第五章 弯曲应力 (2)

合集下载

第五章习题答案

第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。

设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。

已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。

解:作梁的弯矩图如图所示。

梁的最大弯矩发生在固定端截面上。

22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。

若[]160MPa σ=,试求许可载荷F 。

解:(1)求支座反力。

选整个梁为研究对象,受力分析如图所示。

列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。

由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。

5.8 压板的尺寸和载荷情况如图所示。

材料为45钢,380s MPa σ=,取安全因数1.5n =。

试校核压板的强度。

解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。

材料力学习题册答案-第5章 弯曲应力

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。

三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F 增大时,破坏的情况是 ( C )。

A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

材料力学第五章弯曲应力

材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya

560 2

21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ

IZ ymax

第5章 弯曲应力分析

第5章 弯曲应力分析


来的横截面仍为平面,只是绕中
z性
性轴转动,且距中性轴等高处变

形相等。
⑶ 几何方程
y(对称轴)
纵向纤维AB的纵向线应变
O

((
A1B1 AB A1B1( O1O2
AB
O1O2
(ρ y)dθ ρdθ y
ρdθ
ρ
ac
d
O1
O2 O1 O2 x
A
y B
A1
B1
bd y
— 纵向纤维的应变与它到中性层的距离成正比
中性层是梁内一层既不 伸长也不缩短,不受拉应力和 压应力的纤维层。中性层与 横截面的交线为中性轴。
Northeastern University
纵向对称面 中 性 轴
中性层
ac
bd
M ac
M
bd
PAG 6
§5-2 纯弯曲时的正应力
Northeastern University
⑵ 平面假设:梁弯曲变形后,原

z
σdA
x
σdA
y
E y2dA
ρA
Iz
y2dA
A

横截面对中性轴的惯性矩
EIz M 中性层的曲率 1 M z
ρ
ρ E—Iz 梁的弯曲刚度
PAG 12
§5-2 纯弯曲时的正应力
Northeastern University
等直梁纯弯曲时横截 面上任一点的正应力
σ Ey M z y
y
yC
x dA
a r
bC y
xC
x
典型应用:求组合截面的惯性矩
Ix ( Ii )x ( Ixci ai2 Ai )

2第五章 弯曲应力

2第五章 弯曲应力



(3)计算 M max
(4)计算 Wzn Beams)
解:(1)计算简图
(2)绘弯矩图
(3)根据
max

M max Wz


计算
(6.7 50) 103 9.5
Wz

M max


4 140106
962106 m3 962cm3
M B 4kN m
-
+
B截面
4kN
t max M B y1 27.2MPa [ t]
80
Iz
z y1
20
120
y2
20
cmax M B y2 46.2MPa [ c]
Iz
C截面
t max

MC y2 Iz

28.8MPa

[ t]
( Stresses in Beams)
F1≤19200N=19.2kN
2. 由c,max ≤[c] 确定[F]。
c,max

(F
/ 2 2m)(134103m) 5493 10-8m4

90106 Pa
F2≤36893N=36.893kN
[F]=19.2kN,可见梁的强度由拉应力确定。
( Stresses in Beams)
最大正应力等于: max

M max Wz

Fl 1 bh2

6Fl bh2
6
( Stresses in Beams)
练习
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm,a 0.267m,b 0.16m,F 62.5kN,

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

工程力学2第五章 弯曲应力

工程力学2第五章 弯曲应力

max
M max ymax M max IZ WZ
目录
§5-3 横力弯曲时的正应力
弯曲正应力强度条件
σmax
M
max
y max
Iz

M
max
WZ
σ
1.等截面梁弯矩最大的截面上 2.离中性轴最远处 3.变截面梁要综合考虑 M 与 I z 4.脆性材料抗拉和抗压性能不同,两方面都要考虑
FS 90kN

M
-
x 90kN
I Z 5.832 10-5 m4 1 M EI
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 -5 C MC 60 103 194.4m

x
目录
21
§5-3 横力弯曲时的正应力
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M FS
目录
? ?
§5–1 引言
(Introduction)
4 103 8810-3 c,max 7.6410-6 46 .1106 Pa 46 .1MPa c
目录
§5-3 横力弯曲时的正应力
(3)作弯矩图
(4)B截面校核
2 .5kN.m
t ,max 27.2MPa t
c,max 46.1MPa c
目录
§5-3 横力弯曲时的正应力

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学第5章弯曲应力

材料力学第5章弯曲应力
Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1

第五章 弯曲应力

第五章 弯曲应力

第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力*§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念*§5-6 提高梁抗弯能力的措施§5-1 梁弯曲正应力一、梁弯曲时横截面上的应力分布一般情况下,梁受外力而弯曲时,其横截面上同时有弯矩和剪力两个内力。

弯矩由分布于横截面上的法向内力元σdA所组成,剪力由切向内力元τdA组成,故横截面上同时存在正应力和剪应力。

MσdAτdA Q当梁较长时,正应力是决定梁是否破坏的主要因素,剪应力则是次要因素。

二、弯曲分类P P a aAC DB ACD +−BC D+P PPa 梁AC 、BD 段的横截面上既有剪力又有弯矩,称为剪切弯曲(横力弯曲)。

CD 段梁的横截面上只有弯矩而无剪力,称为纯弯曲。

此处仅研究纯弯曲时梁横截面上正应力与弯矩的关系。

三、纯弯曲实验1.准备A BC DE F G H 在梁侧面画上AB 、CD 、EF 、GH 四条直线,且AB ∥CD 、EF ∥GH。

在梁两端对梁施加纯弯矩M 。

A B C D E F G H M MA BC DE F G H 2.现象•变形后横向线AB 、CD 发生了相对转动,仍为直线,但二者不再平行;仍与弧线垂直。

•纵向线EF 、GH 由直线变成曲线,且EF 变短,GH 变长;•曲线EF 、GH 间的距离几乎没有变化;•横截面上部分沿厚度方向变宽,下部分变窄。

3.假定•梁的任意一个横截面,如果在变形之前是平面,在变形后仍为平面,只是绕截面的某一轴线转过了一个角度,且与变形后的轴线垂直。

——平截面假定。

•梁上部分纤维受压而下部分纤维受拉,中间一层纤维既不受拉也不受压,这一层叫中性层或中性面。

•中性层与横截面的交线叫中性轴。

梁弯曲变形时横截面绕中性轴转动。

中性层纵向对称面中性轴•梁的纵向纤维之间无挤压力作用,故梁的纵向纤维只受拉伸或压缩作用——单向受力假设。

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学(刘鸿文)第五章-弯曲应力

材料力学(刘鸿文)第五章-弯曲应力

关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
σmax
M y max max
M
Iyz
max max
Iz
σ
b 但对于塑性材料,通常将梁做成矩形、圆形、工字形等
对称于中性轴的截面;
此类截面的最大拉应力与最大压应力相等。
因此:
强度条件可以表示为
σmax
M max wz
σ
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh 3 12

第五章 弯曲应力

第五章 弯曲应力


28.8 106 Pa

28.8MPa
Z
cC

M
B
y 2
Iz

2.5103 N m 52 10-3m 7.6410-6 m4
17.0 106 Pa
17.0MPa
3)计算B截面上的最大拉应力和最大压应力
cB

M
B
y 2
Iz

4 103 N m 8810-3m 7.6410-6 m4
目录
第五章 弯曲应力\梁横截面上的正应力
5.2. 2 横力弯曲时横截面上的正应力
横力弯曲时梁横截面上不仅有正应力,而且有切应力。由于切 应力的存在,梁变形后横截面不再保持为平面。按平面假设推导出 的纯弯曲梁横截面上正应力计算公式,用于计算横力弯曲梁横截面 上的正应力是有一些误差的。但是当梁的跨度和横截面的高度的比 值 l >5时,其误差甚小。因此,纯弯曲时横截面的正应力计算公
5.2.1 纯弯曲时梁横截面上的正应力
1. 横截面上正应力的计算公式
研究梁横截面上正应力的方法与 研究圆轴扭转时横截面上切应力所用 的方法相似,也须综合研究变形的几 何关系、应力与应变间的物理关系以 及静力平衡关系。
1) 变形的几何关系 取截面具有竖向对称轴(例如
矩形截面)的等直梁,在梁侧面画 上与轴线平行的纵向直线和与轴线 垂直的横向直线,如图a所示。然后 在梁的两端施加外力偶Me,使梁发生 纯弯曲(图b)。此时可观察到下列 现象:
上式是研究梁弯曲变形的基本公式。由该式可知,EIz越大,曲
率半径越大,梁弯曲变形越小。EIz表示梁抵抗弯曲变形的能力,
称为梁的弯曲刚度。
将上式代入式 σ E y ,得 My

第五章 弯曲应力知识讲解

第五章  弯曲应力知识讲解

第五章弯曲应力第五章 弯曲应力内容提要一、梁的正应力Ⅰ、纯弯曲和横力弯曲纯弯曲:梁横截面上的剪力为零,弯矩为常量,这种弯曲称为纯弯曲。

横力弯曲:梁横截面上同时有剪力和弯矩,且弯矩为横截面位置x 的函数,这种弯曲称为横力弯曲。

Ⅱ、纯弯曲梁正应力的分析方法:1. 观察表面变形情况,作出平面假设,由此导出变形的几何方程;2. 在线弹性范围内,利用胡克定律,得到正应力的分布规律;3. 由静力学关系得出正应力公式。

Ⅲ、中性层和中性轴中性层:梁变形时,其中间有一层纵向线段的长度不变,这一层称为中性层。

中性轴:中性层和横截面的交线称为中性轴,梁发生弯曲变形时横截面就是绕中性轴转动的,在线弹性范围内,中性轴通过横截面的形心。

中性层的曲率,平面弯曲时中性层的曲率为()()1zM x x EI ρ=(5-1) 式中:()x ρ为变形后中性层的曲率半径,()M x 为弯矩,z EI 为梁的弯曲刚度。

(5-1)式表示梁弯曲变形的程度。

Ⅳ、梁的正应力公式1. 横截面上任一点的正应力为zMyI σ=(5-2)正应力的大小与该点到中性轴z 的距离y 成正比,试中M 和y 均取其绝对值,可根据梁的变形情况判断σ是拉应力或压应力。

2. 横截面上的最大正应力,为maxmax z My I σ=(5-3) maxzz I W y =(5-4) z W 为弯曲截面系数,对于矩形、圆形和弯环截面等,z W 的公式应熟记。

3. 弯曲正应力公式的适用范围:1)在线弹性范围内()p σσ≤,在小变形条件下的平面弯曲弯。

2)纯弯曲时,平面假设成立,公式为精确公式。

横力弯曲时,平面假设不成立,公式为近似公式,当梁的跨高比5lh≥时,误差2%≤。

Ⅴ、梁的正应力强度条件 拉、压强度相等的等截面梁[]maxmax zM W σσ=≤ (5-5) 式中,[]σ为料的许用正应力。

当梁内,max ,max t c σσ≠,且材料的[][]t c σσ≠时,强度条件应为[],max t t σσ≤,[],max c σσ≤Ⅵ、提高梁正应力强度的措施1)设法降低最大弯矩值,而提高横截面的弯曲截面系数。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
材料力学第5章弯曲应力
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。

材料力学弯曲应力

材料力学弯曲应力

(4)强度校核 B截面:
Fb Fa
max
MB WB

Fa
d13

62.5

267 0.163
32
32
41.5106 Pa 41.5MPa
C截面:
max
MC WC

Fb
d
3 2

62.5160 32
0.133

46.4106 Pa

46.4MPa
t,max t c,max c
14
常见截面的 IZ 和 WZ
空心矩形截面
IZ y2dA
A
WZ

IZ y max
圆截面
IZ

d 4
64
d 3
WZ 32
空心圆截面 矩形截面
IZ

D4
64
(1
4)
WZ

D3
32
(1
4)
bh3 IZ 12
5
§5.1 纯弯曲
凹入一侧纤维缩短 突出一侧纤维伸长 中间一层纤维长 度不变
--中性层
中间层与横截面 的交线
--中性轴
6
§5.2 纯弯曲时的正应力
一、变形几何关系
7
§5.2 纯弯曲时的正应力 y

二、物理关系:



p
z
E
E y
x 可确定横截面上的应力分布
y
问题:中性层( y 的起点)在哪里? 1 怎样算?
C
l = 3m
FS 90kN
B
x
180
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d1 160mm d2 130mm,a 0.267m,b 0.16m,F 62.5kN,
材料的许用应力 60MPa.
分析 (1)轮轴为塑性材料,
截面关于中性轴对称
公式
max M max
Wz
(2)危险截面: 弯矩M最大的截面
抗弯截面系数 Wz 最小的截面;
(3)危险点 危险截面的最上、下边缘处。
1、平面假设: 变形前为平面的横截面变形后仍保持为平面; 横截面绕某一轴线发生了偏转。
瑞士科学家Jacob.贝努力 于1695年提出梁弯曲的平面假设
观察纵向纤维之间有无相互作用力
2、假设: 纵向纤维之间没有相互挤压, 各纵向纤维只是发生了简单的轴向拉伸或压缩。
观察纵向纤维的变化
在正弯矩的作用下, 偏上的纤维 缩短,
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1:矩形截面简支梁承受均布载荷作用,如图所示
q=60KN/m
120
A
B
1m C
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
/ 2)
目录
§5-3 横力弯曲时的正应力
横力弯曲
横截面不再保持为平面 且由于切应力的存在,也不能保证纵向纤维之间没有正应力
§5-3 横力弯曲时的正应力
横力弯曲正应力
纯弯曲正应力公式
My
IZ
弹性力学精确分析表明:
对于跨度L 与横截面高度h 之比L / h > > 5的细长梁,
用纯弯曲正应力公式计算横力弯曲正应力, 误差<<2%
偏下的纤维 伸长。
凹入一侧纤维 缩短;
凸出一侧纤维伸长。
中性层
ΔL<0
ΔL>0
ΔL=0 既不伸长也不缩短
中间一层纤维长度不变--中性层
中性轴
中间层与横截面的交线--中性轴 中性轴上各点 σ=0 各横截面绕 中性轴发生偏转。 中性轴的位置 过截面形心
关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
坐标轴是主轴
中性层的曲率计算公式 EIz 抗弯刚度
4、弯曲正应力计算公式
变形几何关系 y
物理关系 E
静力学关系
1 M
EIZ
E y
正应力公式
My
IZ
1826年纳维在《材料力学》讲义中给出正确计算公式
弯曲正应力计算公式 弯曲正应力分布规律
My
IZ
§5-2 纯弯曲时的正应力
弯曲正应力计算公式
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
你能解释一下托架开孔合理吗?托架会不会破坏?
(三)理论分析:
y
z
两直线间的距离
y的物理意义
纵向纤维到中性层的距离; 点到中性轴的距离。
§5-2 纯弯曲时的正应力
目录
M
Fb Fa
(1)计算简图 (2)绘弯矩图 (3)危险截面
B截面,C截面
Fb
(4)强度校核
d1 160mm
a 0.267m
F 62.5kN,
d2 130mm b 0.16m
60MPa.
M
Fb Fa
B截面:
Fb
max
MB WzB
Fa
d13
62.5 26732
0.163
32
41.5MPa
分析
(1)简化为力学模型
(2)确定危险截面
(3)截面为关于中性轴对称
(4)应力计算公式 max
M max Wz
(5)计算 M max
常见截面的 IZ 和 WZ
IZ y2dA
A
Wz
IZ y max
圆截面
d 4
IZ 64
Wz
d3
32
矩形截面 空心圆截面
空心矩形截面
bh3 IZ 12
IZ
D 4
64
(1
4)
IZ
b0h03 12
bh3 12
Wz
bh2 6
Wz
D3
32
(1 4 )
Wz
( b0h03 12
bh3 12 ) /(h0
一、纯弯曲
§5-1 纯弯曲
Fs
F
F
M
Fa
Fa
梁段CD上,只有弯矩,没有剪力 --纯弯曲
梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
纯弯曲实例
§5-2 纯弯曲时的正应力
纯弯曲的内力 剪力Fs=0
1、变形几何关系 2、物理关系
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
2.5103 88103 7.64 106
28.8MPa
FBY
作内力图 危险截面
FS 90kN
x 90kN
M ql2 / 8 67.5kN m
x
Mmax 67.5kN m
公式
max
M max WZ
max
M max ymax IZ
67.5103 90103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ
(3)结论
52 zc
88
c,max 46.1MPa t,max 28.8MPa
三、弯曲正应力强度条件
弯曲正应力 的分布规律
危险点: 距离中性轴最远处; 分别发生最大拉应力与最大压应力;
1、塑性材料 抗拉压强度相等
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
(2)必须清楚所求的是该截面上哪一点的正应力, 并确定该点到中性轴的距离,以及该点处应力的符号
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
y
z
b、沿截面宽度 均匀分布;
c、正弯矩作用下, 上压下拉;
d、危险点的位置, 离开中性轴最远处.
弯曲正应力的分布规律
可 别 忘 记 啦 沿高度 沿宽度
3、静力学关系
dA FN 0
A
E y
Sz 0 中性轴过截面形心
M y z dA 0
A
M z y dA M
A 1 M
EIZ
C截面: max
MC WzC
Fb
d
3 2
62.5 160
0.133
32
46.4MPa
32
(5)结论 轮轴满足强度条件
例2:某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦 自重 F1 6.7kN, 起重量F2 50kN,跨度 l 9.5m,材料的许用应力
140MPa, 试选择工字钢的型号。
q=60KN/m
A
B
1m C
FAY
3m
FBY
MC 60kN m
Iz 5.832105 m4 1M
EI
C
EIZ MC
200109 5.832105 60 103
194.4m
例2 T型截面铸铁梁,截面尺寸如图。
求最大拉应力、最大压应力。
9KN 4KN
A

B
1m 1m
1m
Iz 7.64 106 m4
Wz
Iz ym a x
——截面的抗弯截面系数;。
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
max
M WZ
适用条件 截面关于中性轴对称。
现代梁分析理论与伽利略结论对比
科学家与时代同步 伽利略时代钢铁没有出现
但他开辟了理论与实践 计算构件的新途径。
是“实验力学”的奠基 人
§5-2 纯弯曲时的正应力
b 脆性材料的最大应力与内力图有关
① 脆性材料梁的危险截面与危险点
上压下拉
M
M
或者
危险截面只有一个。
危险截面处分别校核:
t,max
Myt Iz
t
c,max
Myc Iz
c
上拉下压
二个强度条件表达式
② 脆性材料梁的危险截面与危险点 M
危险截面有二个; 每一个截面的最上、最下边缘均是危险点;
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲
(2)“实验—观察—假设” :梁弯曲假设
(3)外力
内力
应力法
(4)三关系法
变形几何关系 物理关系 静力学关系
(5)数学方法
积分
应力合成内力
注意
(1)计算正应力时,必须清楚所求的是哪个截面上的应力, 从而确定该截面上的弯矩及该截面对中性轴的惯性矩;
相关文档
最新文档