中考总复习:四边形综合复习--知识讲解(基础)
2021年中考数学复习 第5章 四边形
第五章四边形第一节多边形(建议用时:40分钟)考点1多边形的性质1.一个多边形的边数由原来的3增加到n(n>3,且n为正整数),则它的外角和( D )A.增加(n-2)×180°B.减小(n-2)×180°C.增加(n-1)×180°D.没有改变2.[2020广东]若一个多边形的内角和是540°,则该多边形的边数为( B )A.4B.5C.6D.73.如图,已知∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是45°.考点2正多边形的性质4.[2020承德二模]把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式放置,连接AD,则∠DAG= ( A ) A.18° B.20°C.28°D.30°5.[2020 邢台二模]如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有一个公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为( B )A.5B.6C.8D.106.[2020石家庄新华区一模]连接正八边形的三个顶点,得到如图所示的图形,则下列说法错误的是( D )A.四边形AFGH与四边形CFED的面积相等B.连接BF,则BF平分∠AFC和∠ABCC.整个图形是轴对称图形,但不是中心对称图形D.△ACF是等边三角形7.[2020江苏扬州]如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3 cm,则螺帽边长a=√3cm.8.[2020江苏连云港]如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=48°.9.如图,在正八边形中,四边形BCFG的面积为2a cm2,则正八边形的面积为4a cm2(用含a的代数式表示).10.[2020湖南株洲]一蜘蛛网如图所示,若多边形 ABCDEFGHI为正九边形,其中心为点O,点M,N分别在射线OA,OC上,则∠MON=80°.11.[2020福建]如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC等于30度.12.若将n个边长为1的正m边形进行拼接,相邻的两个正m边形有一条公共边,围成一圈后中间恰好形成一个正n边形.(1)当m=8时,围成的图形如图所示,则该图形外轮廓的周长为20;(2)当n=3时,围成的图形的外轮廓的周长是27;(3)当m=5时,得到的正n边形的周长是10.13.[2019 唐山丰南区二模]关于n边形,甲、乙、丙三位同学有以下三种说法:甲:五边形的内角和为520°.乙:正六边形每个内角为130°.丙:七边形共有14条对角线.(1)判断三种说法是否正确,并对其中你认为不对的说法用计算进行说明;(2)若n边形的对角线共有35条,求该n边形的内角和.解:(1)甲、乙的说法不正确,丙的说法正确.正五边形的内角和为 180×(5-2)=540°.正六边形外角和为 360°,每个外角为 360÷6=60°,故每个内角为 180°-60°=120°.=35,(2)由题意知n(n−3)2解得n=10或n=-7(不合题意,舍去),180°×(10-2)=1 440°,故该n边形的内角和为1 440°.第二节平行四边形基础分点练(建议用时:45分钟)考点1平行四边形的判定1.下列条件中,不能判定四边形ABCD为平行四边形的是( C )A.AB平行且等于CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC2.[2019广西河池]如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE的延长线上,连接CF.添加一个条件,使四边形ADFC为平行四边形,则这个条件可以是( B )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF3.如图,四边形ABCD的对角线AC,BD相交于点O,BO=DO,点E,F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,又BO=DO,∠BOE=∠DOF,∴△BEO≌△DFO,∴EO=FO.∵AE=CF,∴AE+EO=CF+FO,即AO=CO.又BO=DO,∴四边形ABCD为平行四边形.考点2平行四边形的性质4.在▱ABCD中,若∠A=2∠B,则∠D的度数为( C )A.30°B.45°C.60°D.120°5.[2019 石家庄十八县联考]证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程:①∴∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④∴△AOB≌△COD.⑤∴OA=OC,OB=OD.正确的顺序应是( C ) A.②①③④⑤ B.②③⑤①④C.②③①④⑤D.③②①④⑤6.[2020浙江温州]如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( D )A.40°B.50°C.60°D.70°7.小宇利用尺规在▱ABCD内作出点E,又在BC边上作出点F,作图痕迹如图所示,若EF=2,则AB,CD之间的距离为( C )A.2B.3C.4D.58.[2019海南]如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( C ) A.12 B.15 C.18 D.219.[2019保定定州二模]如图,已知点M为▱ABCD的边AB的中点,线段CM交BD于点E,S△BEM=1,则图中阴影部分的面积为( C )A.2B.3C.4D.510.[2020陕西]如图,在▱ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是▱ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G.若EF ∥AB,则DG 的长为( D )A.52B.32C.3D.211.[2020山东潍坊]如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F,若DE=3,DF=4,则▱ABCD 的周长为( C )A.21B.28C.34D.4212.[2020广西河池]如图,在▱ABCD 中,CE 平分∠BCD,交AB 于点E,连接DE,EA=3,EB=5,ED=4,则CE 的长是( C )A.5√2B.6√2C.4√5D.5√513.[2020贵州黔东南州]以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(-2,1),则C 点坐标为 (2,-1) .14.[2019广西梧州]如图,▱ABCD 中,∠ADC=119°,BE ⊥DC 于点E,DF ⊥BC 于点F,BE 与DF 交于点H,则∠BHF= 61 度.15.[2020浙江金华]如图,平移图形M,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 °.综合提升练(建议用时:25分钟)1.[2019广东广州]如图,▱ABCD 中,AB=2,AD=4,对角线AC,BD 相交于点O,且E,F,G,H 分别是AO,BO,CO,DO 的中点,则下列说法正确的是( B )A.EH=HGB.四边形EFGH 是平行四边形C.AC ⊥BDD.△ABO的面积是△EFO的面积的2倍2.[2020重庆A卷]如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为点E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.又∵AC平分∠DAE,∴∠OAD=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠OAD=40°.(2)证明:∵四边形ABCD是平行四边形,∴AO=CO.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.在△AEO和△CFO中,{∠AEO=∠CFO,∠EOA=∠FOC, AO=CO,∴△AEO≌△CFO,∴AE=CF.3.如图,在四边形ABCD中,AD∥CB,E为BD的中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,求四边形ABDF的面积.(1)证明:∵AD∥CB,∴∠DAC=∠BCA.∵E为BD的中点,∴DE=BE,在△ADE和△CBE中,{∠DAC=∠BCA,∠AED=∠CEB, DE=BE,∴△ADE≌△CBE,∴AE=CE.(2)证明:由(1)得,AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵DF=CD,∴AB=DF,∴四边形ABDF为平行四边形.(3)∵四边形ABDF为平行四边形,∴∠F=∠DBA,BD=AF=2.又∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,∴∠DBA=∠BAC,∴AE=BE=DE,∴∠BAD=90°.∵AB=CD=1,∴AD=√BD2-AB2=√3,∴四边形ABDF的面积为AB×AD=√3.新角度[2020江苏扬州]如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长DF=1DE,以EC,EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.4第三节矩形、菱形、正方形课时一:矩形的性质与判定基础分点练(建议用时:30分钟)考点1矩形的判定1.[2020湖北十堰]已知平行四边形ABCD,有下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD.其中能说明平行四边形ABCD是矩形的是( B )A.①B.②C.③D.④2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.证明:∵∠BAD=∠CAE,∴∠BAD-∠BAC=∠CAE-∠BAC,即∠CAD=∠BAE.又∵AB=AC,AD=AE,∴△BAE≌△CAD,∴∠ABE=∠ACD,BE=CD.又∵DE=CB,∴四边形BCDE是平行四边形,∴BE∥CD.∵AB=AC,∴∠ABC=∠ACB,∴∠EBC=∠DCB.∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四边形BCDE是矩形.考点2与矩形性质有关的证明与计算3.[2020湖南怀化]如图,在矩形ABCD中,AC,BD相交于点O,若△AOD的面积为2,则矩形ABCD的面积为( C )A.4B.6C.8D.104.[2020 江苏连云港]如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处,若∠DBC=24°,则∠A'EB等于( C )A.66°B.60°C.57°D.48°5.[2019广东广州]如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( A )A.4√5B.4√3C.10D.86.[2020贵州黔东南州]如图,矩形ABCD中,AB=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4.37.[2020山东菏泽]如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为3√17.8.[2020 湖南长沙]如图,在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F处.(1)求证:△ABF∽△FCE.(2)若AB=2√3,AD=4,求EC的长.(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β.求tan α+tanβ的值.(1)证明:∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE.(2)由翻折的性质可得AF=AD=4,在Rt△ABF中,由勾股定理得,BF=√42-(2√3)2=2,∴FC=BC-BF=4-2=2.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,即2√32=2CE ,∴CE=2√33. (3)设EC=1,DE=x,则AE=x+2,AB=x+1,FE=x, ∴BC=AD=√AE 2-DE 2=√(x +2)2-x 2=2√x +1,FC=√FE 2-CE 2=√x 2-1,∴BF=BC-FC=2√x +1-√x 2-1.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,∴AB·CE=FC·BF, 即x+1=√x 2-1×(2√x +1-√x 2-1), 得x+1=2(x+1)√x −1-x 2+1, 整理,得x 2=4(x-1),解得x 1=x 2=2, ∴AB=3,BF=√3,AF=2√3, ∴tan α+tan β=BF AB +EF AF =√33+2√3=2√33.内蒙古呼和浩特]如图,把某矩形纸片ABCD 沿EF,GH 折叠(点E,H 在AD 边上,点F,G 在BC 边和点C 落在AD 边上同一点P 处,A 点的对称点为A',D 点的对称点为D',若∠FPG=90°,S △A'EP =8,S △D′PH =2,则矩形ABCD 的长为( D )A.6√5+10B.6√10+5√2C.3√5+10D.3√10+5√22.新角度[2020江西]如图,矩形纸片ABCD 中,AD=8 cm,AB=4 cm,折叠纸片使折痕经过点B,交AD 边于点E,点A 落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其他线段.当图中存在30°角时,AE 的长为 43 √3,4√3或(8-4√3) cm.课时二:菱形的判定与性质基础分点练(建议用时:40分钟)考点1 菱形的判定1.[2020浙江嘉兴]如图,平行四边形ABCD 的对角线AC,BD 相交于点O,请添加一个条件: AD=DC(答案不唯一) ,使平行四边形ABCD 是菱形.2.[2020广西玉林]如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).3.[2020 山东滨州]如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB,BC,CD,DA 于点P,M,Q,N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.(1)证明:∵四边形ABCD是平行四边形,且对角线AC与BD的交点为E,∴AB∥CD,BE=DE,∴∠PBE=∠QDE,∠BPE=∠DQE,∴△PBE≌△QDE.(2)证明:如图.由(1)可得PE=QE,同理可得ME=NE,∴四边形PMQN是平行四边形.又∵PQ⊥MN,∴▱PMQN是菱形.考点2与菱形的性质有关的计算4.[2020黑龙江绥化]如图,四边形ABCD是菱形,E,F分别是BC,CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( C )A.∠BAF=∠DAEB.EC=FCC.AE=AFD.BE=DF5.[2020湖北黄冈]若菱形的周长为16,高为2,则菱形两邻角的度数之比为( B )A.4∶1B.5∶1C.6∶1D.7∶16.[2020黑龙江龙东地区]如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( A ) A.4 B.8 C.√13 D.67.[2020四川乐山]如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为( B )A.9+2√3B.9+√3C.7+2√3D.88.[2020辽宁抚顺]如图,四边形ABCD 是菱形,对角线AC,BD 相交于点O,AC=8,BD=6,点E 是CD 上一点,连接OE,若OE=CE,则OE 的长是( B ) A.2B.52C.3D.49.[2020四川南充]如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 分别作EF ⊥BD 于点F,EG ⊥AC 于点G,则四边形EFOG 的面积为( B )A.14SB.18SC.112S D.116S10.[2020广东]如图,在菱形ABCD 中,∠A=30°,取大于12AB 的长为半径,分别以点A,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为 45° .11.[2020陕西]如图,在菱形ABCD 中,AB=6,∠B=60°,点E 在边AD 上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为 2√7 .12.[2020北京]如图,菱形ABCD 的对角线AC,BD 相交于点O,E 是AD 的中点,点F,G 在AB 上,EF ⊥AB,OG ∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点. 又∵点E 为AD 的中点,∴OE 为△ABD 的中位线, ∴OE ∥FG.又∵OG∥EF,∴四边形OEFG为平行四边形.又∵EF⊥AB,∴四边形OEFG为矩形.AD=5.(2)∵点E为AD的中点,AD=10,∴AE=12又∵∠EFA=90°,EF=4,∴AF=√AE2-EF2=√52-42=3.AB=5.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.动态型[2020浙江绍兴]如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( B )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形课时三:正方形的性质和判定基础分点练(建议用时:40分钟)考点1正方形的判定1.[2020石家庄新华区一模]如图,已知线段AB,按下列步骤作图:分别以点A,B为圆心、大于1AB的长为半径画2弧,两弧相交于点M,N,作直线MN,交AB于点O,连接MA,MB,NA,NB,若四边形MANB是正方形,则需要添加的条件是( A )A.AO=MOB.MA∥NBC.MA=NBD.AB平分∠MAN2.[2020山东滨州]下列命题是假命题的是( D )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形3.[2020山东威海]如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,连接EO并延长交CD于点F,连接DE,BF.下列结论不成立的是( D )A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形考点2正方形的性质4.[2020浙江湖州]四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC'D'.若∠D'AB=30°,则菱形ABC'D'的面积与正方形ABCD的面积之比是( B )A.1B.12C.√22D.√325.[2019内蒙古鄂尔多斯]如图,以AB为边在正方形ABCD外部作等边三角形ABE,连接DE,则∠BED的度数为( C )A.15°B.35°C.45°D.55°6.[2020邢台二模]如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN= ( A )A.3√2B.3√22C.3D.67.[2020湖北恩施州]如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为( B )A.5B.6C.7D.88.[2020浙江湖州]七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形木板可以制作一副中国七巧板或一副日本七巧板,如图(1)所示.分别用这两副七巧板试拼如图(2)中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( D )图(1)图(2)A.1和1B.1和2C.2和1D.2和29.[2020河南]如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.10.[2020甘肃天水]如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.11.[2020张家口桥东区一模]如图,将边长分别为a,b的两个正方形放在一起.a(a+b);(1)图中阴影部分的三角形的面积为12(2)△ABC的面积为1b2.2(用含a,b的代数式表示)12.[2020四川自贡]如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE,BF交于点M.求证:AE=BF.证明:∵四边形ABCD 为正方形, ∴AB=BC=CD,∠ABE=∠BCF=90°.又∵CE=DF,∴CE+BC=DF+CD,即BE=CF.在△ABE 和△BCF 中,{BE =CF,∠ABE =∠BCF,AB =BC,∴△ABE ≌△BCF,∴AE=BF.13.[2020浙江杭州]如图,在正方形ABCD 中,点E 在BC 边上,连接AE,∠DAE 的平分线与CD 边交于点G,与BC 的延长线交于点F.设CEEB =λ(λ>0).(1)若AB=2,λ=1,求线段CF 的长. (2)连接EG,若EG ⊥AF, ①求证:点G 为CD 边的中点. ②求λ的值.(1)解:因为在正方形ABCD 中,AD ∥BC,所以∠DAF=∠F.因为AG 平分∠DAE,所以∠DAF=∠EAF,所以∠EAF=∠F,所以EA=EF. 因为λ=1,BC=AB=2,所以BE=EC=1. 在Rt △ABE 中,由勾股定理,得EA=√5, 所以CF=EF-EC=EA-EC=√5-1.(2)①证明:由(1)可知EA=EF,又因为EG ⊥AF, 所以AG=GF.又因为∠AGD=∠FGC,∠DAG=∠F, 所以△DAG ≌△CFG.所以DG=CG, 所以点G 为CD 边的中点.②不妨设CD=2,则AD=2,CG=1.由①得CF=AD=2. 易证△FGC ∽△GEC,所以EC CG =CG CF =12, 所以EC=12,所以BE=32,所以λ=CE EB =13.综合提升练(建议用时:30分钟)1.[2020湖南常德]如图(1),已知四边形ABCD 是正方形,将△DAE,△DCF 分别沿DE,DF 向内折叠得到图(2),此时DA 与DC 重合(点A,C 都落在点G 处),若GF=4,EG=6,则DG 的长为 12 .2.[2020山东青岛]如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是.AE的中点,连接OF交AD于点G,连接DF.若DE=2,OF=3,则点A到DF的距离为4√553.[2020湖北咸宁]如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)4.[2020唐山路南区二模]如图,在边长为2的正方形ABCD中,动点F,E以相同的速度分别从点D,C同时出发向点C,B运动(任何一个点到达终点时,两点都停止运动).连接AE,BF,AE与BF交于点P,过点P分别作PM∥CD 交BC于点M,PN∥BC交CD于点N,连接MN,在运动过程中,(1)AE和BF的数量关系为AE=BF;(2)MN长度的最小值为√5-1.5.[2020湖南株洲]如图所示,△BEF的顶点E在正方形ABCD对角线AC的延长线上,AE与BF交于点G,连接AF,CF,满足△ABF≌△CBE.(1)求证:∠EBF=90°;(2)若正方形ABCD的边长为1,CE=2,求tan∠AFC的值.(1)证明:∵△ABF≌△CBE,∴∠ABF=∠CBE.∵∠ABF+∠CBF=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°.(2)∵△ABF ≌△CBE,∴∠AFB=∠CEB. 又∵∠FGA=∠EGB,∴∠FAC=∠EBF=90°. ∵正方形的边长为1,CE=2,∴AC=√2,AF=CE=2, ∴tan ∠AFC=AC AF =√22.6.[2020四川南充]如图,边长为1的正方形ABCD 中,点K 在AD 上,连接BK,分别过点A,C 作BK 的垂线,垂足分别为点M,N,点O 是正方形ABCD 的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN 的形状,并说明理由.(3)设AK=x,若点K 在线段AD 上运动(不包括端点),△OMN 的面积为y,求y 关于x 的函数解析式(写出此时x 的范围);若点K 在射线AD 上运动,且△OMN 的面积为110,请直接写出AK 长. (1)证明:∵AM ⊥BM,CN ⊥BN,∴∠AMB=∠BNC=90°. 又∵∠ABC=90°,∴∠MAB+∠MBA=∠CBN+∠MBA=90°, ∴∠MAB=∠CBN.又AB=BC,∴△AMB ≌△BNC,∴AM=BN. (2)△OMN 是等腰直角三角形.理由:连接OB,如图.∵O 为正方形的中心,∴∠OAB=∠OBC,OA=OB,∴∠MAB-∠OAB=∠NBC-∠OBC,即∠MAO=∠OBN.又∵AM=BN,∴△AMO ≌△BNO, ∴OM=ON,∠AOM=∠BON.易知∠AOB=∠AON+∠BON=90°, ∴∠MON=∠AON+∠AOM=90°, ∴△OMN 是等腰直角三角形.(3)在Rt △ABK 中,BK=√AK 2+AB 2=√x 2+1. 易知BK·AM=AB·AK,则BN=AM=AB·AK BK=√x 2+1.∵∠AKM=∠BKA,∠AMK=∠BAK=90°,∴△AKM ∽△BKA,∴AK BK =KMAK,∴KM=AK 2BK=2√x 2+1,∴MN=BK-BN-KM=√x 2+1-√x 2+1-2√x 2+1=√x 2+1,∴S △OMN =12×(√22MN)2=14MN 2=(1-x)24x 2+4,即y=x 2-2x+14x 2+4(0<x<1).若点K 在射线AD 上运动,S △OMN =110,则AK 长为13或3.湖北孝感]如图(1),四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图(2)所示的图形,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m,小正方形的边长为n,若S 1=S 2,则nm 的值为 √3-12.图(1) 图(2)参考答案第一节 多边形1.D 因多边形的外角和等于360°,与边数无关,故选D.2.B 设该多边形的边数是n,由多边形的内角和公式,得180°×(n-2)=540°,解得n=5.故选B.3.45° ∵多边形的外角和为360°,∴∠DEF+∠EDF=360°-225°=135°.∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.4.A 正五边形的每一个内角为(5-2)×180°5=108°,即∠AED=∠EAB=108°.又EA=ED,∴∠EAD=180°−108°2=36°,∴∠DAB=∠EAB-∠EAD =72°.在正方形ABFG 中,∠GAB=90°,故∠DAG=∠GAB-∠DAB =18°.故选A. 5.B 正五边形每一个内角的度数为(5-2)×180°5=108°,所以中间形成的正多边形的每一个内角的度数为360°-24°-108°-108°=120°.易得120°n=(n-2)×180°,解得n=6.故选B.6.D 易知该图形关于直线BF 对称,四边形AFGH 与四边形CFED 关于直线BF 对称,故S 四边形AFGH =S 四边形CFED ,BF 平分∠AFC和∠ABC.因△ACF 不是中心对称图形,故整个图形不是中心对称图形.设该正八边形的中心为点O,连接OA,OC,则∠AFC=12∠AOC=12×360°4=45°,故△ACF 不是等边三角形.7.√3 如图,作螺帽的外接圆,连接AB,AC,则AC 是其直径,易知∠BAC=30°,∠ABC=90°,∴BC=√33AB=√3 cm.8.48 如图,由正五边形内角和为(5-2)×180°=540°,可知∠1=108°.又A 3A 4∥B 3B 4,∴∠2=∠1=108°,∴∠3=72°.在四边形A 2A 3MN 中,∠3+∠4+∠A 2+∠A 3=360°,∠A 2=∠A 3=120°,∴α=∠4=48°.9.4a 如图,连接HE,AD,分别交BG 于点M,N,正八边形每个内角的度数为(8-2)×180°8=135°.易得∠DAH=∠CBG=90°,∴∠BAN=∠ABN=45°,∴AN=BN,AB=√2AN=√2BN.设AN=BN=x,则AB=BC=AH=HG=√2x,MG=x,∴S 四边形BCFG =BC×BG=√2x·(2x+√2x)=2(√2+1)x 2=2a,∴S 四边形ABGH =12(AH+BG)×AN=12(√2x+2x+√2x)·x=(√2+1)x 2=a,故正八边形的面积为a×2+2a=4a(cm 2).10.80 正九边形的中心角度数为360°÷9=40°,即∠AOB=40°,∴∠MON=2∠AOB=2×40°=80°. 11.30 如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形ABMNEF 是正六边形,∴∠ABM=(6-2)×180°6=120°.又∠CBM=90°,∴∠ABC=120°-90°=30°.12.20 27 10 (1)每个正八边形的周长为8,故题中图形外轮廓的周长为(8-3)×4=20.(2)设正m 边形的一个内角的度数为α,依据题意,得2α+60°=360°,解得α=150°,∴m=360°÷(180°-150°)=12,∴当n=3时,围成的图形的外轮廓的周长是(12-3)×3=27.(3)正五边形一个内角的度数为180°-360°÷5=108°,∴得到的正n 边形的一个内角的度数为360°-108°-108°=144°,一个外角的度数为180°-144°=36°,∴n=360°÷36°=10,∴得到的正n 边形的周长是10. 13.略第二节 平行四边形 基础分点练 1.C2.B 在△ABC 中,D,E 分别是AB,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC.当∠B=∠BCF 时,AD ∥CF.根据平行四边形的定义可知此时四边形ADFC 是平行四边形.故选B.3.略4.C ∵四边形ABCD 为平行四边形,∴AD ∥BC,∠B=∠D,∴∠A+∠B=180°.∵∠A=2∠B,∴2∠B+∠B=180°,∴∠B=60°,∴∠D=60°.故选C. 5.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=DC,∴∠ABO=∠CDO,∠BAC=∠DCA,∴△AOB ≌△COD,∴OA=OC,OB=OD.故正确的顺序为②③①④⑤,故选C.6.D ∵AB=AC,∠A=40°,∴∠C=∠ABC=70°.又∵四边形BCDE 为平行四边形,∴∠E=∠C=70°.故选D.7.C 如图,过点E 作EM ⊥BA 交BA 的延长线于点M,延长ME 交CD 于点N.∵四边形ABCD 是平行四边形,∴AB ∥CD,∴EN ⊥CD.由尺规作图的痕迹可知,BE,CE 分别平分∠ABC,∠BCD,EF ⊥BC, ∴EM=EF=2, EN=EF=2,∴MN=4,即AB,CD 之间的距离为4.故选C.8.C ∵四边形ABCD 是平行四边形,∴∠D=∠B=60°,CD=AB=3.由折叠的性质可知AE=AD,DC=CE,又D,C,E 三点共线,∴△ADE 是等边三角形.又∵DE=DC+CE=6,∴△ADE 的周长为6×3=18.9.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.易得△BEM ∽△DEC,∴BE DE =EM EC =BM CD =12, ∴S △DEM =2S △EBM =2,S △EBC =2S △EBM =2,∴S 阴影=2+2=4,故选C.10.D 如图,延长EF 交AD 于点H,则AB ∥EH ∥CD,∴四边形ABEH 和四边形CDHE 都是平行四边形,∴EH=AB=5,AH=BE,HD=EC.∵∠BFC=90°,E 是边BC 的中点,BC=8,∴EF=BE=EC=12×8=4, ∴AH=HD,FH=EH-EF=5-4=1.易得FH 是△ADG 的中位线,∴DG=2FH=2.11.C ∵四边形ABCD 是平行四边形,∴AB ∥CF,AB=CD,∴△ABE ∽△DFE,∴AB DF =AEDE =2,又∵DE=3,DF=4, ∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴▱ABCD 的周长为(8+9)×2=34.故选C. 12.C ∵CE 平分∠BCD,∴∠BCE=∠DCE.∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,AB ∥CD,∴∠BEC=∠DCE,∠CDE=∠AED,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5.又∵EA=3,ED=4,∴EA 2+ED 2=AD 2,∴∠AED=90°,∴∠CDE=90°.又CD=AB=3+5=8,∴CE=√DE 2+DC 2= √42+82=4√5.故选C.13.(2,-1) ∵▱ABCD 对角线的交点O 为坐标原点,∴点A 与点C 关于原点O 中心对称.又点A 的坐标为(-2,1),∴点C 的坐标为(2,-1).14.61 ∵四边形ABCD 是平行四边形,∴AD ∥BC,DC ∥AB.∵∠ADC=119°,DF ⊥BC, ∴∠ADF=∠DFC=90°, ∠EDH=29°.∵BE ⊥DC,∴∠DEH=90°,∴∠BHF=∠DHE=90°-29°= 61°. 15.30 如图,由题意可知α+∠BCD=180°.过点B 作BF ∥CD,则BF ∥AE,∴∠ABF=180°-∠A=110°, ∴∠CBF=140°- ∠ABF=30°,∴∠BCD=180°-∠CBF=150°,∴α=180°-∠BCD=30°.综合提升练1.B ∵四边形ABCD 是平行四边形,∴BC ∥AD,AB ∥CD.∵E,F,G,H 分别是AO,BO,CO,DO 的中点,∴EH ∥AD,EH=12AD,EF ∥AB,EF=12AB,FG ∥BC,FG=12BC,GH ∥CD,GH=12CD,∴EH ∥FG,EF ∥HG,∴四边形EFGH 是平行四边形,故B 中的说法正确.∵AB=2,AD=4,∴EH=2,HG=1,故A 中的说法错误.∵AB ≠AD,∴平行四边形ABCD 不是菱形,故AC 与BD 不垂直,故C 中的说法错误.由EF ∥AB,得△OEF ∽△OAB,∴S △ABO S △EFO=(ABEF )2=4.故D 中的说法错误.2.略3.略 全国视野创新练9√3 设CD 与EG 交于点O.∵四边形EFGC 是平行四边形,∴EF=CG,EF ∥CG,∴△DOE ∽△COG,∴OE OG =DECG .又∵DF=14DE,∴DE CG =45,即OE OG =45,∴OE EG =49,即EG=94OE,∴当OE 最小时,EG 也最小.当OE ⊥AB 时,OE 取最小值.如图,过点C 作CH ⊥AB 于点H.在Rt △BCH 中,BC=8,∠B=60°,∴CH=sin B×BC=4√3,∴OE 的最小值为4√3,∴EG 的最小值为94×4√3=9√3.第三节 矩形、菱形、正方形 课时一:矩形的性质与判定基础分点练1.B AB=BC,邻边相等的平行四边形是菱形;AC=BD,对角线相等的平行四边形是矩形;AC ⊥BD,对角线互相垂直的平行四边形是菱形;由AC 平分∠BAD,可推得平行四边形ABCD 是菱形.故选B.2.略3.C 由四边形ABCD 是矩形,对角线AC,BD 相交于点O,得OA=OB=OC=OD,故S △AOB =S △COB =S △COD =S △AOD =2,所以矩形ABCD 的面积为4S △AOD =8,故选C.4.C 由折叠可得∠ABE=∠A'BE,∠BA'E=∠A=90°.∵∠DBC=24°,∴∠ABA'=90°-24°=66°,∴∠A'BE=33°, ∴∠A'EB=90°-33°=57°.5.A 如图,连接AE,设AC,EF 交于点O,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠DAC=∠ACB.∵直线EF 垂直平分AC,∴OA=OC,AE=EC,又∵∠AOF=∠COE,∴△AOF ≌△COE,∴AE=CE=AF=5,∴BC=BE+EC=8.在Rt △ABE 中,AB=√AE 2-BE 2=√52-32=4.在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5,故选A.6.43 根据矩形的性质得到AB ∥CD,AB=CD.∵点E 为CD 的中点,∴DE=12CD=12AB.易得△ABP ∽△EDP,则PB PD =ABDE =2,∴PB BD =23.易得△BPQ ∽△BDC,则PQ CD =BP BD =23,∴PQ=23CD=43. 7.3√17 在矩形ABCD 中,AB=5,AD=12,∠BAD=90°,根据勾股定理,可得BD=13.∵BP=BA=5,∴PD=BD-BP=8,∠BAP=∠BPA=∠DPQ.∵AB ∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ-CD=DQ-AB=8-5=3.在Rt △BCQ 中,BC=AD=12,CQ=3,根据勾股定理,得BQ=3√17.8.略全国视野创新练1.D ∵四边形ABCD 是矩形,∴AB=CD,AD=BC.设AB=CD=x,由折叠的性质可知,PA'=AB=x,PD'=CD=x.易证△A'EP ∽△D'PH,∴A'P 2∶D'H 2=8∶2,∴A'P ∶D'H=2∶1,∴D'H=12x.∵S △D'PH =12D'P·D'H=12·x·12x=2,∴x=2√2(负值已舍去),∴D'P=A'P=2√2,DH=D'H=√2,∴A'E=2D'P=4√2,∴PE=√(4√2)2+(2√2)2=2√10,PH=√(2√2)2+(√2)2=√10,∴AD=4√2+2√10+√10+√2=3√10+5√2. 2.43√3,4√3或(8-4√3) ①如图(1),当∠ABE=30°时,在Rt △ABE 中,AB=4,tan ∠ABE=AE AB ,∴AE=AB·tan ∠ABE=4×tan 30°=43√3.②如图(2),当∠AEB=30°时,在Rt △ABE中,tan ∠AEB=AB AE ,∴√33=4AE,∴AE=4√3.③如图(3),当∠ABA'=30°时,∠DEA'=30°,由折叠的性质可知,AE=A'E, A'B=AB=4,过点A'作FG ⊥BC 于点G,交AD 于点F,则FG=AB=4.∵AB ∥FG,∴∠BA'G=∠ABA'=30°, ∴BG=12A'B=2.∵tan ∠BA'G=BG A'G =√33,∴A'G=2√3,∴A'F=FG-A'G=4-2√3.在Rt △A'EF 中,sin ∠FEA'=A'F A'E =12,∴AE=A'E=8-4√3.综上所述,AE 的长为43√3,4√3或(8-4√3)cm.图(1) 图(2)图(3)课时二:菱形的判定与性质基础分点练 1.AD=DC(答案不唯一)2.是 如图,∵AB ∥CD,AD ∥BC,∴四边形ABCD 是平行四边形.过点A 作AE ⊥BC 于点E,AF ⊥DC 于点F,∵两张纸条等宽,∴AE=AF,又S ▱ABCD =BC·AE=DC·AF,∴BC=DC,∴四边形ABCD 是菱形.3.略4.C 由四边形ABCD 是菱形,得AB=AD,∠B=∠D.选项A 中,由∠BAF=∠DAE,得∠BAE=∠DAF,故△ABE ≌△ADF.选项B 中,由EC=FC,得BE=DF,∴△ABE ≌△ADF.选项C 中,添加条件AE=AF,不能保证△ABE 和△ADF 一定全等.选项D 中,由BE=DF,易得△ABE ≌△ADF.故选C.5.B 如图,∵菱形ABCD 的周长为16,高为2,∴AB=4,AH=2.在Rt △ABH 中,sin B=AH AB =24=12,∴∠B=30°. ∵AB ∥CD,∴∠C=150°,∴∠C ∶∠B=5∶1.6.A ∵四边形ABCD 是菱形,OA=6,∴AC=2OA=12,OB=OD.又DH ⊥AB,∴OH=12BD.∵S 菱形ABCD =48,∴12AC·BD=48,∴BD=8,∴OH=4. 7.B ∵四边形ABCD 是菱形,O 是对角线BD 的中点,∴AO ⊥BD,AD=AB=4,AB ∥DC.又∵∠BAD=120°, ∴∠CDB=∠ABD=∠ADB=30°,∴AO=12AD=2,∴DO=√AD 2-AO 2=2√3.又OE ⊥CD,∴OE=12OD=√3, DE=√32OD=3, ∴四边形AOED 的周长为AO+OE+DE+AD=2+√3+3+4=9+√3.8.B ∵四边形ABCD 是菱形,∴OC=12AC=4,OD=12BD=3,∠COD=90°.在Rt △OCD 中,根据勾股定理可知,CD=√OD 2+OC 2=5.∵∠EOC=∠ECO,∠EOC+∠EOD=90°,∠ECO+∠EDO=90°,∴∠EOD=∠EDO,∴DE=OE.又OE=CE,∴DE=OE=CE,∴OE=12CD=52.9.B 方法一:如图(1),连接OE.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO, ∴S △BOC =S △AOB =S △AOD = S △DOC = 14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点, S △BOE = S △COE =12S △BOC ,∴S △OEF =12S △BOE ,S △OEG =12S △COE ,∴S 四边形EFOG = S △OEF +S △OEG =12S △BOE +12S △COE =12S △BOC =18S,故选B.图(1) 图(2)方法二:如图(2),连接FG.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO,∴S △BOC =S △AOB =S △AOD =S △DOC =14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点,∴FG 是△OBC 的中位线,∴FG ∥BC,FG=12BC,∴△OFG ∽△OBC,∴S △OFG =14S △OBC =116S.易知S △OFG =S △EFG =12S 四边形EFOG ,∴S 四边形EFOG =2S △OFG =18S.故选B.10.45° 设尺规作图所作直线与AB 交于点F,由尺规作图可知,EF 是线段AB 的垂直平分线,∴AE=BE,∴∠A=∠EBA=30°.由菱形的性质可知AB=AD,∴∠ABD=∠ADB=75°,∴∠EBD=∠ABD-∠EBA=75°-30°=45°. 11.2√7 在线段BC 上取点F,使CF=AE=2,如图,则EF 平分菱形ABCD 的面积,理由:∵四边形ABCD 为菱形,∴AD ∥BC,AD=BC=AB=6,∴DE=BF=6-2=4.过点A 作AG ⊥BC 于点G,过点E 作EH ⊥BC 于点H,则四边形AGHE 是矩形,∴AG=EH,GH=AE=2.∵S 梯形ABFE =12(AE+BF)·AG,S 梯形EFCD =12(CF+DE)·EH,∴S 梯形ABFE =S 梯形EFCD ,即EF 平分菱形ABCD 的面积.∵在Rt △ABG 中,AG=ABsin B=6×√32=3√3,BG=ABcos B=6×12=3, ∴EH=AG=3√3, CH=BC-BG-GH=1,∴FH=CF-CH=1,∴在Rt △EFH 中,EF=√FH 2+EH 2=√12+(3√3)2=2√7.12.略全国视野创新练B 连接AC,由对角线互相平分的四边形为平行四边形可知,点E 在运动过程中,四边形AECF 始终为平行四边形.特殊地,当EF ⊥AC 时,四边形AECF 为菱形,当点E 与点B 重合时,四边形AECF 是矩形.故四边形AECF 的形状依次为平行四边形→菱形→平行四边形→矩形.故选B.课时三:正方形的性质和判定基础分点练1.A 由作图痕迹可知MA=MB=NA=NB,∴四边形MANB 是菱形,故可添加条件AB=MN 或AO=MO.2.D 对角线互相垂直且平分的四边形是菱形,不是正方形.故选D.3.D ∵点O 为BD 的中点,∴OB=OD.∵四边形ABCD 为平行四边形,∴DC ∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,∴△FDO ≌△EBO,∴OE=OF,∴四边形DEBF 为平行四边形,故选项A 中的结论成立.对于选项B,当AE=3.6时,∵AB=10,AD=6,∴AE AD =35,AD AB =35,∴AE AD =AD AB ,又∵∠DAE=∠BAD, ∴△DAE ∽△BAD,∴∠AED=∠ADB=90°,∴∠DEB=90°,∴▱DEBF 为矩形.故选项B 中的结论成立.对于选项C,当AE=5时,∵AB=10,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴▱DEBF 为菱形.故选项C 中的结论成立.对于选项D,当AE=4.8时,∠DEB ≠90°,∴四边形DEBF 不是正方形.故选D.4.B 根据题意可知菱形ABC'D'的AB 边上的高等于AB 的一半,所以菱形ABC'D'的面积为12AB 2,正方形ABCD 的面积为AB 2,故菱形ABC'D'的面积与正方形ABCD 的面积之比是12.故选B.5.C ∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°.∵△ABE 是等边三角形,∴AB=AE,∠BAE=∠AEB=60°, ∴AD=AE.在△ADE 中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,∴∠AED=12(180°-150°)=15°,∴∠BED=∠AEB-∠AED=60°-15°=45°.故选C.6.A 连接BD,在等腰直角三角形ABD 中,BD=√2AB=6√2.根据点M,N 分别是DQ,BQ 的中点可得,MN 是△BDQ 的中位线,所以MN=12BD=3√2.故选A.。
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
中考总复习:四边形综合复习--知识讲解(基础)
中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底. (2)不平行的两边叫做梯形的腰. (3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等. 5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形; (3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.【思路点拨】一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.【答案】135;九.【解析】设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=,∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.【总结升华】多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式】多边形的内角和随着边数的增加而_____,边数增加一条时,它的内角和增加___度.【答案】增加;180.2.下列正多边形中,能够铺满地面的是( ) .A.正五边形B.正六边形C.正七边形D.正八边形【思路点拨】镶嵌的条件:周角是这种正多边形的一个内角的整倍数.【答案】B.【解析】正六边形的内角120°,周角是内角的三倍.【总结升华】在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.类型二、特殊的四边形3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?【思路点拨】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;【答案与解析】(1)∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵BE CFABC DCBBC BC=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCB,∴CE=BF,∠ECB=∠FBC,BH=CH,EH=FH,平行四边形EHFG是菱形.【总结升华】本题属于综合题,考查了平行四边形的判定与性质,菱形的判定和正方形的判定,注意找准条件,有一定的难度.举一反三:【变式】已知:如图所示,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC,PF⊥CD,垂足分别为E、F,求证:PA=EF.【答案】连结PC .因为PE ⊥BC ,PF ⊥DC ,ABCDEF P所以∠PEC =∠PFC =∠ECF =90°,所以四边形PECF 是矩形,所以PC =EF .在△ABP 和△CBP 中,AB =CB ,∠ABP =∠CBP ,BP =BP , 所以△ABP ≌△CBP ,所以AP =CP . 所以AP =EF .4.(2012•威海)(1)如图①,▱ABCD 的对角线AC ,BD 交于点O ,直线EF 过点O ,分别交AD ,BC 于点E ,F . 求证:AE=CF .(2)如图②,将▱ABCD (纸片)沿过对角线交点O 的直线EF 折叠,点A 落在点A 1处,点B 落在点B 1处,设FB 1交CD 于点G ,A 1B 1分别交CD ,DE 于点H ,I . 求证:EI=FG .【思路点拨】(1)由四边形ABCD 是平行四边形,可得AD ∥BC ,OA=OC ,又由平行线的性质,可得∠1=∠2,继而利用ASA ,即可证得△AOE ≌△COF ,则可证得AE=CF .(2)根据平行四边形的性质与折叠性质,易得A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,继而可证得△A 1IE ≌△CGF ,即可证得EI=FG . 【答案与解析】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,OA=OC ,∴∠1=∠2,在△AOE 和△COF 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ), ∴AE=CF ;(2)∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D , 由(1)得AE=CF ,由折叠的性质可得:AE=A 1E ,∠A 1=∠A ,∠B 1=∠B , ∴A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,又∵∠1=∠2, ∴∠3=∠4,∵∠5=∠3,∠4=∠6, ∴∠5=∠6,在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△A 1IE ≌△CGF (AAS ), ∴EI=FG .【总结升华】考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上. (1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积; (2)若tan ∠CDO=34,求矩形CDEF 面积的最大值.【思路点拨】(1)因为当C 、D 是边AO ,OB 的中点时,点E 、F 都在边AB 上,且CF ⊥AB ,所以可求出CD 的值,进而求出CF 的值,矩形CDEF 的面积可求出;(2)设CD=x,CF=y .过F 作FH ⊥AO 于H .在 Rt △COD 中,用含x 和y 的代数式分别表示出CO 、AH 的长,进而表示出矩形CDEF 的面积,再配方可求出面积的最大值.【答案与解析】(1)如图,当C 、D 是边AO ,OB 的中点时, 点E 、F 都在边AB 上,且CF ⊥AB . ∵OA=OB=8,∴OC=AC=OD=4. 在 Rt △ACF 中,BOC D(2)设CD=x ,CF=y .过F 作FH ⊥AO 于H .在 Rt △COD 中,6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE . (1)如图(a )所示,当点D 在线段BC 上时. ①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立? (3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.【思路点拨】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.【答案与解析】(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC.②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.又∵EG∥BC,∴四边形BCGE是平行四边形.方法二:证出△AEG≌△ADB,得EG=AB=BC.∵EG∥BC,∴四边形BCGE是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.理由:方法一:由①得△AEB≌△ADC,∴BE=CD又∵CD=CB,∴BE=CB.由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.方法二:由①得△AEB≌△ADC,∴BE=CD.又∵四边形BCGE是菱形,∴BE=CB(11分)∴CD=CB.方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF是等边三角形.又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.【总结升华】本题考查三角形的全等以及菱形的判定. 举一反三:【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】(1)如图1 ∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形, ∴∠B=∠C=90°, ∵∠1+∠3=90°, ∴∠1=∠2,∴△ABE ∽△ECF , ∴AB :CE=BE :CF , ∴EC :CF=AB :BE=5:2 (2)如图(二),在AB 上取BM=BE ,连接EM , ∵ABCD 为正方形,∴AB=BC , ∵BE=BM ,∴AM=EC ,∵∠1=∠2,∠AME=∠ECP=135°, ∴△AME ≌△ECP ,∴AE=EP ;(3)存在.顺次连接DMEP .如图2 在AB 取点M ,使AM=BE , ∵AE ⊥EF ,∴∠2+∠3=90°,ADCBEBCE DAF P F∵四边形ABCD 为正方形, ∴∠B=∠BCD=90°, ∴∠1+∠3=90°, ∴∠1=∠2,∵∠DAM=∠ABE=90°,DA=AB ,AD AB DAM ABE AM BE =⎧⎪∠=∠⎨⎪=⎩∴△DAM ≌△ABE (SAS ), ∴DM=AE , ∵AE=EP , ∴DM=PE ,∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°, ∴DM ⊥AE , ∴DM ∥PE∴四边形DMEP 是平行四边形.。
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴OB=EO,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∵OB=OE,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)
九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。
中考几何数学四边形复习考点
中考几何数学四边形复习考点
四边形的相关概念
知识点:
一、多边形
1、多边形:由一些线段首尾依次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延伸,假设多边形的其他各边都在延伸线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
今后所说的多边形,假设不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延伸线所组成的角叫做多边形的外角。
留意:多边形的外角也就是与它有公共顶点的内角的邻补角。
9、n边形的对角线共有条。
说明:应用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由一个多边形的对角线的条数求出它的边数。
10、多边形内角和定理:n边形内角和等于(n-2)180。
11、多边形内角和定理的推论:n边形的外角和等于360。
说明:多边形的外角和是一个常数(与边数有关),应用它处置有关计算题比应用多边形内角和公式及对角线求法公式复杂。
无论用哪个公式处置有关计算,都要与解方程联络起来,掌握计算方法。
中考数学总复习知识点总结四边形
中考数学总复习知识点总结四边形四边形是指具有四条边的几何图形,在数学中有着重要的地位。
下面是中考数学总复习知识点总结四边形的内容。
一、基本定义和性质1.四边形的定义:具有四个顶点、四条边和四个内角的几何图形称为四边形。
2.四边形的分类:a.顶点关系分类:凸四边形和凹四边形;b.边长关系分类:等边四边形、等腰四边形和普通四边形;c.内角关系分类:矩形、正方形、平行四边形、菱形、梯形等。
3.四边形的性质:a.任意一条对角线将四边形分成两个三角形;b.对角线互相平分;c.相对边平行;d.相对角和为180度。
二、特殊四边形1.平行四边形:a.定义:对边平行的四边形;b.性质:i.对边相等;ii. 相邻内角互补;iii. 对角相等。
c.定理:1)如果一条对角线把平行四边形分成两个等腰三角形,则这条对角线是平行四边形的对称轴;2)如果一个四边形的对角线互相平分,则这个四边形是平行四边形。
2.矩形:a.定义:对边平行且四个内角都是直角的四边形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 相邻内角互补;iv. 对角线互相平分。
3.菱形:a.定义:四个边都相等的平行四边形;b.性质:i.相邻内角互补;ii. 对角线互相垂直;iii. 对角线平分相应的内角。
4.正方形:a.定义:对边相等且四个内角都是直角的矩形;b.性质:i.两对对边相等;ii. 对角线相等;iii. 对角线互相垂直;iv. 对角线平分相应的内角。
5.等腰梯形:a.定义:有两对对边平行且有两条边相等的梯形;b.性质:i.上底和下底平分相应的内、外角;ii. 对角线等分梯形的积。
三、四边形的面积和周长1.面积:a.矩形的面积等于长度乘以宽度;b.平行四边形的面积等于底边长乘以高;c.三角形的面积等于底边长乘以高的一半;d.梯形的面积等于上底和下底的平均值乘以高;e.菱形的面积等于对角线的乘积的一半;f.正方形的面积等于一条边长的平方。
2.周长:a.四边形的周长等于四条边的长度之和;b.正方形的周长等于边长的四倍。
中考数学总复习知识点总结四边形
中考数学总复习知识点总结四边形本文将围绕中考数学总复习知识点总结四边形展开,主要包括四边形的性质、特殊四边形、四边形的周长和面积等方面的内容。
希望可以帮助中考学生对这一知识点进行系统性的复习,提高复习效果。
四边形的性质:1.四边形是由四条线段围成的图形,共有四个顶点和四条边。
2.顺序连接四个顶点得到四边形的周界。
3.四边形的内角和为360度。
4.一个四边形的对角线是连接两个非相邻顶点的线段。
5.对角线分割四边形成为两个三角形。
6.对角线相交于一点且互相平分。
特殊四边形:1.矩形:四个顶点都是直角,对角线长度相等。
2.正方形:四个顶点都是直角,对边相等。
3.平行四边形:对边平行。
4.菱形:四个顶点都相等,对边平行。
5.梯形:有两条平行边。
6.等腰梯形:有两条平行边,两个非平行边长度相等。
4.三角形:只有三个顶点。
四边形的周长和面积:1.周长:计算四边形周长的方法是将四条边的长度相加。
如果已知四边形的其中一方向边的长度,可以根据其性质计算其他边的长度再相加。
2.面积:计算四边形面积的方法因四边形的类型不同而不同。
矩形的面积可以通过长度和宽度的乘积得到。
正方形的面积可以直接通过边长的平方得到。
平行四边形的面积可以通过底边的长度和高的长度的乘积得到。
菱形的面积可以通过对角线的长度乘积的一半得到。
梯形的面积可以通过上底和下底的和乘以高再除以2得到。
等腰梯形的面积可以通过上底和下底的和乘以高再除以2得到。
三角形的面积可以通过底边的长度和高的长度的乘积再除以2得到。
为了更好地掌握四边形的知识点,建议中考学生进行以下练习:1.根据已知的四边形性质,判断下列说法是否正确:(1)一个四边形的对角线是连接两个相邻顶点的线段。
(2)一个四边形的内角和为180度。
(3)对角线相交于一点且互相垂直。
(4)矩形是一种特殊的梯形。
(5)等腰梯形的面积可以通过上底和下底的差再乘以高得到。
2.计算下列四边形的周长和面积:(1) 长方形,长为6cm,宽为4cm。
中考专题复习四边形
基础知识点练习:1.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.2.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.3.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.4.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是___________.(一)例题讲解例1 等腰△ABC中AB=AC,D为BC上的一动点,DE∥AC,DF∥AB,则DE+DF是否随D点变化而变化?若不变化请证明.例2. 如图,在ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F ,求证:S △ABF=S平行四边形ABCD.例3如图,已知在□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.例4.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P•从A开始沿AD边向D以1cm/s 的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,•问t为何值时.四边形PQCD是平行四边形.例5.图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作□CDFE,过点C作CG∥AB 交EF与点G.连接BG、DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由.(2)求证:△BCG≌△DCE.练习1如图,在ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. OE=OFB. DE=BFC. ∠ADE=∠CBFD. ∠ABE=∠CDFAB D CEF2如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB•的周长为15, AB =6,那么对角线AC +BD =_______. 矩形、菱形、正方形1.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 2.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4 B .3 C .2 D .13.如图在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a4.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为5.如图在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==,,则AC 的长为. (一)例题讲解例1已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说明理由.例2如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是 BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形;(2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.1.对角线互相垂直平分的四边形是( )A .平行四边形、菱形B .矩形、菱形C .矩形、正方形D .菱形、正方形D B O A A B C D O A B DA B C DA B CD E F E ' GB G A E FH D C2.顺次连接菱形各边中点所得的四边形一定是( )A.等腰梯形B.正方形C.平行四边形D.矩形3.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是( ) A .四边形AEDF 是平行四边形B .如果90BAC ∠=,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形5.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A .43.33 C .42.86.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm7.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.8.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.9.如图,将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是________cm .第3题 D A A F C D B E 第4 题B FC E D A 第5题 A O B E 第6题 F D OCBEAA BCE F M NOFE MD CB A10如图,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB =4,BC =3,则图①和图②中,点B 的坐标为________,点C 的坐标为______.11如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F . (1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.12 已知:如图,D是△ABC 的边。
中考四边形综合知识点总结
中考四边形综合知识点总结一、四边形的性质1. 任意四边形的内角和为360度2. 对角线互相垂直的四边形是矩形3. 对边平行且相等的四边形是平行四边形4. 有一对对边平行的四边形是梯形5. 有一对对边相等的四边形是菱形6. 对角线相等的四边形是菱形7. 有一对对边互相垂直且相等的四边形是正方形8. 矩形和菱形都是平行四边形二、矩形1. 定义:有四个顶点和四条边的四边形2. 性质:内角和为360度,对角线长度相等,对角线互相垂直,相邻边互相垂直且相等3. 公式:周长=2*(长+宽),面积=长*宽三、平行四边形1. 定义:有四个顶点和四条边的四边形,对边平行且相等2. 性质:内角和为360度,对角线互相平分,对边互相相等3. 公式:周长=2*(a+b),面积=底*高四、梯形1. 定义:有四个顶点和四条边的四边形,有一对对边平行2. 性质:内角和为360度,底边平行,上底和下底长度相等,两个底边平行线段的中线互相平行3. 公式:周长=上底+下底+两腰,面积=(上底+下底)*高/2五、菱形1. 定义:有四个顶点和四条边的四边形,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相平分,对角线互相垂直3. 公式:周长=4*边长,面积=对角线1*对角线2/2六、正方形1. 定义:有四个顶点和四条边的四边形,对角线相等,对边互相平行且相等2. 性质:内角和为360度,对角线相等,对角线互相垂直,边互相平行且相等3. 公式:周长=4*边长,面积=边长^2七、计算题1. 计算四边形的周长和面积2. 计算梯形的高3. 根据题目条件运用四边形的性质进行计算4. 判断四边形的类型和性质八、应用题1. 根据实际场景运用四边形的性质进行解决问题2. 通过综合应用四边形的知识解决问题3. 运用数学推理和逻辑思维解答四边形的实际问题以上就是中考四边形综合知识点总结,希望对大家有所帮助。
中考数学总复习-四边形专题模块-矩形的性质及判定讲义教师版
知识点 A 要求 B 要求C要求矩形 会识别矩形掌握矩形的概念、判定和性质,会用矩形的性质和判定解决简单问题 会运用矩形的知识解决有关问题1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.重点:掌握矩形的性质,并学会应用. 难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.一、矩形的判定【例1】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【考点】矩形的性质和判定 【题型】填空 【难度】2星 【关键词】 【解析】省略【答案】2BC AB =例题精讲重、难点中考要求中考要求矩形的性质 及判定【例2】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.CDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵90ABC BCD ∠=∠=︒,∴AB ∥CD在Rt ABC ∆和Rt DCB ∆中BC CBAC BD =⎧⎨=⎩∴Rt ABC ∆≌Rt DCB ∆ (HL )∵AB CD =,∴四边形ABCD 是平行四边形 ∵AC BD =,∴四边形ABCD 是矩形【巩固】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【考点】矩形的性质和判定 【题型】选择 【难度】1星 【关键词】 【解析】省略 【答案】A【例3】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵E 、F 、G 、H 分别是四边的中点∴EF 、GH 为中位线∴EF GH BD ∥∥且12EF GH BD ==∴四边形EFGH 为平行四边形∴四边形EFGH 是矩形.【巩固】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵四边形ABCD 是平行四边形,∴AB CD =, 180A D ∠+∠=︒∵M 是AD 的中点,∴AM MD =在ABM ∆和CDM ∆中AM DM MB MC AB CD =⎧⎪=⎨⎪=⎩∴ABM ∆≌CDM ∆ (SSS ),∴A D ∠=∠ ∴90A ∠=︒,∴四边形ABCD 是矩形【例4】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【考点】矩形的性质和判定 【题型】解答 【难度】4星 【关键词】 【解析】省略【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.【例5】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CB A【考点】矩形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,安顺市中考 【解析】省略【答案】⑴ ∵AF BC ∥,AFE DCE ∠=∠E 是AD 的中点,∴AE DE = ∵AFE DCE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF DEC ∆∆≌ ∴AF DC =,∵AF BD = ∴BD CD =(2)四边形AFBD 是矩形∵AB AC =,D 是BC 的中点(利用全等) ∴AD BC ⊥ ∴90ADB ∠=︒∵AF BD =,AF BC ∥∴四边形AFBD 是平行四边形 又90ADB ∠=︒∴四边形AFBD 是矩形.【巩固】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA【考点】矩形的性质和判定 【题型】解答 【难度】3星 【关键词】 【解析】省略【答案】⑴证明:ED DC DF DC ==,⑵当D 为AC 的中点时,四边形AECF 为矩形【例6】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD .⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【考点】矩形的性质和判定,菱形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,襄樊市中考 【解析】省略【答案】⑴ Rt DEC ∆是由Rt ABC ∆绕C 点旋转60︒得到∴AC DC =,60ACB ACD ∠=∠=︒ ∴ACD ∆是等边三角形 ∴AD DC AC ==又∵Rt ABF ∆是由Rt ABC ∆沿AB 所在 直线翻转180︒得到∴AC AF =,90ABF ABC ∠=∠=︒ ∴180FBC ∠=︒∴点F 、B 、C 三点共线 ∴AFC ∆是等边三角形 ∴AF FC AC ==∴AD DC FC AF === ∴四边形AFCD 是菱形. ⑵ 四边形ABCG 是矩形.由⑴可知:ACD ∆是等边三角形,DE AC ⊥于E ∴AE EC =,又∵AG BC ∥∴EAG ECB ∠=∠,AGE EBC ∠=∠ ∴AEG CEB ∆∆≌,∴AG BC =∴四边形ABCG 是平行四边形,而90ABC ∠=︒ ∴四边形ABCG 是矩形.【巩固】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BAGMF E DC BA【考点】平行四边形的性质和判定,矩形的性质和判定,三角形的三线五心 【题型】解答 【难度】6星 【关键词】【解析】过C 作CG AD ⊥于G ,连接EG 、FG .∵AE BC ⊥,FM AE ⊥,∴FM ∥EC∴四边形EMFC 为平行四边形,∴MF EC = 又∵AE BC ⊥,CG AD ⊥且BC ∥AD ∴90EAG AGC GCE AEC ∠=∠=∠=∠=︒ ∴四边形AGCE 为矩形∴EC AG =,EG AC =,∴MF AG = 又∵MF ∥AG∴四边形AGFM 为平行四边形,∴GF AM = ∵AM EF ⊥,∴GF EF ⊥,即90GFE ∠=︒∴GF =∴12AM =【答案】12【例7】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FDBCM【考点】矩形的性质和判定,等腰三角形的性质和判定 【题型】解答 【难度】4星 【关键词】【解析】延长BF 交AD 于M ,连结DB .∵四边形ABCD 是矩形,∴AD BC AD BC AC BD ==∥,, ∴M EBF ∠=∠,∵F 是AE 中点,∴AF EF =,在AFM △和EFB △中, ∵M EBF MFA BFE AF EF ∠=∠∠=∠=,,∴AFM EFG ∆∆≌.∴AM BE =,MF BF =,∴AD AM BC BE CE DM +=+== ∵CE AC AC BD ==,,∴DM DB = ∵MF BF =,∴BF DF ⊥【答案】见解析板块二、矩形的性质及应用【例8】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
初中数学四边形复习教案
初中数学四边形复习教案1. 知识与技能目标:使学生掌握四边形的定义和性质,能够识别和判断各种四边形,了解四边形在实际生活中的应用,提高学生的空间想象能力和抽象思维能力。
2. 过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的探究能力和合作能力,使学生在解决实际问题中能够灵活运用四边形的性质。
3. 情感、态度与价值观目标:学生在学习过程中能够积极参与,勇于尝试,体验数学学习的乐趣,增强自信心,培养克服困难的勇气和信心。
二、教学内容1. 四边形的定义和性质2. 四边形的分类和特点3. 四边形在实际生活中的应用三、教学重点与难点1. 教学重点:四边形的定义和性质,四边形的分类和特点。
2. 教学难点:四边形性质的探究和应用。
四、教学过程1. 导入新课通过展示一些生活中的四边形物体,如梯子、窗户、自行车等,引导学生关注四边形,激发学生学习四边形的兴趣。
然后提出问题:“你们知道四边形有哪些性质吗?”从而导入新课。
2. 探究四边形的性质(1)小组合作,观察探究将学生分成若干小组,每组发一些四边形的图片,让学生观察四边形的特点,探讨四边形的性质。
(2)汇报交流各小组汇报探究成果,教师引导学生总结四边形的性质,如对边相等、对角相等、对边平行等。
3. 四边形的分类和特点(1)长方形、正方形、梯形的定义和性质引导学生了解长方形、正方形、梯形是特殊的四边形,掌握它们的定义和性质。
(2)四边形的分类根据四边形的性质,引导学生对四边形进行分类,了解各种四边形的特点。
4. 四边形在实际生活中的应用通过一些实际问题,让学生运用四边形的性质解决问题,提高学生运用数学知识解决实际问题的能力。
5. 总结与反思本节课我们学习了四边形的定义、性质和分类,以及四边形在实际生活中的应用。
请大家回顾一下,我们是如何得出四边形的性质的?这个过程中,我们运用了哪些数学方法?通过这个问题,引导学生总结本节课的学习内容,提高学生的反思能力。
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(五)
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(五)1.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.2.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC =,AB=2,求GE的长.3.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P的运动时间x的值;若不存在,请说明理由.4.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为.5.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=的面积,即在Rt△ABC中,AB2+BC2=.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD 于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.7.已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.8.我们知道:在小学已经学过“正方形的四条边都相等,正方形的四个内角都是直角”,试利用上述知识,并结合已学过的知识解答下列问题:如图1,在正方形ABCD中,G是射线DB上的一个动点(点G不与点D重合),以CG为边向下作正方形CGEF.(1)当点G在线段BD上时,求证:∠DCG=∠BCF;(2)连接BF,试探索:BF,BG与AB的数量关系,并说明理由;(3)若AB=a(a是常数),如图2,过点F作FT∥BC,交射线DB于点T,问在点G 的运动过程中,GT的长度是否会随着G点的移动而变化?若不变,请求出GT的长度;若变化,请说明理由.9.如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x =;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.10.把一副三角板按如图1所示放置,其中点E在BC边上,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=CD=6,将三角板DCE绕点C顺时针旋转,记旋转角为α(0°≤α≤180°).(1)在图1中,设AB与DE的交点为F,则线段AF的长为;(2)当α=15°时,三角板DCE旋转到△D1CE1的位置(如图2所示),连接D1A,D1B,请判断四边形ACBD1的形状,并证明你的结论;(3)当三角板DCE旋转到△D2CE2的位置(如图3所示)时,此时点D2恰好在AB延长线上.①求旋转角α的度数;②求线段AD2的长.参考答案1.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.2.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣1=13,∴.3.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.4.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.5.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.6.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形7.(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠ABC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.8.解:(1)∵四边形ABCD和四边形EFCG是正方形,∴CD=CB,CG=CF,∠BCD=∠FCG=90°,∵∠DCG=90°﹣∠BCG,∠BCF=90°﹣∠BCG,∴∠DCG=∠BCF;(2)BF+BG=AB,理由:在Rt△CDG和△CBF中,,∴△CDG≌CBF(SAS),∴DG=BF,在Rt△ABD中,AD=AB,∴BD=AB,∵BD=DG+BG=BF+BG,∴BF+BG=AB;(3)∵BD是正方形ABCD的对角线,∴∠CBD=∠CDB=45°,由(2)知,△CDG≌CBF(SAS),∴DG=BF,∠CDG=∠CBF=45°,∴∠DBF=∠CBD+∠CBF=90°,∴∠FBT=90°,∵FT∥CB,∴∠BTF=∠CBD=45°,∴∠BFT=45°=∠BTF,∴BF=BT,∴DG=BT,∴GT=BG+BT=BG+DG=BD=AB=a.9.解:(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴=,即==,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴=,即=,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102 即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±2(负值舍去),∴x=﹣6+2;当x2﹣21x+102=15时,解得:x=14±4(不合题意舍去);∴当S=15时,此时x的值为﹣6+2.10.(1)解:(1)在Rt△ABC中,∠A=45°,AB=6,∴BC=AB=3,在Rt△CDE中,∠D=30°,CD=6,∴CE=3,∴BE=BC﹣CE=﹣3,在Rt△BEF中,∠B=90°﹣∠A=45°,∴BF=BE=6﹣3,∴AF=AB﹣BF=3,故答案为:3;(2)四边形ACBD1是正方形,理由:∵∠BCE1=α=15°,∴∠D1CB=45°=∠BAC,由旋转知,CD1=CD,∵CD=AB,∴CD1=AB,∵BC=AC,∴△D1CB≌△BAC(SAS),∴D1B=BC,同理可证:D1A=AC,又∴AC=BC,∴D1A=AC=BC=BD1,∴四边形ACBD1是菱形,又∠ACB=90°,∴菱形ACBD1是正方形.(3)①取AB边的中点H,连接CH,∵△ABC是等腰直角三角形,且斜边AB=6,∴CH⊥AB,且AH=CH=AB=3,∵△D2CE2是直角三角形,且斜边CD2=6,∠CD2E2=30°,∴CE2=3,又∵∠CHD2=∠E2=90°,∴Rt△D2CH≌Rt△D2CE2(HL),∴∠HD2C=∠E2D2C=30°,又∵∠ABC=45°,∴∠BCD2=15°,又∵∠E2CD2=60°,则旋转角α=∠BCE2=75°;②在Rt△D2CE2中,D2E2=CE2=3,∵Rt△D2CH≌Rt△D2CE2,∵D2H=D2E2=,AH=3,∴AD 2=AH+D2H=3+.。
中考数学四边形知识点整理
中考数学四边形知识点整理学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些中考数学四边形知识点的学习资料,希望对大家有所帮助。
中考数学知识点总结:平行四边形考点分析1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4。
对称性:平行四边形是中心对称图形.5.平行四边形中常用辅助线的添法1、连对角线或平移对角线2、过顶点作对边的垂线构造直角三角形3、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
5、过顶点作对角线的垂线,构成线段平行或三角形全等。
中考数学易错知识点:四边形四边形易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。
三角形的稳定性与四边形不稳定性。
易错点2:平行四边形注意与三角形面积求法的区分。
平行四边形与特殊平行四边形之间的转化关系。
易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。
对角线将四边形分成面积相等的四部分。
易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。
矩形与正方形的折叠,(23题必考)易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
(18题必考)易错点7:(25题可能用到)梯形问题的主要做辅助线的方法。
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(四)
2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(四)1.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠DEB+∠CAD=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,G是AD的中点,H是AC边中点,连接CG、EG、EH,若∠ACB=90°,BC=2AC,在不添加任何辅助线的情况下,请直接写出图中与△CEH全等的三角形(不含△CEH本身).2.已知:平行四边形ABCD中,∠ABC=45°,对角线AC⊥CD.(1)如图1,若AD=6,求平行四边形ABCD的面积.(2)如图2,连接BD交AC于O点,过点A作AE⊥BD于E,连接EC.求证:ED=AE +EC.3.定义:至少有一组对边相等的四边形为“等对边四边形”.(1)请写出一个你学过的特殊四边形中是“等对边四边形”的名称;(2)如图1,四边形ABCD是“等对边四边形”,其中AB=CD,边BA与CD的延长线交于点M,点E、F是对角线AC、BD的中点,若∠M=60°,求证:EF=AB;(3)如图2,在△ABC中,点D、E分别在边AC、AB上,且满足∠DBC=∠ECB=∠A,线段CE、BD交于点,①求证:∠BDC=∠AEC;②请在图中找到一个“等对边四边形”,并给出证明.4.我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是命题(填“真”或“假”);(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC 是奇异三角形,求a:b:c;(3)如图,以AB为斜边分别在AB的两侧做直角三角形,且AD=BD,若四边形ADBC 内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠DBC的度数.5.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.6.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)7.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶点;若再满足两个顶角和是180°,则称这个两个顶点关于这条底边互为勾股顶针点.如图1,四边形ABCD中,BC是一条对角线,AB=AC,DB=DC,则点A与点D关于BC互为顶针点;若再满足∠A+∠D=180°,则点A与点D关于BC互为勾股顶针点.初步思考(1)如图2,在△ABC中,AB=AC,∠ABC=30°,D、E为△ABC外两点,EB=EC,∠EBC=45°,△DBC为等边三角形.①点A与点关于BC互为顶针点;②点D与点关于BC互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD中,AB=8,AD=10.①如图3,点E在AB边上,点F在AD边上,请用圆规和无刻度的直尺作出点E、F,使得点E与点C关于BF互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E是直线AB上的动点,点P是平面内一点,点E与点C关于BP互为勾股顶针点,直线CP与直线AD交于点F,在点E运动过程中,线段BE与线段AF的长度是否会相等?若相等,请直接写出AE的长,若不相等,请说明理由.8.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=°,AB的长是.②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.9.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB 上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.10.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.参考答案1.(1)证明:∵AD∥BC,∴∠ADC=∠BCD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠ADE=∠DEB,∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,∴∠DEC=∠DAC,∴ADE+∠DAC=180°,∴DE∥AC,∴四边形ACED是菱形;(2)解:∵∠ACB=90°,∴菱形ACED是正方形,∴∠D=∠CAG=∠DEC=90°,AC=AD=CE,∵G是AD的中点,H是AC边中点,∴AG=DG=CE,∴△EDG≌△CAG≌△ECH(SAS),∵BC=2AC,∴BE=CE=AD,∵AD∥BE,∴∠B=∠DAF,∵∠AFE=∠BFE,∴△BFE≌△AFD(AAS),∵AD=CE=BE,∴△BEF≌△ECH,∴图中与△CEH全等的三角形有△ADF,△EDG,△CAG,△EBF.2.解:(1)∵∠ABC=45°,AC⊥CD,∴△ACD是等腰直角三角形,∵AD=6,∴AC=CD=AD=3,∴平行四边形ABCD的面积=33=18;(2)过C作FC⊥BD于F,∵AE⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∵平行四边形ABCD中,AO=CO,∴△AOE≌△COF(AAS),∴AE=CF,OE=OF,∵∠ABC=45°,AC⊥CD,∴△ACD是等腰直角三角形,设AC=AB=2x,∴AD=BC=2x,∴AO=x,∴BO=DO==x,∵S△AOB=AB•AO=BO•AE,∴AE===,∴OE=OF==x,∴EF=CF=x,∴CE=EF=x,∵DE==x,AE+EC=x+x=x,∴ED=AE+EC.3.解:(1)如:平行四边形、矩形、菱形、等腰梯形等.(2)证明:如图1,取BC的中点N,连结EN,FN,∴EN=CD,FN=AB,∴EN=FN,∵∠M=60°,∴∠MBC+∠MCB=120°,∵FN∥AB,EN∥MC,∴∠FNC=∠MBC,∠ENB=∠MCB,∴∠ENF=180°﹣120°=60°,∴△EFN为等边三角形,∴EF=FN=AB.(3)①证明:∵∠BOE=∠BCE+∠DBC,∠DBC=∠ECB=∠A,∴∠BOE=2∠DBC=∠A,∵∠A+∠AEC+∠ADB+∠EOD=360°,∠BOE+∠EOD=180°,∴∠AEC+∠ADB=180°,∵∠ADB+∠BDC=180°,∴∠BDC=∠AEC;②解:此时存在等对边四边形,是四边形EBCD.如图2,作CG⊥BD于G点,作BF⊥CE交CE延长线于F点.∵∠DBC=∠ECB=∠A,BC=CB,∠BFC=∠BGC=90°,∴△BCF≌△CBG(AAS),∴BF=CG,∵∠BEF=∠ABD+∠DBC+∠ECB,∠BDC=∠ABD+∠A,∴∠BEF=∠BDC,∴△BEF≌△CDG(AAS),∴BE=CD,∴四边形EBCD是等对边四边形.4.(1)解:“等边三角形是奇异三角形”这个命题是真命题,理由如下:设等边三角形的边长为a,则a2+a2=2a2,符合“奇异三角形”的定义,∴“等边三角形是奇异三角形”这个命题是真命题;故答案为:真;(2)解:∵∠C=90°,∴a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=a,c=a,∴a:b:c=1::;(3)①证明:∵∠ACB=∠ADB=90°,∴AC2+BC2=AB2,AD2+BD2=AB2,∵AD=BD,∴2AD2=AB2,∵AE=AD,CB=CE,∴AC2+CE2=2AE2,∴△ACE是奇异三角形;②解:由①得:△ACE是奇异三角形,∴AC2+CE2=2AE2,当△ACE是直角三角形时,由(2)得:AC:AE:CE=1::,或AC:AE:CE=::1,当AC:AE:CE=1::时,AC:CE=1:,即AC:CB=1:,∵∠ACB=90°,∴∠ABC=30°,∵AD=BD,∠ADB=90°,∴∠ABD=45°,∴∠DBC=∠ABC+∠ABD=75°;当AC:AE:CE=::1时,AC :CE=:1,即AC:CB=:1,∵∠ACB=90°,∴∠ABC=60°,∵AD=BD,∠ADB=90°,∴∠DBC=∠ABC+∠ABD=105°;综上所述,∠DBC的度数为75°或105°.5.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.6.(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.7.解:(1)根据互为顶点,互为勾股顶针点的定义可知:①点A与点D和E关于BC互为顶针点;②点D与点A关于BC互为勾股顶针点,理由:如图2中,∵△BDC是等边三角形,∴∠D=60°,∵AB=AC,∠ABC=30°,∴∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠A+∠D=180°,∴点D与点A关于BC互为勾股顶针点,故答案为:D和E,A.(2)线段BE与线段AF长度会相等①如图3中,点E,点F即为所求.②如图4﹣1中,当BE=AF时,设AE=x,连接EF.∵BE=EP=AF,EF=EF,∠EAF=∠FPE=90°,∴Rt△EAF≌Rt∠FPE(HL),∴PF=AE=x,在Rt△DCF中,DF=10﹣(8﹣x)=2+x,CD=8,CF=10﹣x,∴(10﹣x)2=82+(2+x)2,解得x=,∴AE=如图4﹣2中,当BE=BC=AF时,此时点F与D重合,可得AE=BE﹣AB=10﹣8=2.如图4﹣3中,当BE=AF时,设AE=x,同法可得PF=AE=x,在Rt△CDF中,则有(10+x)2=82+(18﹣x)2,解得x=,∴AE=如图4﹣4中,当BE=CB=AF时,点F与点D重合,此时AE=AB+BE=AB+BC=18.综上所述,满足条件的AE的值为或2或或18.8.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.9.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.10.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.。
2021年九年级中考数学第三轮压轴题专题冲刺复习:四边形综合(含答案)
2021年中考数学第三轮压轴题专题冲刺复习:四边形综合1、如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.2、如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.3、如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.4、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.5、如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.6、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.7、如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.8、如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC 延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.9、在四边形ABCD中,︒∠.B,对角线AC平分BADD∠180=∠+(1)如图1,若︒∠90=B,试探究边AD、AB与对角线AC=∠120DAB,且︒的数量关系并说明理由.(2)如图2,若将(1)中的条件“︒B”去掉,(1)中的结论是否成立?∠90=请说明理由.(3)如图3,若︒DAB,探究边AD、AB与对角线AC的数量关系并说明∠90=理由.10、如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.11、如图1,菱形ABCD 的顶点A ,D 在直线上,∠BAD =60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB ′C ′D ′,B ′C ′交对角线AC 于点M ,C ′D ′交直线l 于点N ,连接MN .(1)当MN ∥B ′D ′时,求α的大小.(2)如图2,对角线B ′D ′交AC 于点H ,交直线l 与点G ,延长C ′B ′交AB 于点E ,连接EH .当△HEB ′的周长为2时,求菱形ABCD 的周长.12、已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,①求证:;②当时,求的长.CD AB C A D B O E G OB C O C E DG F DF C ⊥E G OE =O H C B H C EH ⊥B OB E D H C E F C O G G OE =O DG C ∠O =∠O E 1AB =C H13、已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且90∠=︒,延长AG,BG分别AGB与边BC,CD交于点E,F.①求证:BE CF=;②求证:2=⋅.BE BC CE(2)如图2,在边BC上取一点E,满足2=⋅,连接AE交CM于点G,BE BC CE连接BG延长交CD于点F,求tan CBF∠的值.14、如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D 为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q 在边AC 上时,正方形DEFQ 的边长为 cm (用含x 的代数式表示);(2)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(3)当0<x <2时,求y 关于x 的函数解析式;(4)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.15、如图AM 是ABC ∆的中线,D 是线段AM 上一点(不与点A 重合),AB DE //交AC 于点F ,AM CE //,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若AC BH ⊥,且AM BH =.当3=FH ,4=DM 时,求DH 的长.16、在四边形ABCD 中,对角线AC 、BD 交于点O .若四边形ABCD 是正方形如图1:则有AC=BD ,AC ⊥BD .旋转图1中的Rt △COD 到图2所示的位置,AC ′与BD ′有什么关系?(直接写出)若四边形ABCD 是菱形,∠ABC=60°,旋转Rt △COD 至图3所示的位置,AC ′与BD ′又有什么关系?写出结论并证明.17、在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.参考答案2021年中考数学第三轮压轴题专题冲刺复习:四边形综合1、如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.2、如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.3、如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.4、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.解:(1)正方形、矩形、直角梯形均可;证明:(2)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.5、如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.【解答】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.6、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD∵CD=HG,∠ECG=∠CGF=90°,FG=CG∴△DCG≌△HGF(SAS)∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5∵AD∥EF∴=,且DE=2∴EM=7、如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.8、如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC 延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E 作EM ⊥DA 交DA 的延长线于M ,过E 作EN ⊥FC 交FC 的延长线于N , 在△AME 与△CNE 中,,∴△AME ≌△CNE ,∴∠ADE=∠CFE ,在△ADE 与△CFE 中,, ∴△ADE ≌△CFE ,∴∠DEA=∠FEC ,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED ⊥EF .9、在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.解:(1)AB AD AC +=.证明如下: 在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B ,∴ ︒=∠90D .︒=∠120DAB ,AC 平分DAB ∠, ∴ 60=∠=∠BAC DAC ,︒=∠90B ,∴AC AB 21=,同理AC AD 21=. ∴AB AD AC +=.(2)(1)中的结论成立,理由如下:以C 为顶点,AC 为一边作 60=∠ACE , ACE ∠的另一边交AB 延长线于点E , 60=∠BAC ,∴AEC ∆为等边三角形, ∴CE AE AC ==,︒=∠+∠180B D ,︒=∠120DAB ,∴ 60=∠DCB , ∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.(3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E , ︒=∠+∠180B D ,︒=∠90DAB ,∴ 90=DCB , 90=∠ACE ,∴BCE DCA ∠=∠, 又AC 平分DAB ∠,∴ 45=∠CAB ,∴ 45=∠E . ∴CE AC =.又︒=∠+∠180B D ,CBE D ∠=∠,∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+.在ACE Rt ∆中, 45=∠CAB ,∴AC cos ACAE 245==, ∴AC AB AD 2=+.10、如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由; (2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.【答案】(1)结论:AG 2=GE 2+GF 2. 理由:连接CG .∵四边形ABCD 是正方形, ∴A 、C 关于对角线BD 对称,∵点G 在BD 上, ∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F , ∴∠GEC=∠ECF=∠CFG=90°, ∴四边形EGFC 是矩形, ∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2, ∴AG 2=GF 2+GE 2.解得,[来源:学科网ZXXK] ∴, ∴BG=BN ÷cos30°=.11、如图1,菱形ABCD 的顶点A,D 在直线上,∠BAD =60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB ′C ′D ′,B ′C ′6交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.【解答】解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB ′=∠AGD ′,∵∠EAB ′=∠GAD ′,AB ′=AD ′, ∴△AEB ′≌△AGD ′(AAS ), ∴EB ′=GD ′,AE =AG , ∵AH =AH ,∠HAE =∠HAG , ∴△AHE ≌△AHG (SAS ), ∴EH =GH ,∵△EHB ′的周长为2,∴EH +EB ′+HB ′=B ′H +HG +GD ′=B ′D ′=2, ∴AB ′=AB =2, ∴菱形ABCD 的周长为8.12、已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,①求证:; ②当时,求的长.CD AB C A D B O E G OB C O C E DG F DF C ⊥E G OE =O H C B H C EH ⊥B OB E D H C E F C O G G OE =O DG C ∠O =∠O E 1AB =CH∴∠DOG=∠COE=90°∴∠OEC+∠OCE=90°∵DF⊥CE∴∠OEC+∠ODG=90°∴∠ODG=∠OCE∴△DOG≌△COE(ASA)∴OE=OG②解:设CH=x,∵四边形ABCD是正方形,AB=1 ∴BH=1-x∠DBC=∠BDC=∠ACB=45°∵EH⊥BC∴∠BEH=∠EBH=45°∴EH=BH=1-x∵∠ODG=∠OCE∴∠BDC-∠ODG=∠ACB-∠OCE ∴∠HDC=∠ECH∵EH⊥BC∴∠EHC=∠HCD=90° ∴△CHE ∽△DCH ∴∴HC 2=EH ·CD 得x 2+x-1=0 解得,(舍去) ∴13、已知正方形ABCD,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.解答:(1)①证明:∵四边形ABCD 为正方形,∴AB BC ,90ABC BCF ∠∠°, 又90AGB ∠°,∴90BAE ABG ∠∠°,又90ABG CBF ∠∠°,∴BAE CBF ∠∠,∴ABE BCF △≌△(ASA),∴BE CF .EH HCHC CD=1x =1x =②证明:∵90AGB ∠°,点M 为AB 中点,∴MG MA MB ,∴GAM AGM ∠∠,又∵CGE AGM ∠∠,从而CGE CGB ∠∠,又ECG GCB ∠∠,∴CGE CBG △∽△, ∴CE CGCGCB,即2CG BC CE ,由CFG GBMCGF ∠∠∠,得CFCG .由①知,BE CF ,∴BE CG ,∴2BE BC CE . (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBEBA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CN BE ,由AB DN ∥知,CN CG CFAM GM MB, 又AM M B ,∴FC CN BE ,不妨假设正方形边长为1, 设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC, 于是51tan 2FC BE CBFBC BC ∠,(方法二)不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),即512BE , 作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NGBC , 设MN y ,则2GN y ,5GM y ,∵GN AN BEAB ,即121y,解得125y,∴12GM,从而GM MAMB ,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB ∠°, 由(1)知BE CF ,于是51tan 2FC BE CBFBCBC∠.14、如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D 为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x ,∴y=S △DEQ =12DQ 2,∴y=12(2﹣x )2,∴y=12x 2﹣2x+2;(4)当Q 与C 重合时,E 为BC 的中点, 即2x=2, ∴x=1,当Q 为BC 的中点时, PB=1, ∴AP=3, ∴2x=3,∴x=32,∴边BC 的中点落在正方形DEFQ 内部时x 的取值范围为:1<x <32.15、如图AM 是ABC ∆的中线,D 是线段AM 上一点(不与点A 重合),AB DE //交AC 于点F ,AM CE //,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; (2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由. (3)如图3,延长BD 交AC 于点H ,若AC BH ⊥,且AM BH =.当3=FH ,DM时,求DH的长.4【答案】:(1)证明:∵DE//AB,∴∠EDC=∠ABM,∵CE//AM,∴∠ECD=∠ADB,又∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≅△EDC,∴AB=ED,又∵AB//ED,∴四边形ABDE为平行四边形。
人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)
第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。
微专题11 特殊四边形的综合应用++++课件+2025年中考数学总复习人教版(山东)
∠ = ∠ ,
=
∴△BCG≌△DCE(SAS),
∴BG=DE,
延长BG交DE于点H,如图,
16
∵△BCG≌△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BGC=90°,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BH⊥DE,
即BG⊥DE.
答案:BG=DE
②经探究发现S是关于t的函数,请写出S关于t的关系式;
(2)若存在两个时刻t1,t2(t1<t2)对应的Rt△ADM的面积S相等.请直接写出“t1+t2”的值.
29
【解析】(1)①当t=3时,BP=3,CP=4-3=1,
∵四边形ABCD是正方形,
∴∠B=∠C=90°,AD=CD=4,
∵AP⊥PM,
19
∴DG=DO-OG= - ;
当正方形CEFG绕点C旋转到如图位置时,连接BD,
由(1)(2)可知,BG=DE,BG⊥DE,
∴BG⊥DG,∴∠BGD=90°,
∵AB=5,CE=2,
∴BD= + =5 ,EG= + =2 ,
设BG=DE=x,则DG=x+2 ,
在Rt△BGD中,BG2+DG2=BD2,
BG⊥DE
17
(2)(1)中得到的结论仍然成立,在题图2中证明如下:
∵四边形ABCD、四边形CEFG都是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.举一反三:【变式】(眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.82.(校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形类型二、特殊的四边形【高清课堂:四边形综合复习例1】3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?举一反三:【变式】已知:如图所示,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC,PF⊥CD,垂足分别为E、F,求证:PA=EF.4.(威海)(1)如图①,▱ABCD 的对角线AC ,BD 交于点O ,直线EF 过点O ,分别交AD ,BC 于点E ,F .求证:AE=CF.(2)如图②,将▱ABCD (纸片)沿过对角线交点O 的直线EF 折叠,点A 落在点A 1处,点B 落在点B 1处,设FB 1交CD 于点G ,A 1B 1分别交CD ,DE 于点H ,I .求证:EI=FG .【总结升华】考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.【高清课堂:四边形综合复习 例4】5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上.(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积;(2)若tan ∠CDO=34,求矩形CDEF 面积的最大值.B OCD6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.举一反三: 【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.A D CB E BC E DA F P F中考总复习:四边形综合复习--巩固练习(基础)【巩固练习】一、选择题1.下列说法中,正确的是( ).A.等腰梯形的对角线互相垂直B.菱形的对角线相等C.矩形的对角线互相垂直 D.正方形的对角线互相垂直且相等2.如图,在中,于且是一元二次方程x2+x-2=0的根,则的周长为().A.B.4+C.8+D.3.如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为().A.B.C.D.4.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有().A.1个 B.2个 C.3个 D.4个5.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形6.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=15°,则∠A′BD的度数为().A. 15°B. 20°C. 25°D. 30°第6题二、填空题7.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是______度.8. 矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为_________平方单位.9.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.10.如图,点,是正方形的两个顶点,以它的对角线为一边作正方形,以正方形的对角线为一边作正方形,以正方形的对角线为一边作正方形,…,依次进行下去,则点的坐标是__________________.11.如图,若△ABC的边AB=3,AC=2,Ⅰ、Ⅱ、Ⅲ分别表示以AB、AC、BC为边的正方形,则图中三个阴影部分面积之和的最大值为________.12.(2014秋•隆化县校级期中)如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=,则BE的长为.三、解答题13. 如图,过正方形ABCD的顶点作,且作,又.求证:.14. (2014春•武侯区期末)如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求∠CBD的度数.15.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.16(2011•营口)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)。