平行四边形的性质(第1课时)创新教案

合集下载

18.1.1 平行四边形的性质学案

18.1.1 平行四边形的性质学案

18.1.1 平行四边形的性质(课时1)【学习目标】1.理解平行四边形的概念.2.通过观察、类比发现平行四边形的有关性质,提出猜想,发展合情推理能力.3.通过对平行四边形性质的证明,发展演绎推理能力.4.能运用平行四边形的性质解决一些简单的问题.【学习重点】探索发现平行四边形的性质并推理证明.【学习难点】平行四边形性质的推理证明.【学习过程】(一)创设情境,引入新知(二)知识回顾,得到定义1.定义:的四边形叫做平行四边形.2.平行四边形ABCD,可记作:.3.几何语言:①∵AB//CD,AD//BC.∴.②∵四边形ABCD是平行四边形.∴.4.利用学具根据平行四边形的定义画一个平行四边形.(学具:直尺和三角板)解:(三)实践活动,探究性质1.观察手中的平行四边形,猜想除了“两组对边分别平行”外,它的边、角还有什么关系?猜想1:;猜想2:.2.验证以上猜想.已知:.求证:.证明:3.形成性质定理.平行四边形性质1:.平行四边形性质2:.几何语言:∵四边形ABCD是平行四边形.∴.(四)应用性质,解决问题1.牛刀小试.如图,在ABCD中.(1)若∠B=40°,则∠A=________,∠C=________,∠D=________.(2)若AB=3,BC=5,则它的周长=________.(3)若∠A+ ∠C= 200°,则∠A=________,∠B=________.2.两条平行线间的距离.如果两条直线平行,那么一条直线上所有的点到另一条直线的距都.3.实践应用.如图,剪两张对边平行的的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形.转动其中一张纸条,线段AD和BC的长度有什么关系?为什么?解:(六)归纳总结,反思提升你学到了哪些知识?积累了哪些方法经验?(七)拓展提升如图,ΔABC是等腰三角形,P是底边BC上的一个动点,且PE //AB,PF //AC.求证:PE+PF=ABAFP C BE。

《平行四边形的性质》第一课时教案 (公开课)2022年1

《平行四边形的性质》第一课时教案 (公开课)2022年1

平行四边形的性质(一)一、教学目标:1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3. 培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2. 难点:运用平行四边形的性质进行有关的论证和计算.3. 难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下根底.学习这一节的根底知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习稳固的问题,而是要加深理解,要防止学生把平行四边形概念当作,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形〞和“两组对边分别平行〞这两个条件,一个“四边形〞必须具备有“两组对边分别平行〞才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行〞的一个“四边形〞.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的根底上去探索数学开展的规律,到达用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步到达演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、课堂引入1.我们一起来观察以以下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“〞来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD〞,读作“平行四边形ABCD〞.注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.〔教学时要结合图形,让学生认识清楚〕2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?〔1〕由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.〔相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.〕〔2〕猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.〔作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为的关于三角形的问题.〕证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA 〔ASA〕.∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.四、例习题分析例1〔教材P84例1〕这道例题是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2〔补充〕如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边〞可得出所需要的结论.证明略.这道题是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

18.1.1 平行四边形的性质教学设计

18.1.1 平行四边形的性质教学设计

平行四边形的性质(第1课时)教学设计一、教学内容和内容解析(一)教学内容本节课是人教版八年级数学下册第十八章平行四边形第一节第一课时的内容,主要研究平行四边形的概念,平行四边形边、角的性质及平行线间的距离.(二)教学内容解析1.教材的地位与作用平行四边形是最基本的几何图形之一,也是生活中最常见的四边形,它不仅具有丰富的几何性质,而且它在生产生活中有着十分广泛的应用.本节课是在学生学习了平行线的性质与判定、全等三角形性质与判定等几何知识,掌握了一些探索和证明图形几何性质的方法的基础上,利用已有的几何知识和方法进一步研究平行四边形,探索并证明平行四边形的性质. 既是对已有知识的巩固,也是后续学习平行四边形的判定方法、特殊平行四边形的基础,还为我们证明两直线平行、线段相等、角相等提供了新的方法,对几何知识的学习起到了承上启下的重要作用.平行四边形的定义采用“属加种差”的方式,揭示了平行四边形与四边形的隶属关系.因此,本节作为本章的起始课,除了显性知识外,还引领着本章知识以及研究几何图形的方法指导.探究本节课的过程中蕴含着丰富的数学思想,通过回顾三角形的学习过程,体现了类比学习的思想;通过运用辅助线把四边形问题转化为三角形问题,把对平行四边形的研究化归为对两个全等三角形的研究,体现了转化和化归的数学思想方法,教学中引导学生把未知化归为已知,运用已有知识解决问题,进一步提高学生分析问题、解决问题的能力.2.教材的加工与重组教材中平行四边形的性质这一内容安排了两课时,第一课时研究平行四边形的概念、平行四边形边、角的性质及平行线间的距离;第二课时研究平行四边形对角线的性质,并应用性质解决简单问题.本节课设计的是第一课时的内容.基于以上分析,本节课的重点是:探索发现平行四边形的性质并推理证明.二、教学目标和目标解析(一)教学目标1.理解平行四边形的概念.2.通过观察、类比发现平行四边形的有关性质,提出猜想,发展合情推理能力.3.通过对平行四边形性质的证明,发展演绎推理能力.4.能运用平行四边形的性质解决一些简单的问题.(二)教学目标解析《义务教育数学课程标准(2022版)》中明确指出:“‘图形与几何’的课程内容,以发展学生的空间观念、几何直观、推理能力为核心展开.”依据《课程标准》,结合授课班级学生的年龄特征和认知规律确定了本节课的教学目标.目标1的具体要求是:理解平行四边形与一般四边形的区别和联系,能应用概念进行简单推理.目标2的具体要求是:能从边、角等不同角度猜想平行四边形的性质,并能通过实验操作验证关于平行四边形的性质的猜想.目标3的具体要求是:能合理运用辅助线利用平行四边形的定义、平行线的性质以及全等三角形等知识推理证明边、角的性质,体会化归的数学思想.目标4的具体要求是:能利用平行四边形对边平行且相等、对角相等等性质进行简单的计算或证明.三、学生学情分析(一)学情分析从知识储备来说,小学阶段,学生已经认识了平行四边形,会判断一个图形是否是平行四边形,对平行四边形对边平行这一性质有所了解;在七年级下学期学习了平行线的性质和判定,八年级上学期学习了全等三角形的相关知识,能够利用平行线证明角相等或者互补,利用全等三角形证明线段相等、角相等.从学习能力来看,通过小学和七、八年级的学习,学生已经初步具有观察,实验操作等动手体验经验,也具有一定的大胆尝试,归纳猜想的能力,初步掌握了一些探索和证明几何图形性质的方法.综合两方面来看,学生已基本具备发现问题和用已有知识解决新问题的能力,为本节学习奠定了基础.(二)可能存在的问题分析平行四边形性质的推理证明主要是把四边形问题转化为三角形问题,通过辅助线把平行四边形问题化归为三角形全等的问题是学生学习的难点,需要通过问题串引导学生突破这一难点.基于以上分析,确定本节课难点是:平行四边形性质的推理证明.四、教学策略分析(一)教学策略1.突出重点通过生活实例引入课题,通过观察、动手操作感知平行四边形对边相等,对角相等的性质,落实直观想象的数学核心素养.通过演绎推理证明平行四边形边、角性质,落实逻辑推理的数学核心素养.让学生充分经历“观察、猜想、验证、证明”的过程,探究并证明平行四边形的性质,让学生在经历发现问题—分析问题—解决问题的基本活动体验中体会“用合情推理猜想、用演绎推理证明”这一几何研究的基本思考方式,突出教学重点.2.突破难点在探究平行四边形性质的过程中,通过问题设计,引导学生用已有知识解决新问题.让学生动手用全等三角形拼平行四边形,观察发现辅助线作法,把平行四边形问题转化为学生熟悉的三角形问题,完成平行四边形性质的证明,从而突破教学难点.(二)教学方法与学法指导教法:演示法,启发法,探究法.学法:实验操作法,探究法.(三)教学用具教具:教材(学案)、多媒体课件、希沃白板.学具:两个不同颜色的全等三角形,平行四边形.五、教学过程设计(一)创设情境,引入新知问题1:观看重庆的宣传片,欣赏图片,你能从中抽象出哪些平面图形?师生活动:学生积极发言,教师PPT演示学生从图片中抽象出几何图形活动过程.引导学生回忆三角形的研究过程,类比得到几何图形的一般研究思路.设计意图:通过观察图片,让学生感受生活中蕴含丰富的几何图形,类比三角形的研究思路,总结几何图形的一般研究思路,让学生明确本节课的研究思路和方向,为后续研究其它几何图形埋下伏笔,也为这节课的研究奠定基础.(二)知识回顾,得到定义问题2:小学学过平行四边形吗?什么样的四边形叫平行四边形?如何表示?师生活动:引导学生回顾平行四边形的定义,引导学生把小学学过的文字定义转换成几何符号语言,抽象形成平行四边形的概念,教师引导学生类比三角形的表示表示平行四边形.定义:两组对边分别平行的四边形叫做平行四边形.如图,∵AD∥BC,AB∥DC∴四边形ABCD是平行四边形∵四边形ABCD是平行四边形∴AD∥BC,AB∥DC.平行四边形ABCD,可记作:ABCD.读作:平行四边形ABCD.设计意图:回顾小学知识,复习得出平行四边形的定义,加强新旧知识间的联系,从小学所学的知识自然过渡到初中阶段,体现了知识间的联系.在回顾、感知、抽象的基础上自然得出平行四边形的定义,定义的数学符号表示及语言间的转化强化了初中几何学习的符号意识及图形抽象过程.类比三角形学习平行四边形,为后续进一步类比全等三角形为研究平行四边形作铺垫,体现类比的数学思想方法.问题3:画图操作,应用定义.利用手中学具根据平行四边形的定义在学案上画一个平行四边形.(学具:直尺和三角板)进一步深化对定义的内涵的理解.师生活动:师生共同画图,参照视频画一个平行四边形.(三)实践活动,探究性质问题4:通过画图我们已经明确了平行四边形的定义和基本要素,那么平行四边形除了两组对边平行外,它的边、角还有什么关系?下面我们一起来对平行四边形的性质进行深入的研究.师生活动:合作探究1.观察你手中的平行四边形,猜想它的边、角的性质;2.将猜想写在材料单上;3.借助手中学具,验证你的猜想(学具:直尺、量角器、圆规、平行四边形纸板两张,全等的三角形纸板两张).学生首先通过独立思考,再小组交流,教师引导学生大胆猜想,情况预设:猜想1:平行四边形的对边相等.猜想2:平行四边形的对角相等.学生以主人的姿态参与合作探究中,教师以合作者的身份深入到各小组中,了解学生的探究过程,倾听学生的想法,并适当予以指导与评价,把学生的猜想写在黑板上.师生活动:不同小组的学生针对发现的边、角的猜想展开汇报,预设方法:度量、叠合、(旋转)等方法,直观感知平行四边形的边、角的特征,培养学生的空间观念和几何直观,培养学生形成探究图形性质的基本策略,渗透动手实践、合情推理,在探究活动中的重要地位.问题5:刚才同学们用了度量法,叠合法验证了我们手中的平行四边形的边角的猜想,那么对于任意的平行四边形这些猜想还成立吗?教师肯定学生的探究方法,几何画板演示度量过程.设计意图:引导学生通过观察--实验得出猜想,教师几何画板展示回避了测量的误差问题,但不能代表所有情况,类比三角形性质的探究过程,明确猜想只是个命题,只有通过证明才能上升为性质定理,使证明成为观察--实验--探究得出结论的自然延续,把合情推理和演绎推理有机结合起来,让学生体会“用合情推理分析结论,用演绎推理证明结论”这一几何研究的基本思考模式.体现几何学习的逻辑性,突出数学是一门严谨的科学.问题6:如何证明你的猜想?师生活动:引导学生结合图形写出已知,求证,将文字命题转化为几何符号语言.学生独立证明猜想,展示证明思路:方法一:连接AC,证明△ABC ≌△CDA;方法二:连接BD,证明△ABD ≌△CDB,可能会有同学直接证明对角相等,学生大胆阐述自己的想法,教师肯定学生的想法,展台展示学生证明过程,引导学生证明后总结出两条性质定理,并将其转化为几何符号语言并板书.平行四边形性质1:平行四边形的对边相等.如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).平行四边形性质2:平行四边形的对角相等.如图,∵四边形ABCD是平行四边形,∴∠A= ∠C, ∠B= ∠D(平行四边形的对角相等).设计意图:证明过程放手让学生尝试,体现学生的主体地位,教学中充分肯定学生将平行四边形转化为三角形研究的转化思想,让学生明白探究的过程就是把未知转化为已知,运用已有知识解决问题,体会转化和化归是数学学习中常用的方法,从而提高学生分析问题了、解决问题的能力.通过证明,把命题上升为性质定理,再次强调文字语言,图形语言和符号语言的相互转化.整个探究过程让学生参与观察--猜想--证明--形成定理的全过程,体会定理的研究思路和方法,为后续探究学习做准备.(四)应用性质,解决问题1.牛刀小试.如图,在ABCD中,(1)若∠B=40°,则∠A=________,∠C=________,∠D=________.(2)若AB=3,BC=5,则它的周长=________.(3)若∠A+ ∠C= 200°,则∠A=________,∠B=________.师生活动:学生学案上完成后上讲台讲解,教师倾听并肯定学生的想法,适时鼓励.设计意图:根据课本习题改编,从边、角两个方面直接利用平行四边形的性质计算,是对性质简单应用的考查,及时反馈学生对性质的理解情况.例1 如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别是点E、点F.求证:AE=CF.追问:DE=BF吗?师生活动:引导学生回顾证明线段和角相等的方法,在寻找证明全等的条件的过程中发现平行四边形的性质可以提供,学生说证明过程,教师板书.引导学生一题多解,多角度考虑本题.设计意图:例题突出应用性质进行简单证明,如何应用符号语言进行推理证明是解决问题的关键,对学生逻辑推理能力提出了要求,例题解答过程让学生体会平行四边形的边、角性质也可以作为证明三角形全等的条件,我们又多了一个证明线段相等和角相等的工具,突出学习的意义.学生分析,教师板书,规范书写过程,突出教师的示范作用.问题7:例1中的直线AB和直线CD有什么位置关系?追问:图中,怎么表示点D到直线AB的距离?师生活动:教师不断追问,通过复习点到直线的距离,适时介绍两条平行线间距离的概念.设计意图:在例题的基础上通过延长一组对边,引导学生自然得出两平行线间距离的概念,通过前面的学习进一步得出平行线间距离相等的结论.是对例题价值的进一步挖掘.问题8:剪两张对边平行的的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形.转动其中一张纸条,线段AD 和BC 的长度有什么关系?为什么?师生活动:引导学生用平行四边形的定义和性质解决问题,问题解决过程中引导学生把实际问题转化为数学问题,从而得到解答,学生踊跃发言,表达自己的想法.设计意图:对平行四边形性质应用的考察,让学生经历把实际问题抽象成数学问题,用所学知识进行解答的过程,获得成功体验,体会数学与实际生活息息相关,激发学生的学习兴趣,让学生爱学数学,会学数学,会用数学知识解决实际生活中的问题.(六)归纳总结,反思提升你学到了哪些知识?积累了哪些方法经验?设计意图:让学生对自己所学知识和学习体验进行小结,回顾学习过程和所得,及时总结方法,构建本节课知识框架.(七)作业巩固如图,ΔABC 是等腰三角形,P 是底边BC 上的一个动点,且PE ∥AB , PF ∥AC.求证:PE+PF=ABA F P CB E。

平行四边形性质(一课时)创新教案

平行四边形性质(一课时)创新教案

教学设计参赛作品名称平行线的性质执教者课时1基本信息所属教材目录沪科版八年级下册19.2教材分析平行四边形的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据.本课主要探究平行四边形对边相等、对角相等这一性质.平行四边形的性质和判定都是必须掌握和熟悉的内容,要熟记它们相互之间的联系与区别。

学情分析学生在小学时已经接触过正方形、长方形及平行四边形等概念,已经有了比较形象的认识,对其性质有了一定的了解,并在上学期又深入学习了三角形的性质及判定等知识,均为四边形的继续学习打下良好的基础。

八年级学生认知结构、心理特征趋于逐渐成熟时期,是学生由试验几何向推理几何过渡的重要阶段。

这个时期的学生对所学知识由一种急于尝试和运用的冲动,需要正确引导。

此外八年级的学生动手操作、相互协作,逻辑思维的能力都有很大提高,能够主动的探索平行四边形性质等。

我通过生动的多媒体演示让学生在教师的指导下自主探究学习,从而感受数学、认知数学,探索数学。

知识与能力目标1、理解并掌握平行四边的相关概念和性质1、性质2以及平行线间的距离。

2、能初步应用平行四边形的概念及性质进行计算和证明过程与方法目标1、经历平行四边形的概念及其性质探究过程,发展合情推理能力。

2、体会转化、数形结合等数学思想,进一步发展学生的演绎推理能力和发散思维能力。

教学目标情感态度与价值观目标培养学生独立思考的习惯于合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐。

重点理解并掌握平行四边形的概念及性质1、性质2教学重难点难点运用平行四边形的性质进行证明教学策略与设计说明本节课涉及概念、方法、初步推理,要注重学生对所学知识以及数学方法和数学思想进行小结,本设计采取分组的方式,互讲本节课的内容,分享解题方法,并找出解题时容易出现的问题,教师注意渗透类比思想。

教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图一、情景导入(1分钟)老师:在四边形中,最常见,用处最广的应该是平行四边形。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

《平行四边形的性质(第一课时)》教案

《平行四边形的性质(第一课时)》教案

《平行四边形的性质(第一课时)》教案一、教学目标1、知识与技能:(1)理解平行四边形的定义。

(2)能够根据定义推导出平行四边形的边角性质。

(3)能运用平行四边形的性质,推理证明有关几何图形中线段相等和角相等的问题。

2、过程与方法:让学生经历从实际问题中抽象出平行四边形,体会对几何图形研究的步骤,定义---性质---判定3、情感、态度与价值观:(1)经历平行四边形的认知过程,使学生体验到对几何图形研究学习的兴趣。

(2)通过学习,培养学生合作交流意识和探索能力二、教学重点和难点1、教学重点:根据定义探究出平行四边形的边角关系的猜想,并能利用全等证明出猜想。

2、教学难点:利用定义和性质,理解平行线间的距离概念并能得出平行线间的距离相等。

三、学法引导1、教学方法:将观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法。

2、学生学法:教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习法四、教学过程(一)情境引入1、(出示幻灯片)我们一起来观察生活中的四边形,想一想它们是什么几何图形的形象?2、拿出学生自己做的平行四边形,观察其特点,你能总结出平行四边形的定义吗?(二)新知探究1.平行四边形:两组对边分别平行的四边形。

记作:ABCD2、平行四边形的性质:(1)平行四边形的对边平行且相等。

几何语言:∵四边形ABCD是平行四边形∴AB//DC,AD//BCAB=CD,CB=AD(2)平行四边形的对角相等。

几何语言:∵四边形ABCD是平行四边形∴∠B=∠D,∠A=∠C(3)平行四边形的邻角互补。

几何语言:∵四边形ABCD是平行四边形∴∠A+∠B=180°,∠B+∠C=180°∠C+∠D=180°,∠D+∠A=180°3、(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线的距离。

(2)性质:两平行线间的距离相等。

(三)典型示例:已知:如图ABCD,求证:(1)AB=CD,CB=AD,(2)∠B=∠D,∠A=∠C(3)∠A+∠B=180°,∠B+∠C=180°(四)小试牛刀如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.(五)课堂小结1、你能归纳出这节课的学习内容吗?2、你能谈谈这节课的收获和体会吗?五、作业布置《基础训练》六、板书设计平行四边形的性质(第一课时)知识点例题练习七、课后反思本节课课堂气氛较为活跃,基本达到了预期教学效果,但引导学生思维的语言不够精炼,时间把握的不够好,课堂不够紧凑。

平行四边形的性质(1)教案

平行四边形的性质(1)教案

平行四边形的性质教学目标:1.掌握平行四边形的定义、性质,能根据性质解决简单问题,培养合情推理能力;2.经历观察、猜想、实践、验证的数学活动,逐步建立类比、转化的数学思想,获得证明线段相等和角相等的新的数学方法;3.在探索平行四边形性质的过程中培养学生的合作探究意识和独立思考的习惯,使学生在数学学习活动中获得成功的体验,感受数学美. 教学重点:平行四边形性质的探究,平行四边形性质的应用.教学难点:平行四边形性质的探究教学过程:一、创设情境发现性质----做生活的有心人前面我们已经系统的探究和学习了三角形的知识,今天开始我们再对另一种几何图形进行探究和学习,请大家看看这几幅图片。

善于观察PPT中出示图片,提出问题:你能在这些图片中找出我们熟悉的几何图形吗?2. 大家观察图形看它的两组对边有什么样的位置关系?我们定义:有两组对边分别平行的四边形叫做平行四边形.我们把平行四边形ABCD 记作:ABCD注意:1、①两组对边分别平行②四边形 2、顶点字母要按照顺时针或逆时针的方向标注。

3、由定义得到的性质:AD//BCAB//CDABCD 是平行四边形四边形那么你还能说说平行四边形还有什么性质呢? 二、合作探究 证明性质----做思维严谨的人 猜想1 平行四边形的对角相等 猜想2 平行四边形的对边相等 1.写出已知、求证.2.先独立思考,然后在小组内交流你的方法。

值得一提的是,学生在证明时想到了多种证法: 用同旁内角来证。

利用同位角和内错角来证。

分割成两个平行四边形来证。

(4)分割成两个全等三角形来证。

练习:1. 若四边形ABCD 为平行四边形 (1)则∠A:∠B:∠C:∠D=2:1:__:___(2)∠B=600,则∠A=____ ,∠C=____,∠D=____ (3)∠B+∠D=1100,则∠A=____,∠C=____,∠D=___ (4)∠C-∠B=400,则∠A=___,C=____,∠D=___ 2.若四边形ABCD 为平行四边形,(1)若AB=10,BC=15,则AD= ,CD= ,周长为 . (2)若周长为40,AB=12,则BC= ,AD= ,CD= . (3)若周长为40,BC 比AB 长4,则AB= ,BC= . 三、典型例题 应用性质——做善于应用的人 例题:如图小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三边长分别为多少?例题:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形。

平行四边形的性质(1、2)教学案

平行四边形的性质(1、2)教学案
课后反思:
平行四边形的面积:等于它的和的积,即 =.(其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高)
2、例2(教材P44的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及 ABCD的面积.
四、畅谈收获!
五、拓展提高
已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.
(6)在平行四边形ABCD中,如果∠A=35°,那么∠C=145°.( )
五、作业(必做)课本49页第1题
(选做)课本49页第2题
课后反思:
18.1.1平行四边形的性质(二)教学案
主备人:张伟审核:八年级数学组年级签字使用人
学习目标:
1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
证明:
六、反馈检测
1.判断对错
(1)在 ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
2.在ABCD中,AC=6、BD=4,则AB的范围是________.
难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;
学习过程
课前预习:预习课本41-43页,完成问题:
1、叫平行四边形。
2、根据平行四边形的定义及相关知识探究平行四边形元素之间的关系,得平行四边形性质定理1、2:
性质1:平行四边形邻角,对角。
性质2:平行四边形两组对边分别且。

人教版数学八年级下册18.1.1平行四边形的性质(第1课时)教学设计

人教版数学八年级下册18.1.1平行四边形的性质(第1课时)教学设计
-家庭作业2:收集生活中的平行四边形实例,并说明它们的应用。
5.作业要求:请学生在完成作业时,注意书写规范,尽量用文字和图形相结合的方式呈现解题过程,以便于教师了解学生的思考过程。
2.培养学生勇于探索、善于思考的精神,提高学生对数学问题的求解欲望。
3.培养学生面对困难时保持耐心、坚持不懈的品质,增强学生的自信心。
4.培养学生的空间想象力和创造力,提高学生对数学美的鉴赏能力。
教学过程:
1.导入:通过生活中的实例,如篮球场、黑板等,引导学生发现平行四边形的特征,激发学生的兴趣。
2.基本概念:介绍平行四边形的定义,引导学生理解和掌握。
3.逻辑推理:运用已知的几何知识,如三角形的性质、全等三角形等,引导学生推理证明平行四边形的性质。
4.方法指导:教授学生如何运用平行四边形的性质解决相关问题,如计算边长、角度等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让他们根据所学性质,讨论平行四边形在实际问题中的应用。
2.交流分享:各小组代表汇报讨论成果,分享平行四边形性质在实际问题中的应用方法。
3.教师点评:对各小组的讨论成果进行点评,给予肯定和鼓励,纠正错误和不足。
(四)课堂练习
1.设计练习题:针对本节课所学内容,设计不同难度的练习题,让学生独立完成。
2.答疑解惑:针对学生在练习中遇到的问题,教师进行解答,帮助学生巩固所学知识。
3.反馈评价:收集学生的练习成果,给予评价和反馈,鼓励学生继续努力。
3.思考探究:布置一道思考题,鼓励学生在课后进行自主探究,培养他们的逻辑思维和创新能力。
-思考题:在平行四边形ABCD中,对角线AC和BD的交点E,若AE=EC,求证:平行四边形ABCD是矩形。
4.家庭作业:请学生根据本节课所学内容,结合教材第18.1节,完成以下作业。

1.1平行四边形的性质1(教学设计)

1.1平行四边形的性质1(教学设计)

平行四边形的性质(第1课时)教学设计撰写人:祝学昌【教材分析】平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一。

它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域中的实际应用。

本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后继学习矩形、菱形、正方形等知识的坚实基础。

平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路另外,本节课是在学生掌握了三角形等知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。

【教学目标】1.掌握并理解平行四边形的概念和平行四边形对边平行、对边相等、对角相等、对角线互相平分的性质。

2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

3.通过观察、猜测、证明、归纳,能运用数学语言进行讨论与质疑,发展学生合理的推理意识,培养学生主动探究的习惯。

4.通过平行四边形性质的探究应用过程,培养学生独立思考的能力,在数学学习活动中获得成功的体验。

同时树立起学习的信心。

5.培养学生发现问题、解决问题的能力及逻辑推理能力。

【重点、难点】1.重点:平行四边形的定义以及平行四边形的性质。

2.难点:平行四边形性质的探究。

【课时安排】本节课安排两课时。

第1课时【教学目标】1.掌握并理解平行四边形的概念和平行四边形对边、对角相等的性质。

2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

3.通过观察、猜测、证明、归纳,能运用数学语言进行讨论与质疑,发展学生合理的推理意识,培养学生主动探究的习惯。

4.通过平行四边形性质的探究应用过程,培养学生独立思考的能力,在数学学习活动中获得成功的体验。

同时树立起学习的信心。

[初中数学]平行四边形的性质教案7(第1课时) 人教版

[初中数学]平行四边形的性质教案7(第1课时) 人教版

《平行四边形的性质》教案(第1课时)长春外国语学校王方方平行四边形的性质第一课时教案讲授课题:人教版八年级数学下册19.1.1平行四边形的性质(一)教学目标:1、知识目标:理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题.2、能力目标:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.3、情感目标:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.教学重点:平行四边形的性质教学难点:理解并应用平行四边形的性质教学方法:探究、启发式教学过程:一、创设情境,引入新课引入:在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?做一做将两张全等的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,此时:(1)两张纸片拼成了怎样的图形?(2)这个图形中有哪些相等的角?有没有互相平行的线段?(3)用简洁的语言刻画这个图形的特征,并与同伴交流.通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。

从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习平行四边形.二、感悟图形,明确概念1、观察质疑:平行四边形如何区别于一般的四边形.让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:2、引入平行四边形对边、邻边、对角、邻角、对角线等概念.3、平行四边形的表示:通过演示使学生学会用文字语言、图形语言、符号语言来描述. 如图,平行四边形ABCD根据定义画出平行四边形,得到图形语言 还可以用符号语言来描述平行四边形的定义AB//CD AD//BC 三、引导实验,探索新知1、探索平行四边形的性质由定义可知平行四边形的对边平行2、质疑:平行四边形除以上性质外还有其他性质吗?鼓励学生大胆猜想(提示:请学生仿照三角形的学习方法从边和角去探索)第一步:猜想边和角之间的数量关系(对边相等,对角相等) 第二步:小组合作学习探索:让各组学生画平行四边形,用测量、旋转、平移、推理等方法验证上面的猜想.3、 小组汇报发现:平行四边形的对边相等平行四边形的对角相等4、推理:(如何证明上述结论?)已知:如图ABCD , AB CD A 1234求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD分析:解决四边形问题的常用方法:转化为三角形的问题。

平行四边形的性质(1)

平行四边形的性质(1)

《平行四边形的性质》(1)说课设计三岔镇兴隆九义校万强一、教材分析《平行四边形的性质》(1)是华东师大版八年级(上)第16章第1节第1课的内容,教材是在学生掌握了角、平行线、以及图形的三种全等变换等知识的基础上学习的。

它是前面知识的应用和深化,同时又是后续学习特殊四边形的的基础,起着承前启后的作用。

本课在对平行四边形的定义和性质的探究过程中,运用了从已知求未知,由未知索已知的数学思考方法和将新知转化成旧知的学习方法,这些方法对学生的后续学习也有十分重要的作用。

二、教学目标【知识与技能目标】1、掌握平行四边形有关概念和性质。

2、探索并掌握平行四边形的对边相等,对角相等的性质。

【过程与方法目标】1、动手操作实践的过程中,探索发现平行四边形的性质。

2、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。

【情感、态度与价值观目标】1、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。

2、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。

三、教学重点、难点【教学重点】探索平行四边形的性质。

【教学难点】平行四边形性质的理解和运用以及逻辑推理格式的正确书写。

四、教法、学法分析【教法】1、情景教学法创设情景,让学生观察生活中的平行四边形实物,让学习知识生活化,从而激发学生的学习兴趣,带着愉悦的心情进入学习状态。

2、探索归纳法让学生在动手中学会观察,观察中学会思考,思考中学会归纳。

【学法】:让学生以同座为小组,动手实践、自主探索,合作交流并归纳总结进行学习。

【本课教学特点】主要体现三个字“动、引、变”1、动(师生互动)教师通过多媒体呈现问题情境,给学生足够的时间亲自动脑、动手、动口学习。

共同探究平行四边形的性质。

2、引(适当引导)对学生对性质的发现,教师做适当的引导,让学生自己得到性质,并说明理由。

做到“引而不灌”。

3、变(多层变式)对教学例题和练习做多层次、多角度变形。

增加学生思维的广度和深度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
边 形 2.根据学生做题情况进行精讲 2.认真听讲,学会解 2.实现新旧知识
的 性 补讲。
题步骤。
点的链接,主动
质。
学会未知的知识
点。
3.归纳平行四边形的性质,并 3.学会归纳,学会用 3.联系生活,发
用数学的符号语言来表达。 数 学 符 号 的 语 言 来 现生活中数学的
进行表达。
实用性和趣味性。
结。 2.教师补讲,师生共同总结。 结。
能力。
七、布 1.布置同步练习相关习题(必 做习题,加强课后训 因材施教,使不
置 课 做题)。
练。
同层次的学生都
后 作 2.布置研究性题目。(选做题)
能通过作业有所

提高,有所收获。
七、教学反思
在本节学习中,通过引导学生自主探究,小组合作交流探究基本完成了教学
1
新。 忙。兄弟两人来到了孔明先生
的家里,将事情的原委讲给孔
明先生,并请孔明先生帮忙来
分地。诸葛先生首先让兄弟两
人到地里画出这块地的对角线,
然后将其交点与井口位置相连
并延长,从而得到了两块面积
相等的土地。众人纷纷赞叹孔
明先生才智过人。
2.提出问题:平行四边形是我 2.思考问题,准备回 2.让学生回忆在
任务。但是在课堂过程中需要反复运用平行线和三角形的知识,对三角形还有平
行线的知识点渗透不够深刻,需要改进。结合本节课的教学过程,我认真反思,
有以下地方需要改进:
4
1.从平行线和全等三角形方面的性质和平行四边形的性质进行对比,从而加强学 生对平行四边形性质的理解。 2.给学生讨论的时间太少,多留点时间给他们进行交流更好,展示自我。 3.教学过程中,对学生评价形式过于单一,个人语言激励匮乏,引导方式不够得 当,需加以改进。
成果。
是否正确,查漏补缺。
三、推 1.课本 75 页的观察题:四边形 1.思考并动手解题。 1.启发学生通过
理 论 ABCD 中,AB∥DC,AD∥BC,求
连接对角线把平
证,归 证:(1)AB=DC,AD=BC;∠
行四边问题转化
2
纳 平 DAB=∠C,∠BCA=∠DAC.
为三角形的问题
行四
来进行解决。
保持平行。老式蒸汽火车的车
轮就用了平行四边形机构。)
5.进一步学习巩
5.师生共同解决课本 76 页例 5. 在教师的引导下 固。
1
解题例题。
3
四、进 1.安排学生先自学课本 76 页 1.自学题目。
题目。
进行自主探究。
探 究 2.找学生代表说说通过前面学 2. 对 照 检 查 自 学 效 2.通过教师引导,
掌握解题思路、
离问
方法和步骤。
题。
五、课 1.学生做课本 78 页的练习题。 自己做题,听教师讲 进一步巩固本节
堂 巩 2.教师评讲习题,学生及时纠 评
课所学内容。
固 练 正错误。

六、课 1.让学生自己先总结,然后小 先 自 己 总 结 然 后 在 培养学生归纳总
堂 小 组进行交流归纳总结。
教师引导下归纳总 结、语言表达的
探究发现平行四
出 性 生先自己动手进行操作,然后
边形其他的特征。
质。 小组内进行交流。
2.提出问题:平行四边形还有 2. 边动手测量,边
别的性质吗?提示学生利用量 思 考 教 师 提 出 的 问
角器、直尺等去发现平行四边 题。
形邻边、对边、对角、邻角的
关系。
3.让学生小组派出代表来汇报 3. 检 查 自 己 的 答 案
学生在学习本节课内容之前,学习过平行线以及全等三角形有关的知识点, 这些恰恰是学习平行四边形性质的基础。在教师的引导下是能掌握平行四边形的 性质的。 四、教学重难点 1.教学重点:平行四边形对边、对角的性质。 2.教学难点:平行四边形性质的探究和应用。 五、教学策略 1.教法 利用多媒体辅助教学,还有几何画板制作课件,引导学生主动探究。 2.学法 学生自主探究,合作交流完成学习任务。 六、教学过程
平 行 习的平行四边形的性质结合图 果。
学会夹在平行四
四 边 形得出什么结论。
边形两条平行线
形中
之间的平行线段
两条
相等。
平 行 3.教师补讲,共同学习。
3.检查学习效果。 3.解决问题。
线 间 4.师生共同解决课本 77 页例 4.动手解题,掌握解 4.在教师引导下
的 距 题 2 和例题 3。
题方法。
教学 内容
教学活动
学生活动
设计意图
一、用 1.用图片讲述分地的故事:卧 1. 听 故 事 并 进 行 思 1.引起学生对学
故 事 龙岗的王家老汉家有两个儿子,考。
习平行四边的兴
导 入 有一块平行四边形的地,有一
趣。
新课, 口井在靠近一边的左下角的部
温 故 位,他们在为平分这块地犯愁。
而 知 邻居们建议他们找孔明先生帮
们常见的一种图形,回忆学过 答问题。
小学学过的平行
的平行四边形的性质?
四边形的性质:
两组对边分别平
行。
二、动 1.用几何画板操作,根据两组 1. 跟 着 教 师 的 思 路 让学生通过自主
手 操 对边分别平行画出平行四边形,进行动手操作,并进 探索和小组合作
作,得 启发学生去体验的性质。让学 行思考。
19.2 平行四边形(第 1 课时)教学设计
一、教材分析 本节课的内容是沪教版八年级下册第十九章 19.2 的内容。通过学习平行四边
形性质的学习,提高学生在生活实际中用数学的意识,认识平行四边形在现实生 活中有着广泛的应用。 二、教学目标 1.知识目标:理解平行四边形的概念,平行四边形对边、对角的性质。 2.能力目标:通过讲解例题,引导学生探究解题的过程中并学会平行四边形相关 性质的初步应用,进行简单的计算。 3.情感目标:培养学生的观察能力、探索能力以及逻辑推理能力。 三、学情分析
4.巩固平行四边
4.提问:生活中有哪些地方用 4.思考并回答,感受 的性质,解决实
到平行四边形?(学校门口的 平 行 四 边 形 在 生 活 际问题。
电动门、玩具七巧板、还有机 中的广泛应用。
械中有一种装置叫做“平行四
边形机构”。它的两曲柄长度相
等,且连杆与机架的长度也相
等,呈平行四边形。它的运动
的特点之一,就是相对杆始终
相关文档
最新文档