高考数学 第1部分 重点强化专题 专题2 数列 突破点5

合集下载

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②

高中数学必修五-数列突破点(二)数列的单调性

高中数学必修五-数列突破点(二)数列的单调性

高中数学必修五-数列突破点(二)数列的单调性
基础回顾
考点链接
考点一:利用数列的单调性研究最值问题
方法技巧
实战演练
考点二:利用数列的单调性求参数的取值范围
方法技巧
已知数列的单调性求参数取值范围的两种方法
(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.
(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n的取值范围.
实战演练
全国卷5年真题集中演练。

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02数列题型简介数列一般作为全国卷第17题或第18题或者是19题,主要考查数列对应的求和运算以及相应的性质考察题型一般为:1错位相减求和2裂项相消求和3(并项)分组求和4数列插项问题5不良结构问题6数列与其他知识点交叉问题;在新高考改革情况下,对于数列的思辨能力有进一步的加强,务必要重视典例在线题型一:数列错位错位相减求和1.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.变式训练1.若等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,并且0n b >,11334223,1,19,2a b b S a b a ==+=-=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T ;(3)若()11N *·n n n c n a a +=∈,求数列{}n c 的前n 项和nM 题型二:裂项相消求和1已知数列{}n a 的前n 项的积记为n T ,且满足112n n na T a -=.(1)证明:数列{}n T 为等差数列;(2)设()()111nnn n n b T T +-+=,求数列{}nb 的前n 项和nS.1.已知正项数列{}n a 的前n 项和为n S,且1n a =+.(1)证明:{}n a 是等差数列.(2)设数列1n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若满足不等式n T m<的正整数n 的个数为3,求m 的取值范围.题型三:(并项)分组求和1.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.变式训练1.已知数列{}n a 满足11a =,11,2,n n na n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .题型四:数列插项问题1.记数列{an }的前n 项和为Sn ,对任意正整数n ,有2Sn =nan ,且a 2=3.(1)求数列{an }的通项公式;(2)对所有正整数m ,若ak <2m <ak +1,则在ak 和ak +1两项中插入2m ,由此得到一个新数列{bn },求{bn }的前40项和.变式训练1.已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N .(1)求证:12n a ⎧⎫+⎨⎩⎭是等比数列;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和.题型五不良结构问题1.已知数列{}n a 是公差不为零的等差数列,11a =且2a ,5a ,14a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n S ,在①21n n S =-,*n ∈N ;②21n n S b =-,*n ∈N ;③121n n S S +=+,*n ∈N 这三个条件中任选一个,将序号补充在下面横线处,并根据题意解决问题.问题:若11b =,且______,求数列{}n n a b ⋅的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答给分.变式训练1.在①89a =,②520S =,③2913a a +=这三个条件中选择两个,补充在下面问题中,并进行解答已知等差数列{}n a 的前n 项和为n S ,*n ∈N ,___________,___________.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T ;(3)若存在n *∈N ,使得10n n T a λ+-≥成立,求实数λ的取值范围.注:如果选择多组条件分别解答,按第一个解答计分.题型六数列与其他知识点交叉问题1.为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致观察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为【肩手左右】的游戏,方案如下:游戏准备:选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的“左”字,另一张纸板正反两面打印有相同的“右”字.游戏进行:一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.游戏评价:为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得-1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得-1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X .(1)求X 的分布列;(2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,()0,1,,8i p i =⋅⋅⋅表示“甲小朋友的当前累计得分为i 时,本轮游戏甲小朋友最终获胜”的概率,则00p =,81p =,11(1,2,,7)i i i i bp cp a i p p -+=++=⋅⋅⋅,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.6β=.(i )证明:{}1(0,1,2,,7)i i p p i +-=⋯为等比数列;(ii )根据4p 的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.6”的假设.变式训练1.已知函数()cos 2f x x =,()sin g x x =.(1)判断函数()2ππ4H x f x g x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的奇偶性,并说明理由;(2)设函数()()sin h x x ωϕ=+(0ω>,π02ϕ<<),若函数2πh x ⎛⎫+ ⎪⎝⎭和()πh x -都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{}n a ,求{}n a 的通项公式;(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,π)n 内恰有147个零点.模拟尝试一、解答题1.已知数列{}n a 的前n 项之积为()()1*22n n n S n -=∈N .(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}n n a b +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.2.已知数列{}n a 的前n 项和为11131,3,31n n n n n S S a S ++-==-.(1)求23,S S 及{}n a 的通项公式;(2)若()()()()()()()32122311111111n n n n a a a a a a a a a a λ-+++≤------- 对任意的*2,N n n ≥∈恒成立,求λ的最小值.3.在数列{}n a 中,21716a =,*113,N 44n n a a n +=+∈.(1)证明:数列{}1n a -是等比数列;(2)令123n n n b a +=⋅+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:1340n S <.4.已知正项等差数列{}n a 和正项等比数列{}n b ,n S 为数列{}n a 的前n 项和,且满足1325162,12,4,a S b b a ====.(1)分别求数列{}n a 和{}n b 的通项公式;(2)将数列{}n a 中与数列{}n b 相同的项剔除后,按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n T ,求100T .5.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.6.设数列{}n a 的前n 项之积为n T ,且满足()*21N n n T a n =-∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记22212n n S T T T =++⋅⋅⋅+,证明:14n S <.7.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.真题再练一、解答题1.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.2.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}nb 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·北京·统考高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.6.(2022·浙江·统考高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.7.(2021·全国·统考高考真题)已知数列{}n a 满足11a =,11,,2,.nn n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.8.(2020·山东·统考高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .9.(2020·海南·高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.。

数列高考专题突破数列的综合应用课件pptx

数列高考专题突破数列的综合应用课件pptx

2. 在解决一些与长度相 关的几何问题时,可以 通过数列的递推关系式 得出结论,例如利用等 差数列的通项公式求出 某条线段的长度。
3. 数列还可以用于解决 一些与图形数量关系相 关的问题,例如利用等 差数列和等比数列的求 和公式可以求出某个图 形中线条的数量。
数列在经济中的应用
01
02
总结词:数列在经济中 的应用主要表现在利用 数列模型描述经济现象 的变化规律,以及求解 与经济决策相关的问题 。
04
数列的综合应用
数列在几何中的应用
01
02
总结词:数列在几何中 的应用涉及利用数列的 性质解决与几何图形相 关的问题,如求面积、 周长等。
详细描述
03
04
05
1. 利用等差数列和等比 数列的性质,可以求出 一些几何图形的面积或 周长,例如等差数列的 前n项和公式可以用于 求平行四边形的面积, 等比数列的前n项和公 式可以用于求圆的面积 。
前n项和公式
03
$S_n = \frac{a_1(1 - q^n)}{1 - q}$。
数列的极限与收敛性
极限的定义
如果当$n$趋于无穷大时,数列$a_n$的项无限接近于某个确定的数$A$,则称$A$为数 列$a_n$的极限。
收敛性的定义
如果数列$a_n$有极限,则称该数列收敛;否则称该数列发散。
极限的存在性定理
数列的应用
实际生活中的应用
如定期存款的复利计算,贷款的月还款额 计算,物价的指数上涨等都涉及到数列的 知识。
VS
数学领域中的应用
如在微积分、统计学、计算机科学等领域 中,数列的知识都起到了重要的作用。
02
等差数列与等比数列的基 本性质
等差数列的基本性质

21-22版:专题突破二 数列的单调性和最大(小)项(步步高)

21-22版:专题突破二 数列的单调性和最大(小)项(步步高)

12345
2.已知数列{an}的通项公式为 an=94n-1-32n-1(n∈N+),则数列{an}
A.有最大项,没有最小项
B.有最小项,没有最大项
√C.既有最大项又有最小项
D.既没有最大项也没有最小项
解析 an=49n-1-23n-1=23n-12-23n-1, 令23n-1=t,则 t 是区间(0,1]内的值, 而 an=t2-t=t-122-14,所以当 n=1, 即t=1时,an取最大值. 使23n-1 最接近21的 n 的值为数列{an}中的最小项,
12345
5.已知数列{an}中,an=1+2n-11+m.若 a6 为最大项,则实数 m 的取值范围是 _(_-__1_1_,__-__9_)_. 解析 根据题意知,y=1+ 1 的图象如下:
2x-1+m
1-m 由 a6 为最大项,知 5< 2 <6.∴-11<m<-9.
12345
本课结束
更多精彩内容请登录:
跟踪训练1 数列{an}的通项公式为an=-3×2n-2+2×3n-1,n∈N+.求证: {an}为递增数列.
二、求数列中的最大(或最小)项问题 常见方法: (1)构造函数,确定函数的单调性,进一步求出数列的最值.
an≥an+1, (2)利用
an≥an-1
(n≥2)求数列中的最大项
an≤an+1, an;利用an≤an-1
三、利用数列的单调性确定变量的取值范围 常利用以下等价关系: 数列{an}递增⇔an+1>an恒成立;数列{an}递减⇔an+1<an恒成立,通过分 离变量转化为代数式的最值来解决.
例5 已知数列{an}中,an=n2+λn,n∈N+. (1)若{an}是递增数列,求λ的取值范围.
解 由{an}是递增数列⇔an<an+1⇔n2+λn<(n+1)2+λ(n+1)⇔λ>-(2n+1), n∈N+⇔λ>-3. ∴λ的取值范围是(-3,+∞).

【状元之路】高考数学二轮复习 专题知识突破 1-1-5 导数及其应用课件(文、理)新人教A版

【状元之路】高考数学二轮复习 专题知识突破 1-1-5 导数及其应用课件(文、理)新人教A版

所以当 x∈0,1e时,g′(x)<0; 当 x∈1e,+∞时,g′(x)>0. 故 g(x)在0,1e上单调递减,在1e,+∞上单调递增,从而 g(x) 在(0,+∞)上的最小值为 g1e=-1e. 设函数 h(x)=xe-x-2e,则 h′(x)=e-x(1-x).
答案 D
1.(文)已知函数 f(x)的导函数为 f′(x),且满足 f(x)=2xf′(1)
+lnx,则 f′(1)=( )
A.-e
B.-1
C.1
D.e
解析 f′(x)=2f′(1)+1x,令 x=1,得 f′(1)=2f′(1)+1, ∴f′(1)=-1.
答案 B
Байду номын сангаас
2.设曲线 y=ax-ln(x+1)在点(0,0)处的切线方程为 y=2x,
课堂笔记 (1)由题意知 a=0 时,f(x)=xx- +11,x∈(0,+∞). 此时 f′(x)=x+2 12.可得 f′(1)=12,又 f(1)=0, 所以曲线 y=f(x)在(1,f(1))处的切线方程为 x-2y-1=0. (2)函数 f(x)的定义域为(0,+∞). f′(x)=xa+x+2 12=ax2+x2xa++122x+a.
2.牢记四个易误导数公式 (1)(sinx)′=cosx. (2)(cosx)′=-sinx. (3)(ax)′=axlna(a>0). (4)(logax)′=xl1na(a>0,且 a≠1).
3.把握三个概念 (1)在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这 个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x)在这个区间内 单调递减. (2)设函数 f(x)在点 x0 附近有定义,如果对 x0 附近所有的点 x, 都有 f(x)<f(x0),那么 f(x0)是函数的一个极大值,记作 y 极大值=f(x0); 如果对 x0 附近的所有的点都有 f(x)>f(x0),那么 f(x0)是函数的一个极 小值,记作 y 极小值=f(x0),极大值与极小值统称为极值.

高考大题专项突破 数列

高考大题专项突破 数列
(2)解由(1)得 an+n=2×2n-1=2n,故 an=2n-n. 因此,Sn=2×1(1-2-2������) − ������(������2+1),即 Sn=2n+1-������22+������-2.
-13-
题型一 题型二 题型三 题型四 题型五
策略一 策略二
对点训练3设Sn为等比数列{an}的前n项和,已知S2=2,S3=-6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
∵a2+a3=5ln 2, ∴2a1+3d=5ln 2. 又a1=ln 2,∴d=ln 2. ∴an=a1+(n-1)d=nln 2. (2)由(1)知 an=nln 2,∵e������������ =enln 2=eln 2������ =2n, ∴{e������������ }是以 2 为首项,2 为公比的等比数列. ∴e������1 + e������2 +…+e������������ =2+22+…+2n=2n+1-2. ∴e������1 + e������2 +…+e������������ =2n+1-2.
-17-
题型一 题型二 题型三 题型四 题型五
策略一 策略二
(2)∵f(m)=���������+���1,b1=a1=1,bn=f(bn-1)=������������������-���1���-+1 1(n≥2),∴���1��������� =
������������������-���1���-+1 1(n≥2).∴���1���������

高三数学二轮复习:专题二 数列

高三数学二轮复习:专题二 数列
解答
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为

专题二 数列(难点突破 数列的函数特征)2023年高考数学二轮复习(全国通用)

专题二 数列(难点突破  数列的函数特征)2023年高考数学二轮复习(全国通用)
又 也满足上式,所以 .(2)由(1)得 ,所以 .由 ,得 ,即 ,即 ,因为 ,所以 ,即 .故满足 的最小正整数 的值为10.
令 ,得 ;令 ,得 ,所以 在 上单调递增,在 上单调递减.因为 , ,所以当 时, ,即 ,故实数 的取值范围为 .
突破点3 数列的最值
例3 (2022·枣庄二模)在① 是 与 的等差中项,② 是 与 的等比中项,③数列 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知 是公差为2的等差数列,其前 项和为 , .
因为 ,所以 是首项为 ,公差为4的等差数列.由 的前5项和为65,得 ,解得 ,所以 .(2)不存在 ,使得 .理由如下:由(1)可得 ,因为 ,
所以 ; .所以 ,所以 中的最大项为 .显然 ,所以对任意的 , ,所以不存在 ,使得 .
提分秘籍 数列作为特殊的函数,数列的周期性可以通过归纳得到.数列的最值问题可利用函数的单调性求解,当然要注意数比较大小一般要求两个数均为正数.
(1)求数列 的通项公式.
(2)设 ,是否存在 ,使得 ?若存在,求出 的值;若不存在,请说明理由.
▶思维导图
[解析] (1)若选① 是 与 的等差中项,则 ,即 ,解得 ,所以 .若选② 是 与 的等比中项,则 ,即 ,解得 ,所以 .若选③数列 的前5项和为65,则 .
◎难点精练
1.(2022·湖北模拟)数列 <m></m> 满足 <m></m> 且 <m></m> 是递增数列,则实数 <m></m> 的取值范围是______.
[解析] ∵数列 满足 且 是递增数列,∴需满足 即 解得 ,即实数 的取值范围是 .

高考数学第1部分重点强化专题专题2数列突破点5数列求

高考数学第1部分重点强化专题专题2数列突破点5数列求
专题二 综合应用
栏目 导航
核心知识 聚集
热点题型 探究 专题限时集训
(对应学生用书第 19 页) [核心知识提炼] 提炼 1 an 和 Sn 的关系
S1,n=1, an= Sn-Sn-1,n≥2.
若 an 为数列{an}的通项,Sn 为其前 n 项和,则有
[ 解]
(1)由题意知 a1a2a3…an=( 2)bn,b3-b2=6,
知 a3=( 2)b3-b2=8. 又由 a1=2,得公比 q=2(q=-2 舍去), 所以数列{an}的通项为 an=2n(n∈N*), nn+1 所以,a1a2a3…an=2 2 =( 2)n(n+1). 故数列{bn}的通项为 bn=n(n+1)(n∈N*). 1 1 1 1 1 * (2)①由(1)知 cn=a -b =2n-n-n+1 ( n ∈ N ), n n 1 1 所以 Sn= -2n(n∈N*). n+1 7分 5分 2分
(3)证明:因为 xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1, 1 所以 xn≥ n-1. 2 xnxn+1 由 2 ≥2xn+1-xn 1 1 1 1 得 -2≥2x -2>0, xn+1 n
1 1 1 n-2 1 1 n -1 1 所以x -2≥2x -2≥…≥2 x -2=2 , 1 n n -1 1 故 xn≤ n-2. 2
当 n=1 时,x1=1>0. 假设 n=k 时,xk>0, 那么 n=k+1 时, 若 xk+1≤0,则 0<xk=xk+1+ln(1+xk+1)≤0,矛盾, 故 xk+1>0. 因此 xn>0(n∈N*). 所以 xn=xn+1+ln(1+xn+1)>xn+1. 因此 0<xn+1<xn(n∈N*). 5分 3分

关于数列的2025年高考数学知识点

关于数列的2025年高考数学知识点

关于数列的2025年高考数学知识点在高考数学中,数列一直是一个重要的考点,它不仅能够考查学生的逻辑思维能力,还能锻炼学生的运算和推理能力。

对于即将参加2025 年高考的同学们来说,掌握好数列的相关知识点至关重要。

一、数列的基本概念数列,简单来说,就是按照一定顺序排列的一列数。

例如:1,3,5,7,9 就是一个数列。

数列中的每一个数都称为这个数列的项。

其中,第一项称为首项,通常用 a₁表示。

数列的通项公式,就是用一个公式来表示数列的第 n 项与 n 之间的关系。

比如,一个等差数列的通项公式可以表示为 aₙ = a₁+(n 1)d ,其中 a₁是首项,d 是公差。

而数列的前 n 项和 Sₙ ,则是数列前 n 项的总和。

比如等差数列的前 n 项和公式为 Sₙ = n(a₁+ aₙ) / 2 。

二、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。

这个常数称为公差,通常用 d 表示。

等差数列的通项公式为 aₙ = a₁+(n 1)d 。

例如,数列 2,5,8,11,14 就是一个公差为 3 的等差数列,其首项 a₁= 2 。

对于等差数列的前 n 项和 Sₙ ,我们有 Sₙ = n(a₁+ aₙ) / 2 =na₁+ n(n 1)d / 2 。

在解题时,常常需要根据已知条件,通过列方程来求解等差数列的首项、公差、项数等。

三、等比数列等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。

这个常数称为公比,通常用 q 表示(q ≠ 0)。

等比数列的通项公式为 aₙ = a₁qⁿ⁻¹。

比如,数列 2,4,8,16,32 就是一个公比为 2 的等比数列,首项a₁= 2 。

等比数列的前 n 项和 Sₙ ,当 q = 1 时,Sₙ = na₁;当q ≠ 1 时,Sₙ = a₁(1 qⁿ) /(1 q) 。

在解决等比数列的问题时,要特别注意公比是否为 1 的情况。

四、数列的性质等差数列有许多重要的性质,比如:若 m + n = p + q ,则 aₙ + aₙ = aₙ + a_q 。

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

新高中数学《数列》专题解析一、选择题1.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ).A .1-B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=, 13533105a a a a ∴++==,2464399a a a a ++==, 335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.3.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) A .3 B .3-C .3 D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 33a π⎛⎫==- ⎪⎝⎭, 故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.4.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.5.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.6.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.7.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30C .44D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216aqa==,得q2=2.∴4624a a q==,即a6=b6=4,又S n为等差数列{b n}的前n项和,∴()1111161111442b bS b+⨯===.故选:C.【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n项和的求法,是中档题.8.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取lg30.4771≈,lg20.3010≈)A.16 B.17 C.24 D.25【答案】D【解析】【分析】由折线长度变化规律可知“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,由此得到410003n⎛⎫≥⎪⎝⎭,利用运算法则可知32lg2lg3n≥⨯-,由此计算得到结果.【详解】记初始线段长度为a,则“一次构造”后的折线长度为43a,“二次构造”后的折线长度为24 3a⎛⎫ ⎪⎝⎭,以此类推,“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003na a⎛⎫≥⎪⎝⎭,即410003n⎛⎫≥⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.9.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.10.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q 和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.11.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.12.在数列{}n a 中,1112,1n na a a +=-=-,则2016a 的值为A .-2B .13 C .12 D .32【答案】B 【解析】由111n na a +=-,得2111111111n n n na a a a ++=-=-=--. 所以32111111n n n na a a a ++=-=-=-. 即数列{}n a 以3为周期的周期数列. 所以2016311113a a a ===-. 故选B.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( )A .41B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.14.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.15.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.16.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.17.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2 【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a【答案】A【解析】【分析】 由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9 【答案】B【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.。

高考数学重点课件专题突破 (27)

高考数学重点课件专题突破 (27)
第一章
数 列
章末复习提升课
第一章
数 列
栏目 导引
第一章
数 列
1.数列的概念及表示方法 (1)定义:按照一定顺序排列的一列数. (2)表示方法:列表法、图像法、通项公式法和递推公式法. (3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项 与项之间的大小关系可分为递增数列、递减数列、摆动数列和 常数列.
栏目 导引
第一章
数 列
已知{an}是公差为 3 的等差数列,数列{bn}满足 b1=1, 1 b2= ,anbn+1+bn+1=nbn. 3 (1)求{an}的通项公式; (2)求{bn}的前 n 项和.
栏目 导引
第一章
数 列
【解】
1 (1)由已知,a1b2+b2=b1,b1=1,b2= ,得 a1=2. 3
栏目 导引
第一章
数 列
3.注意分类讨论 (1)应用
S1,n=1, an= 解题时,应注意分类讨论的应用, Sn-Sn-1,n≥2
即要注意分 n=1 和 n≥2 两种情况进行讨论. (2)等比数列中,奇数项(或偶数项)的符号相同,解题时常因忽 略这点而致误.
栏目 导引
第一章
数 列
等差、等比数列的判定与证明 判定一个数列是等差或等比数列的常用方法 (1)定义法 an+1-an=d(常数,n∈N+)⇔{an}是等差数列. an+1 an =q(非零常数,n∈N+)⇔{an}是等比数列. (2)中项公式法 2an+1=an+an+2(n∈N+)⇔{an}是等差数列. a2 n+1=anan+2(anan+1an+2≠0,n∈N+)⇔{an}为等比数列.
栏目 导引
1n 1-3
第一章
数 列

高三数学一轮复习数列知识点突破训练含答案解析

高三数学一轮复习数列知识点突破训练含答案解析

第六章⎪⎪⎪数 列 第一节数列的概念与简单表示突破点(一) 数列的通项公式基础联通 抓主干知识的“源”与“流” 1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.考点贯通 抓高考命题的“形”与“神”由数列的前几项求数列的通项公式[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;本节主要包括2个知识点: 1.数列的通项公式;2.数列的单调性.(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn .也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n-1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2. [方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=n n +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=n n +1a n (a n ≠0),得a n +1a n=nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·…·12·23 =23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. (4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④ C .②③④ D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n ,求数列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n-2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 数列的单调性基础联通 抓主干知识的“源”与“流” 数列的分类分类标准 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项考点贯通 抓高考命题的“形”与“神”利用数列的单调性研究最值问题[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1,即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2n λ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法①当a n >0时,a n +1a n>1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1an=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n>1⇔数列{a n }是单调递减数列;a n +1a n<1⇔数列{a n }是单调递增数列;a n +1an=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎡⎭⎫83,3.[答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9. 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1, ∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n 2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10 解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n ,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32. 4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________. 解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值. 答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.1210B.129C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n ,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝⎛⎭⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n +1,则1a n +1+1=21a n+1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比数列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n=nn +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n .答案:1n 三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②,整理得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算基础联通 抓主干知识的“源”与“流” 1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通 抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2本节主要包括3个知识点:1.等差数列的性质及基本量的计算;2.等差数列前n 项和及性质的应用;3.等差数列的判定与证明.C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3(a 1+a 3)2=6, 且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通 抓应用体验的“得”与“失” 1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n=( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用基础联通 抓主干知识的“源”与“流” 等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.考点贯通 抓高考命题的“形”与“神”等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p=S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n+1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干知识的“源”与“流” 等差数列的判定与证明方法 方法解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯通 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列. 能力练通 抓应用体验的“得”与“失” 1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n , ∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0,∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m=3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37. 3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212。

2023年新高考数学技巧硬核解密之数列(新高考适用)专题02 等比数列必备知识点与考点突破(原卷版)

2023年新高考数学技巧硬核解密之数列(新高考适用)专题02 等比数列必备知识点与考点突破(原卷版)

专题02 等比数列必备知识点与考点突破【必备知识点】◆知识点1:等比数列1.等比数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数, 那么这个数列叫做等比数列, 这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.2.等比数列的判定(1)1n na q a +=(定义法); (2)2110nn n a a a -+=≠(中项法) (3) kn bn a p q +=⋅ (通项法); (4)()1n n S A q =-(和式法).3.等比数列通项公式11n n a a q -=⋅或n m n m a a q -=⋅例:已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列例:已知等比数列{n a }中,满足11a =,2q ,则( )A .数列{2n a }是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{n a }中,102030,,S S S 仍成等比数列◆知识点2:等比数列的性质设{}n a 为等比数列,公比为q ,则(1)若*,,,,m n p q m n p q +=+∈N ,则m n p q a a a a =.(2)若()*,,,,m n p m n p ∈N成等差数列,则,,mn p aa a 成等比数列.(3)数列{}n a λ(λ为不等于零的常数)仍是公比为q 的等比数列; 数列1n a ⎧⎫⎨⎬⎩⎭是公比为1q 的等比数列;数列{}n a 是公比为|q|的等比数列;若数列{}n b 是公比为q '的等比数列,则数列{}n n a b ⋅是公比为q q '⋅的等比数列.(4)在数列{}n a 中,每隔()*k k ∈N 项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为 1k q +.(5)在数列{}n a 中,连续相邻k 项的和(或积)构成公比为kq (或2k q )的等比数列.(6)若数列{}n a 是各项都为正数的等比数列,则数列{}log (0c n a c >且1)c ≠是公差为log c q 的等差数列. (7)等比数列{}n a 的连续m 项的积构成的数列: 222,,,m mm m mT T T T T ,仍为等比数列.例:在正项等比数列{}n a 中,35566829a a a a a a ++=,则47a a +=( ) A .1 B .2 C .3D .4例:已知等比数列{}n a 满足11a =,12q =,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差等列B .数列{}2log n a 是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是递减数列D .数列{}2log n a 是递增数列◆知识点3:等比数列前n 项和1.等比数列前n 项和公式当1q =时,1;n S na = 当1q ≠时,()111.11nnn a q a a q S qq--==--2.等比数列前n 项和公式与指数函数的关系(1)当1q =时, 1n S na =是关于n 的正比例函数,点(),n n S 是直线1y a x =上的一群孤立的点.(2)当1q ≠时,()1111111nn n a q a aS q qq q-==----.记A = 11a q -,则n n S Aq A =-+是一个指数式与一个常数的和.当0q >且1q ≠时,ny q =是指数函数,此时,点(),n n S 是指数型函数xy Aq A =-+图象上的一群孤立的点. 如等比数列1,2,4,8,的前n 项和为21n n S =-,点(),n n S 是函数21x y =-图象上的一群孤立的点.例:已知正项等比数列{}n a 首项为1,且5344,,2a a a 成等差数列,则{}n a 前6项和为( ) A .31B .3132C .6332D .63例:已知等比数列{}n a 的前n 项和155nn S t =⋅-,则实数t 的值为( )A .4B .5C .45D .15◆知识点4:等比数列前n 项和的性质已知等比数列{}n a 的公比为q ,前n 项和为n S ,则有如下性质:(1)nm n n m S S q S +=+.证明:()121212n n n n m n n n n m n n m n m S S a a a S a q a q a q S q a a a ++++=++++=++++=++++n n m S q S =+.(2)若()*232,,k k k k k S S S S S k --∈N 均不为0 ,则232,,k k k k k S S S S S --成等比数列,且公比为kq .(3)若{}n a 共有()*2n n ∈N 项,则S q S =偶奇;若{}n a 共有()*(21)n n +∈N 项,则1S a q S -=奇偶. 例:等比数列{}n a 的前n 项和为n S ,已知9n S =,236n S =,则3n S =( ) A .144B .117C .108D .81例:已知等比数列{}n a 的前n 项和为n S ,1010S =,2040S =,则30S =( ) A .90 B .100 C .120D .130例:已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( )A .2B .4C .8D .16【核心考点】◆考点1:等比中项1.在等差数列{}n a 中,13a =,且1a ,4a ,10a 成等比数列,则n a 的通项公式为( ) A .21n a n =+ B .2n a n =+ C .21n a n =+或3n a =D .2n a n =+或3n a =2.已知{}n a 是公差不为零的等差数列,2414a a +=,且1a ,2a ,6a 成等比数列,则n a =( ) A .21nB .32n -C .163n -D .132n -3.已知等差数列{}n a 的前n 项和为n S ,若1S ,33S ,55S成等比数列,则公比为( ) AB .C .±1D .14.已知等差数列{}n a 的前n 项和为n S ,若12S +,343S +,565S+成等比数列,则公比为( )AB .C .±1D .1◆考点2:等比数列的证明1.已知数列{}n a 的前n 项和公式为222n S n n =+,则数列{}n a ( ) A .是公差为4的等差数列 B .是公比为2的等比数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列2.数列{}n a 中,12a =,21n n a a +=,则下列结论中正确的是( )A .数列{}n a 的通项公式为2n n a =B .数列{}n a 为等比数列C .数列{}ln n a 为等比数列D .数列{}ln n a 为等差数列3.设数列{}n a 满足132n n a a +=+,且10a >,则( ) A .1n a +为等比数列 B .2n a +为等比数列 C .1n a -为等比数列D .2n a -为等比数列4.若数列{}n a 的n 项和为n S 且21n n S a =+,*n N ∈,则下列说法不正确的是( ) A .516a =-B .563S =-C .数列{}n a 是等比数列D .数列1n S 是等比数列◆考点3:等比数列的性质1.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .2C .30D .322.如果数列{}n a 是等比数列,那么下列数列中不一定是等比数列的是( )A .1naB .C .{}1n n a a +⋅D .{}1n n a a ++3.已知{}n a 是等比数列,则( )A .数列是等差数列B .数列{}2n a 是等比数列C .数列{}lg n a 是等差数列D .数列{}2n a是等比数列4.如果数列{}n a 是等比数列,且0n a >,n *∈N ,则数列{}lg n a 是( ) A .等比数列B .等差数列C .不是等差也不是等比数列D .不能确定是等差或等比数列5.等比数列{an }的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列1n a ⎧⎫⎨⎬⎩⎭,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项的和是( )A .1SB .Sqn -1C .Sq 1-n D .nq S6.设等比数列{}n a 的前n 项和为n S ,若482S S =,则1284S S S -的值是( ) A .4-B .32-C .32D .4◆考点4:等比数列的函数特征1.设等比数列{}n a 的首项为1a ,公比为q ,则{}n a 为递增数列的充要条件是( ) A .10a >,1q > B .10a <,01q << C .1lg 0a q >D .1lg 0a q <2.已知无穷等比数列{}n a 满足232a a a -<<,其前n 项和为n S ,则( ) A .数列{}n a 为递增数列 B .数列{}n a 为递减数列 C .数列{}n S 有最小项D .数列{}n S 有最大项3.等比数列{}n a 是递增数列,若5160a a -=,4224a a -=,则公比q 为( ) A .12B .2C .12或2-D .2或124.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件11a >,202120220a a >,()()20212022110a a --<,下列结论正确的是( )A .202320211a a >B .202220211S S ->C .数列{}n S 存在最大值D .2021T 是数列{}n T 中的最大值◆考点5:等比数列前n 项和的概念与计算1.已知数列{}n a 是递增的等比数列,且1418a a +=,3232a a =,若{}n a 的前n 项和n S 满足1661022k k S S +-=-,则正整数k 等于( ) A .5B .6C .7D .82.已知等比数列{}n a 的前n 项和14n n S t -=+,则( ) A .首项1a 的值不确定 B .公比14q =C .21a =D .14t =-3.若数列{21}n -的前10项和等于数列{}2+nk 的前6项和,则常数k =( )A .133- B .134-C .193-D .194-4.已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4◆考点6:Sn 与an 的关系1.已知等比数列{}n a 的前n 项和122()+=+∈R n n S m m ,则242=+ma a ( )A .110-B .110C .120-D .1202.已知公比为q 的等比数列{}n a 的前n 项和2n n S c q =+⋅,*n ∈N ,且314S =,则4a =( ) A .48B .32C .16D .83.(多选)已知数列{}n a 的前n 项和为n S ,21n n S a =+()N n *∈,则下列选项中正确的是( )A .11a =-B .532S =-C .数列{}n a 是等比数列D .数列1n S 的前n 项和为122n +-4.已知等比数列{}n a 的前n 项和为n S ,若33n n S k -=+,则k 的值为______.◆考点7:等比数列前n 项和的性质1.已知数列{}n a 是各项为正的等比数列,其前n 项和为n S ,若486,18S S ==,则16S =( ) A .48B .54C .72D .902.设等比数列}{n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ). A .1:3B .2:3C .1:2D .3:43.设等比数列{}n a 的前n 项和为n S ,若63:1:2S S =,则93:S S =( )A .1:2B .2:3C .3:4D .1:34.已知等比数列{}n a 的公比为q ,前n 项和为n S ,则下列命题中错误的是( ) A .1n n n S S a q +=+⋅ B .11n n S S qS +=+C .2S ,42S S -,64S S -成等比数列D .“12q =-”是“n S ,2n S +,1n S +成等差数列”的充要条件5.已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ) A .1 B .4 C .12D .36◆考点8:等比数列的奇数项和偶数项性质与应用1.已知等比数列{}n a 的公比2q ,前100项和为10090S =,则其偶数项24100a a a +++为( )A .15B .30C .45D .602.已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ). A .11B .12C .13D .143.等比数列的首项为1,项数是偶数,所有得奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( ) A .4B .6C .8D .10 4.在等比数列中,若公比,且,则数列的前100项的和为A .100B .90C .120D .30 5.已知一个等比数列首项为1,项数是偶数,其奇数项之和为341,偶数项之和为682,则这个数列的项数为( ) A .4B .6C .8D .106.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为( ) A .8,2B .2,4C .4,10D .2,87.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比为( ) A .8B .2C .4D .2【过关检测】一、单选题1.设{}n a 是公比为2-的等比数列,且46272a a +=.则5S =( ) A .8-B .11-C .8D .112.若数列{n a }的前n 项和为n S =2133n a +,n S =( )A .123n-B .1(2)3n--C .2123+D .1(2)3n+-3.已知等比数列{}n a 的前n 项和为()*3n n S a n =+∈N ,则实数a 的值是( )A .3-B .3C .1-D .14.已知数列{}n a 是等比数列,满足2410a a +=,3520a a +=,则2122210log log log a a a +++=( )A .55B .45C .16D .325.记n S 为等比数列{}n a 的前n 项和,若6378S S =,则{}n a 的公比q =( ) A .2-B .12-C .12D .26.数列{}n a 中,12a =,m n m n a a a +=,若177121022k k k a a a ++++++=-,则k =( )A .3B .5C .4D .67.已知数列{}n a 的前n 项和为n S ,q 为常数,则“数列{}n a 是等比数列”为“11n n S qS a +=+”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要8.已知数列{}n a 的前n 项和为n S ,且12a =,1n n a S +=,若()0,2020n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1118433⨯+B .1114433⨯-C .1018433⨯+D .1214433⨯-二、多选题9.设{}n a 是等比数列,则下列四个命题正确的是( )A .{}2 n a 是等比数列B .{}1 n n a a +⋅是等比数列C .1 n a ⎧⎫⎨⎬⎩⎭是等比数列D .{} lg n a 是等比数列10.已知等比数列{}n a 的前n 项和为n S ,若13a =,321S =,则数列{}n a 的公比可能是( ) A .-3B .-2C .2D .311.已知n S 是数列{}n a 的前n 项和,320n n a S -+=,则( ) A .{}n a 是等比数列 B .9100a a +> C .910110a a a >D .0n S <12.已知等比数列{}n a 各项均为正数,其前n 项积为n T ,若191001,1a a a <><,()()910110a a --<,则下列结论正确的是( ) A .1q > B .8101a a >C .9T 是n T 中最小的项D .使1n T <成立的n 的最大值为18 三、填空题13.设等比数列{}n a 的前n 项和为n S ,公比为q ,若332a =,392S =,则q =________.14.设等比数列{}n a 的前n 项和为n S ,若22839a a a =,且846S S S λ-=,则λ=________.15.已知数列{}n a 的前n 项和为n S ,16a =,12n n S a +=,则n S =___________.16.在正项等比数列{}n a 中,113a =,249a a =,记数列{}n a 的前n 项积为n T ,9n T >,则n 的最小值为______四、解答题17.已知{}n a 是公差不为0的等差数列,且220a =,4a 是2a 和5a 的等比中项. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求n S 的最大值.18.已知数列{}n a 是公差不为零的等差数列,其前n 项和为1,1n S a =,且139,,S S S 成等比数列. (1)求数列{}n a 的通项公式;(2)设2n an b =,数列{}n b 的前n 项和为n T ,若186m mT S +=,求正整数m 的值.19.已知数列{}n a 的前n 项和为n S ,22n n S a =-,*n ∈N . (1)证明:{}n a 为等比数列,并写出它的通项公式: (2)若正整数m 满足不等式500m S ≤,求m 的最大值. 20.已知数列{}n c 满足11c =,121(,1)n n c c n n -=+∈>N ;设等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,且37462825a a b b b b +=++,127n n S An T n +=+,26S =.(1)求证数列{}1n c +是等比数列; (2)求常数A 的值及{}n a 的通项公式; (3)求1122n n c a c a c a ++⋅⋅⋅+的值.21.已知首项为32的等比数列{}n a 公比小于0,其前n 项和为n S ()*n N ∈,且33S a +,55S a +,44S a +成等差数列.(1)求数列{}n a 的通项公式; (2)若实数a 使得1n na S S >+对任意*n N ∈恒成立,求a 的取值范围.。

高考数学一轮第五章数列突破2数列中的构造问题

高考数学一轮第五章数列突破2数列中的构造问题

突破2 数列中的构造问题命题点1 形如a n+1=pa n+f(n)(p≠1)例1 (1)在数列{a n}中,a1=1,a n+1=3a n-2n-1,则a n=2n-1.解析因为a n+1=3a n-2n-1,所以a n+12n+1=32·a n2n-14,即a n+12n+1-12=32(a n2n-12).因为a121-12=0,所以a n2n-12=0,故a n=2n-1.(2)设数列{a n}满足a1=3,a n+1=3a n-4n,则a n=2n+1.解析由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],…,a2-5=3(a1-3).因为a1=3,所以a n=2n+1.命题拓展[变条件]若例1(2)中的a1=4,则a n=3n-1+2n+1.解析设a n+1+x(n+1)+y=3(a n+xn+y),则展开利用对应项系数相等可得出x=-2,y=-1,所以{a n-2n-1}是以a1-2-1=1为首项,3为公比的等比数列,所以a n-2n-1=3n-1,所以a n=3n-1+2n+1.方法技巧形如a n+1=pa n+f(n)(p≠1)的递推式,一般采用构造法求通项:(1)若f(n)为非零常数,则一般凑配成a n+1+x=p(a n+x)的形式(利用待定系数法求x),构造等比数列;(2)若f(n)为关于n的一次函数,则一般凑配成a n+1+x(n+1)+y=p(a n+xn+y)的形式(利用待定系数法求x,y),构造等比数列;(3)若f(n)为指数幂(如q n)的形式,则一般两边同时除以p n+1或q n+1,再利用累加法或构造法求通项.训练1 在数列{a n}中,a1=5,a n+1=3a n-4,则a n=3n+2.解析由a n+1=3a n-4,可得a n+1-2=3(a n-2),又a1=5,所以{a n-2}是以a1-2=3为首项,3为公比的等比数列,所以a n-2=3n,所以a n=3n+2.命题点2形如a n+1=pa nqa n+r例2 [多选/2023江苏镇江中学5月考前模拟]已知数列{a n}满足a1=1,a n+1=a n2+3a n,则下列结论正确的有(ABD)A.{1a n+3}为等比数列B.{a n }的通项公式为a n =12n+1-3C.{a n }为递增数列D.{1a n}的前n 项和T n =2n +2-3n -4解析 因为a 1=1,a n +1=a n2+3a n,所以1a n+1=2+3a n a n=2a n+3,所以1a n+1+3=2(1a n +3).又1a 1+3=4,所以数列{1a n+3}是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1=2n +1,即a n =12n+1-3,故A ,B 正确.因为a n +1-a n =12n+2-3-12n+1-3=(2n+1-3)-(2n+2-3)(2n+2-3)(2n+1-3)=-2n+1(2n+2-3)(2n+1-3),n ≥1,所以2n +2-3>0,2n +1-3>0,-2n +1<0,所以a n +1-a n <0,所以{a n }为递减数列,故C 错误.易知1a n=2n +1-3,则T n =(22+23+24+…+2n +1)-3n =4(1-2n )1-2-3n =2n +2-3n -4,故D 正确.故选ABD.方法技巧 形如a n +1=pa n qa n +r的递推式,一般采用取倒数法求通项,先变形为1an+1=r p ·1an+qp ,再利用累加法或构造法求通项.训练2 (1)已知数列{a n }满足a 1=1,a n +1=a n a n +2,则a 10=( C )A.11021B.11022C.11023D.11024 解析 由a n +1=a nan+2,两边同时取倒数得1an+1=a n +2a n=2a n+1,则1an+1+1=2(1a n+1),所以数列{1a n+1}是以2为公比的等比数列,则1a n+1=(1a 1+1)·2n -1=2n ,所以a n =12n -1,故a 10=1210-1=11023.故选C.(2)已知数列{a n }满足a 1=1,a n +1=2a n a n +2,则a n =2n+1 .解析 依题意知a n ≠0,由a n +1=2a na n +2可得1a n+1=a n +22a n=12+1a n ,即1a n+1-1a n=12,又a 1=1,可知数列{1a n}是以1a 1=1为首项,12为公差的等差数列,则1a n=1+12(n -1)=n+12,即a n =2n+1.命题点3 形如a n +1=pa n +qa n -1(n ≥2)例3 已知数列{a n }满足a n +1=5a n -6a n -1(n ≥2),且a 1=1,a 2=4,则数列{a n }的通项公式为 a n =2×3n -1-2n -1 .解析 解法一 当n ≥2时,令a n +1-xa n =y (a n -xa n -1),即a n +1=(x +y )a n -xya n -1.于是得{x +y =5,-xy =-6,解得{x =2,y =3或{x =3,y =2.当x =2,y =3时,a n +1-2a n =3(a n -2a n -1)(n ≥2).由于a 2-2a 1=2≠0,所以数列{a n +1-2a n }是以2为首项,3为公比的等比数列,即a n +1-2a n =2×3n -1 ①.当x =3,y =2时,a n +1-3a n =2(a n -3a n -1)(n ≥2).由于a 2-3a 1=1≠0,所以数列{a n +1-3a n }是以1为首项,2为公比的等比数列,即a n +1-3a n = 2n -1 ②.由①-②得a n =2×3n -1-2n -1.解法二 当n ≥2时,由a n +1=5a n -6a n -1得a n +1-2a n =3a n -6a n -1,即a n +1-2a n =3(a n -2a n -1),因为a 2-2a 1=2≠0,所以数列{a n +1-2a n }是以2为首项,3为公比的等比数列,所以a n +1-2a n =2×3n -1,两边同除以2n +1,得a n+12n+1-a n2n =12×(32)n -1.所以a n 2n =(a n2n -a n -12n -1)+(a n -12n -1-a n -22n -2)+…+(a 222-a 121)+a 121=12×(32)n -2+12×(32)n -3+…+12×(32)0+12=12×1-(32)n -11-32+12=(32)n -1-12.故a n =2×3n -1-2n -1.方法技巧形如a n +1=pa n +qa n -1(n ≥2)的递推式,一般采用构造法求通项,将原式变形为a n +1+λa n =μ(a n +λa n -1)(n ≥2),由待定系数法求出λ,μ,再依据相邻两项的递推关系求通项. 训练3 已知数列{a n }满足a 1=1,a 2=2,且对任意n ∈N *,都有a n +2=3a n +1-2a n .则{a n }的通项公式为 a n =2n -1 .解析 由a n +2=3a n +1-2a n ,得a n +2-a n +1=2(a n +1-a n ),又a 2-a 1=1,易知a n +1-a n ≠0,所以a n+2-a n+1a n+1-a n=2,所以数列{a n +1-a n }是以1为首项,2为公比的等比数列.所以a n +1-a n =2n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -2+2n -3+…+21+20+1=20+21+…+2n -3+2n -2+1=20×2n -1-12-1+1=2n -1,所以{a n }的通项公式为a n =2n -1.思维帮·提升思维 快速解题用“不动点法”求数列的通项公式例4 已知数列{a n }满足a 1=2,a n =a n -1+22an -1+1(n ≥2),则数列{a n }的通项公式为 a n =3n -(-1)n 3n +(-1)n.解析 令x =x+22x+1,解得x =1或x =-1, 令a n+1-1a n+1+1=c ·a n-1a n +1①,由a 1=2,a n =a n -1+22a n -1+1,得a 2=45,令①式中的n =1,可得c =-13, ∴数列{a n -1a n +1}是以a 1-1a 1+1=13为首项,-13为公比的等比数列,∴a n -1a n +1=13·(-13)n -1,∴a n =3n -(-1)n 3n +(-1)n.方法技巧利用不动点法求数列通项的步骤对于一个函数f (x ),我们把满足f (m )=m 的值m 称为函数f (x )的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式. 设f (x )=ax +b cx +d(c ≠0,ad -bc ≠0),数列{a n }满足a n +1=f (a n ),a 1≠f (a 1).(1)若f (x )有两个相异的不动点p ,q ,则a n+1-p a n+1-q=k ·a n-p a n -q(此处k =a -pc a -qc).步骤如下: i.令x =ax +b cx +d,解出两个根p ,q ,即两个不动点;ii.构造新数列{a n+1-p a n+1-q},并将已知递推关系a n +1=f (a n )代入化简,得出a n+1-p a n+1-q=k ·a n-p a n -q,并得出等比数列{a n -p a n -q}的通项;iii.解方程得出a n .(2)若f (x )有两个相同的不动点p ,则1a n+1-p=1a n -p+k (此处k =2ca +d).训练4 已知数列{a n }满足a 1=3,a n +1=7a n -2a n+4,则该数列的通项公式为 a n =4·6n -1-5n -12·6n -1-5n -1.解析 由方程x =7x -2x+4,得数列{a n }的不动点为1和2,则a n+1-1a n+1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n-1a n -2,所以{a n -1a n -2}是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2·(65)n -1,解得a n =12·(65)n -1-1+2=4·6n -1-5n -12·6n -1-5n -1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点5 数列求和及其综合应用(对应学生用书第19页)[核心知识提炼]提炼1 a n 和S n 的关系若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.在使用这个关系式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起.提炼2求数列通项常用的方法(1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p ,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以qn +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.(6)取对数法:形如a n +1=pa mn (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法.提炼4数列的综合问题数列综合问题的考查方式主要有三种:(1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小.(2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题.(3)考查与数列有关的不等式的证明问题,此类问题大多还要借助构造函数去证明,或者是直接利用放缩法证明或直接利用数学归纳法.[高考真题回访]回访1 数列求和1.(2014·浙江高考)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n . [解] (1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 2分 所以数列{a n }的通项为a n =2n(n ∈N *), 所以,a 1a 2a 3…a n =2n n +12=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). 5分 (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *), 所以S n =1n +1-12n (n ∈N *).7分②因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1nn +1⎣⎢⎡⎦⎥⎤nn +12n-1,9分而n n +12n-n +1n +22n +1=n +1n -22n +1>0,得n n +12n ≤5×5+125<1,11分所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4. 14分 回访2 数列的综合问题2.(2017·浙江高考)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ;(2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2.[解] (1)证明:用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0, 那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0. 3分因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *).5分(2)证明:由x n =x n +1+ln(1+x n +1)得x n x n +1-4x n +1+2x n=x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1).7分记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+xx +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增, 所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).10分(3)证明:因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n得1x n +1-12≥2⎝ ⎛⎭⎪⎫1x n -12>0,13分所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝ ⎛⎭⎪⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).15分3.(2016·浙江高考)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝ ⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.[证明] (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,2分所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n-1|2n -1-|a n |2n ≤121+122+…+12n -1<1, 因此|a n |≥2n -1(|a 1|-2). 5分(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m |2m ·2n≤⎣⎢⎡⎭⎪⎫12n -1+12m·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n.8分从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an 0|>2, 取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,11分则2n 0·⎝ ⎛⎭⎪⎫34m 0<2n 0·⎝ ⎛⎭⎪⎫34log 34|an 0|-22n 0=|an 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.15分(对应学生用书第21页)热点题型1 数列中的a n 与S n 的关系数列中的a n 与S n 的关系题型分析:以数列中a n 与S n 间的递推关系为载体,考查数列通项公式的求法,以及推理论证的能力.【例1】 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a na n S n -S 2n=1(n ≥2).求数列{a n }的通项公式.【导学号:68334070】[解] 由已知,当n ≥2时,2a na n S n -S 2n=1,所以2S n -S n -1S n -S n -1S n -S 2n=1,2分即2S n -S n -1-S n -1S n=1,所以1S n -1S n -1=12.4分又S 1=a 1=1,所以数列⎩⎨⎧⎭⎬⎫1S n 是首项为1,公差为12的等差数列,6分所以1S n =1+12(n -1)=n +12,即S n =2n +1.8分 所以当n ≥2时,a n =S n -S n -1=2n +1-2n =-2nn +1. 12分因此a n =⎩⎪⎨⎪⎧1,n =1,-2n n +1,n ≥2. 15分[方法指津]给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n n ≥2转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .提醒:在利用a n =S n -S n -1n ≥2求通项公式时,务必验证n =1时的情形[变式训练1] (1)已知数列{a n }前n 项和为S n ,若S n =2a n -2n,则S n =__________. 【导学号:68334071】(2)已知数列{a n }的各项均为正数,其前n 项和为S n ,且2S n +2=3a n (n ∈N *),则a n =__________.(1)n ·2n (n ∈N *) (2)2×3n -1(n ∈N *) [(1)由S n =2a n -2n得当n =1时,S 1=a 1=2;当n ≥2时,S n =2(S n -S n -1)-2n ,即S n 2n -S n -12n -1=1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是首项为1,公差为1的等差数列,则S n2n =n ,S n =n ·2n (n ≥2),当n =1时,也符合上式,所以S n =n ·2n (n ∈N *).(2)因为2S n +2=3a n , ① 所以2S n +1+2=3a n +1,②由②-①,得2S n +1-2S n =3a n +1-3a n ,所以2a n +1=3a n +1-3a n ,即a n +1a n=3. 当n =1时,2+2S 1=3a 1,所以a 1=2,所以数列{a n }是首项为2,公比为3的等比数列, 所以a n =2×3n -1(n ∈N *).]热点题型2 裂项相消法求和题型分析:裂项相消法是指把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2其中{a n }为等差数列等形式的数列求和.【例2】 已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列,(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.[解] (1)由已知及等差数列的性质得S 5=5a 3,∴a 3=14, 1分 又a 2,a 7,a 22成等比数列,即a 27=a 2·a 22. 2分由(a 1+6d )2=(a 1+d )(a 1+21d )且d ≠0, 解得a 1=32d ,∴a 1=6,d =4.4分 故数列{a n }的通项公式为a n =4n +2,n ∈N *. 6分(2)证明:由(1)得S n =n a 1+a n2=2n 2+4n ,1S n=12n 2+4n =14⎝ ⎛⎭⎪⎫1n -1n +2,8分∴T n =141-13+12-14+…+1n -1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.11分又T n ≥T 1=38-14⎝ ⎛⎭⎪⎫12+13=16,所以16≤T n <38.15分[方法指津]裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n k ≥1,k ∈N *的形式,常见的裂项方式有: (11nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; 212n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(31n +n +k =1kn +k -n .提醒:在裂项变形时,务必注意裂项前后系数的变化.[变式训练2] (名师押题)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . [解] (1)由题设知a 1·a 4=a 2·a 3=8, 2分又a 1+a 4=9,可得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1.(舍去)4分 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.6分 (2)S n =a 11-q n 1-q=2n-1.8分 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,12分所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.热点题型3 错位相减法求和题型分析:限于数列解答题的位置较为靠前,加上错位相减法的运算量相对较大,故该命题点出现的频率不高,但其仍是命题的热点之一,务必加强训练.【例3】 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n=b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . [解] (1)由a 1=2,a n +1=2a n ,得a n =2n(n ∈N *). 2分由题意知:当n =1时,b 1=b 2-1,故b 2=2. 3分 当n ≥2时,1nb n =b n +1-b n .4分整理得b n +1n +1=b n n,所以b n =n (n ∈N *). 6分(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,10分 所以T n -2T n =2+22+23+ (2)-n ·2n +1. 12分 故T n =(n -1)2n +1+2(n ∈N *).15分[方法指津]运用错位相减法求和应注意:一是判断模型,即判断数列{a n },{b n }中一个为等差数列,一个为等比数列;二是错开位置,一般先乘以公比,再把前n 项和退后一个位置来书写,这样避免两式相减时看错列;三是相减,相减时一定要注意式中最后一项的符号,考生常在此步出错,一定要细心.提醒:为保证结果正确,可对得到的和取n =1,2进行验证.[变式训练3] 已知在公比大于1的等比数列{a n }中,a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点.(1)求数列{a n }的通项公式; (2)求数列{2na n }的前n 项和S n .[解] (1)因为a 2,a 4是函数f (x )=(x -2)(x -8)的两个零点,且等比数列{a n }的公比q 大于1,所以a 2=2,a 4=8,2分所以q =2,所以数列{a n }的通项公式为a n =2n -1(n ∈N *).6分(2)由(1)知2na n =n ×2n,所以S n =1×2+2×22+…+n ×2n,① 7分 2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②11分由①-②,得-S n =2+22+23+…+2n -n ×2n +1=2-2n×21-2-n ×2n +1,13分所以S n =2+(n -1)×2n +1(n ∈N *).15分热点题型4 数列的综合问题题型分析:数列与函数、不等式的综合问题多为解答题.难度偏大,属中高档题,常有以下两个命题角度:1以数列为载体,考查不等式的恒成立问题; 2考查与数列有关的不等式的证明问题.【例4】 (2017·绍兴市方向性仿真考试)已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13;(3)求证:|a 2n -a n |≤1027.【导学号:68334072】[证明] (1)由已知得a n +1=1a n +12,又a 1=1, 所以a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.2分下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.5分(2)当n =1时,|a 2-a 1|=13,当n ≥2时,∵⎝⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12=⎝ ⎛⎭⎪⎫a n +12·1a n =1+12a n ≥1+12=32, 7分∴|a n +1-a n |=⎪⎪⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|⎝ ⎛⎭⎪⎫a n +12⎝ ⎛⎭⎪⎫a n -1+12≤23|a n -a n -1|≤…≤⎝ ⎛⎭⎪⎫23n -1|a 2-a 1|=13·⎝ ⎛⎭⎪⎫23n -1<13.综上所述,|a n +1-a n |≤13.10分(3)当n =1时,|a 2-a 1|=13=927<1027; 11分当n ≥2时,|a 2n -a n |≤|a 2n -a 2n -1|+|a 2n -1-a 2n -2|+…+|a n +1-a n |≤13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232n -2+⎝ ⎛⎭⎪⎫232n -3+…+⎝ ⎛⎭⎪⎫23n -1 =⎝ ⎛⎭⎪⎫23n -1-⎝ ⎛⎭⎪⎫232n -1≤23-⎝ ⎛⎭⎪⎫233=1027.15分[方法指津]解决数列与不等式的综合问题时,如果是证明题,要灵活的选择不等式的证明方法,如比较法、综合法、分析法、放缩法、反证法及数学归纳法等;如果是解不等式问题,要使用解不等式的各种解法,如列表法、因式分解法、穿根法等,总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.[变式训练4] (2017·台州市高三年级调考)已知数列{a n }满足:a n >0,a n +1+1a n<2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).[证明] (1)由a n >0,a n +1+1a n<2,得a n +1<2-1a n<2.2分因为2>a n +2+1a n +1>2a n +2a n +1(由题知a n +1≠a n +2), 所以a n +2<a n +1<2.4分(2)法一:假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1.6分根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1,于是1a N +2-1>1+1a N +1-1,……1a N +n -1>1+1a N +n -1-1.10分累加可得1a N +n -1>n -1+1a N +1-1.(*)由假设可得a N +n -1<0,12分而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,11 因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾. 所以a n >1(n ∈N *). 15分 法二:假设存在a N ≤1(N ≥1,N ∈N *),由(1)可得当n >N 时,0<a n ≤a N +1<1. 6分 根据a n +1-1<1-1a n =a n -1a n<0,而a n <1,所以11-a n +1<an 1-a n,所以1-a n +11-a n >1a n ≥1a N +1>1.于是1-a n >(1-a n -1)⎝ ⎛⎭⎪⎫1a N +1,1-a n -1>(1-a n -2)⎝ ⎛⎭⎪⎫1a N +1,……1-a N +2>(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1. 10分 累乘可得1-a n >(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1,(*)由(1)可得1-a n <1, 12分 而当n > ⎝ ⎛⎭⎪⎫11-a N +1+N +1时,则有(1-a N +1)⎝ ⎛⎭⎪⎫1a N +1n -N -1>1,这显然与(*)矛盾. 所以a n >1(n ∈N *). 15分。

相关文档
最新文档