐标系中,O为原点,点A(−2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25. 在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,−1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.答案和解析1.【答案】A【解析】解:(−6)×(−1),=6×1,=6.故选:A.根据有理数的乘法运算法则进行计算即可得解.本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.【答案】A.【解析】解:cos60°=12故选:A.根据特殊角的三角函数值解题即可.本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.【答案】C【解析】解:将1608000000用科学记数法表示为:1.608×109。
2014年北京市中考数学试卷(含答案和解析)
2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2014•北京)2的相反数是()D.A.2B.﹣2 C.﹣2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×1043.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.(4分)(2014•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.56.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米7.(4分)(2014•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.88.(4分)(2014•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax4﹣9ay2=_________.10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为_________m.11.(4分)(2014•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为_________.12.(4分)(2014•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为_________,点A2014的坐标为_________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为_________.三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.(5分)(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|15.(5分)(2014•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.16.(5分)(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.17.(5分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.(5分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.(5分)(2014•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE 与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.(5分)(2014•北京)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_________本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_________本.21.(5分)(2014•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.(5分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为_________,AC的长为_________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.(7分)(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.(8分)(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2014年北京市中考数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2014•北京)2的相反数是()A.2B.﹣2 C.D.﹣考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:B.点评:此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300 000=3×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥考点:由三视图判断几何体.分析:如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答:解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.点评:本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2014•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5考点:众数;加权平均数.分析:根据众数及平均数的概念求解.解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选A.点评:本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米考点:函数的图象.分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答:解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.点评:此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2014•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于圆O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2014•北京)已知点A为某封闭图形边界上一定点,动点P 从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.考点:动点问题的函数图象.分析:根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.解答:解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选A.点评:本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP 的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式进行分解即可.解答:解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).点评:此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.考点:相似三角形的应用.分析:根据同时同地物高与影长成正比列式计算即可得解.解答:解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.点评:本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2014•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).考点:反比例函数图象上点的坐标特征.专题:开放型.分析:先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.解答:解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)(2014•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2014的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.考点:规律型:点的坐标.分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2014的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.解答:解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A2014的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.点评:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2014•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母、去括号,移项、合并同类项,系数化成1即可求解.解答:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.考点:整式的混合运算—化简求值.分析:先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.解答:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.点评:此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.考点:根的判别式.专题:计算题.分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.解答:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2014•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE 与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2014•北京)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500本.考点:扇形统计图;用样本估计总体;统计表.分析:(1)1直接减去个部分的百分数即可;(2)设从2009到2013年平均增长幅度为x,列方程求出x的值即可;(3)根据(2)的结果直接计算.解答:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2009到2013年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2014年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评:本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2014•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则OC⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.考点:相似三角形的判定与性质;勾股定理;解直角三角形.分析:根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.考点:四边形综合题.分析:(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.解答:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.点评:本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学二轮精品复习试卷:圆学校:___________姓名:___________班级:___________考号:___________1、半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 B.4 C.D.2、两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【】A.内含B.内切C.相交D.外切3、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°5、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=500,则∠DAB等于A.55°B.60°C.65°D.70°6、如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°7、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是【】A.4B.5C.6D.88、如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【】A.cm B.cm C.cm D.7πcm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A.外离B.外切C.相交D.内切10、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°11、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为【】A.B.8 C.D.12、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.cm C.cm D.4 cm13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。
过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有【】A.1个B.2个C.3个D.4个14、如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为A.8 B.4 C.4π+4 D.4π-415、如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE16、如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为A.4 B.C.6 D.17、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.18、已知两个半径不相等的圆外切,圆心距为,大圆半径是小圆半径的倍,则小圆半径为A.或B.C.D.19、如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=﹣1,则△ABC的周长为A、B、6 C、 D、420、如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为【】A.B.C.D.21、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB 的度数为【】A.400B.500C.650D.75022、如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是【】A.6cm B.3cm C.2cm D.0.5cm23、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为A.B.C.D.24、如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为A.B.C.D.25、如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【】A.4.8cm B.9.6cm C.5.6cm D.9.4cm二、填空题()26、在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.27、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线与⊙O交于B、C两点,则弦BC的长的最小值为.28、已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是.29、已知与的半径分别是方程的两根,且,若这两个圆相切,则t= .30、已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).31、如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是.32、如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).33、如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.34、若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为cm2(结果保留π)35、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).36、图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .37、如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧的弧长为.(结果保留π)38、如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB= .39、如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.40、如图,A,B,C为⊙O上相邻的三个n等分点,,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p= ;当n=12时,p= .(参考数据:,)三、计算题()41、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
四、解答题()42、已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.43、已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.44、如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.45、如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O 相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).46、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C 作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.47、如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.48、如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)49、如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。
(2)若cosB=,BP=6,AP=1,求QC的长。
50、问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.试卷答案1.【解析】试题分析:如图所示,过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2。
在Rt△BOD中,。
故选C。
2.【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。