讲树及叉树的顺序存储
信息技术奥赛辅导树与二叉树
D. (k+1)/2
18
满二叉树和完全二叉树 一般应用顺序存储结构 进行数据的存储。
对于非满二叉树,会有 某些编号没有对应的结 点(通常称为“虚结 点”),通常可以用特 殊标记符号(例如:#) 表示虚结点,将树转换 为满二叉树进行存储。
a
b
c
d ef g
hi
j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 abcdef g###h##i j
现实世界中,能用树的结构表示的例子: 学校的行政关系(P31)、书的层次结构(P32)、人类的家 族血缘关系等。
2
例:下图是一个有13个结点的树,其中A是 根,其余结点为分三个互不相交的子集: T1={B,E,F,K,L} T2={F,G} T3={D,H,I,J,M} T1、T2和T3都是 根A的子树。
二叉树是一种很有用的非线性结构。
二叉树具有以下两个特点: (1)非空二叉树只有一个根结点; (2)每一个结点最多有两棵子树,且分别称
为该结点的左子树与右子树。
5
6 6
二叉树的性质:
性质1:在任意一棵二叉树中,度为0的结点(即
叶子结点)总是比度为2的结点多一个。
例子1:某二叉树中度为2的结点有18个,则该二 叉树中有 19 个叶子结点。
满二叉树是指除最后一层外,每一层上的所有结点都有
两个子结点。
完全二叉树是指这样的二叉树:除最后一层外,每一层
上的结点数均达到最大值;在最后一层上只缺少右边 的若干结点。 注意:满二叉树是完全二叉树,完全二叉树不一定是满 二叉树。
若一棵完全二叉树的结点数n为偶数,则叶子结点 数为结点数除以2(即:n/2),若结点数为奇数,则 叶子结点数为结点数加一再除以2(即:(n+1)/2) 10
树的四种存储表示方法
树的四种存储表示方法
树是一种常见的数据结构,由节点和边组成,节点之间的关系是层级的。
树的存储方式有四种,分别是双亲表示法、孩子兄弟表示法、双向链表表示法和数组表示法。
1. 双亲表示法
双亲表示法是指每个节点都有一个指向其父节点的指针,根节点的指针为null。
这种表示法简单易懂,但是查找父节点比较麻烦。
2. 孩子兄弟表示法
孩子兄弟表示法是指每个节点都有指向其第一个孩子节点和下
一个兄弟节点的指针。
这种表示法可以方便地查找子节点和兄弟节点,但是查找父节点比较麻烦。
3. 双向链表表示法
双向链表表示法是指每个节点都有指向其父节点、第一个子节点和下一个兄弟节点的指针。
这种表示法可以方便地查找父节点、子节点和兄弟节点。
4. 数组表示法
数组表示法是指将节点存储在一个数组中,每个节点的位置和数组下标一一对应。
这种表示法可以方便地查找父节点、子节点和兄弟节点,但是浪费空间,因为如果树的深度不够大,数组中会存在大量的空节点。
以上四种树的存储表示方法各有利弊,根据具体情况选择最合适的方法可以提高程序的效率。
数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL
数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。
树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。
树是⼀种以分⽀关系定义的层次结构。
a.树是n(≥0)结点组成的有限集合。
{N.沃恩}(树是n(n≥1)个结点组成的有限集合。
{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。
⑵当n>1时,其余结点有且仅有⼀个直接前驱。
⑶所有结点都可以有0个或多个后继。
b. 树是n(n≥0)个结点组成的有限集合。
在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。
⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。
每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。
即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。
树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。
●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。
5(选讲)树和二叉树解析
树。所以树的定义是递归的 。
2018/10/13 8
2.树的基本术语
树的结点包含一个数据元素及若干指向其子树的分支。
1. 树的结点:包含一个DE和指向其子树的所有分支; 2. 结点的度:一个结点拥有的子树个数,度为零的结点称为叶结点; 3. 树的度:树中所有结点的度的最大值 Max(D(I)) 含义:树中最大分支数为树的度; 4. 结点的层次及树的深度:根为第一层,根的孩子为第二层,若某结 点为第k层,则其孩子为k+1层. 树中结点的最大层次称为树的深度或高度 5.森林:是m(m>=0)棵互不相的树的集合 森林与树概念相近,相互很容易转换. 6 .有序树、无序树 如果树中每棵子树从左向右的排列拥有一定的 顺序,不得互换,则称为有序树,否则称为无序树。
广度优先(按层次)遍历定义为:先访问第一层结点(即树根结点), 再从左至右访问第二层结点,依次按层访问 ……,直到树中结点全部被 访问为止。对图6-6 (a)中的树进行按层次遍历得到树的广度优先遍历序 列为:ABCDEFG。 说明: ① 前序遍历一棵树恰好等价于前序遍历该树所对应的二叉树。(6.2 节将介绍二叉树) ② 后序遍历树恰好等价于中序遍历该树所对应的二叉树。
2018/10/13 13
树的先序遍历算法描述如下: void Preorder(Btree *root) { if (root!=NULL) {printf(“%c\n”,root->data); //访问根结点 //先根遍历k叉树
for(i=0;i<k;i++)
preorder(root->t[i]); //递归前序遍历每一个子结点 }
祖父 家族关系表示: R={<祖父,伯父>,<祖父,父亲>,<祖父,叔父>, <伯父,堂兄>,<伯父,堂姐>,<父亲,本人>, <叔父,堂弟>,<堂兄,侄儿>}
二叉树的储存结构的实现及应用
二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
数据结构答案第5章
第 5 章树和二叉树1970-01-01第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n≥0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m(m>0)个()的集合,每个集合都是根结点的子树。
【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。
【解答】度,孩子,双亲⑶一棵二叉树的第i(i≥1)层最多有()个结点;一棵有n(n>0)个结点的满二叉树共有()个叶子结点和()个非终端结点。
【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。
⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。
【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。
⑸深度为k的二叉树中,所含叶子的个数最多为()。
【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。
⑹具有100个结点的完全二叉树的叶子结点数为()。
【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。
⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。
则该树中有()个叶子结点。
【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。
⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。
【解答】CDBGFEA【分析】根据前序遍历序列和后序遍历序列将该二叉树构造出来。
叉树的存储结构(顺序二叉三叉)
插入和删除操作只需修改指针,时间复杂度较低。
查找操作的比较
顺序存储结构
查找操作需要从根节点开始逐层遍历,时间 复杂度较高。
链式存储结构
由于节点之间通过指针连接,查找操作可以 更快地定位到目标节点,时间复杂度较低。
PART 06
总结
叉树存储结构的重要性
高效的数据存储
叉树的存储结构能够高效地存储 大量数据,并且能够快速地访问、
修改和删除节点。
方便的算法实现
叉树的存储结构为算法的实现提供 了便利,例如二叉搜索树、堆排序 等算法可以在叉树存储结构上实现。
灵活的数据结构
叉树的存储结构可以根据实际需求 进行选择,例如顺序存储结构和链 式存储结构,以满足不同的应用场 景。
顺序存储结构和链式存储结构的适用场景选择
顺序存储结构
适用于节点数量固定且内存空间充足的场景 ,可以快速地访问任意节点,但插入和删除 操作需要移动大量节点,时间复杂度较高。
通过紧凑的存储结构,叉树的存储结 构可以减少空间浪费,从而更有效地 利用存储空间。
支持高效算法
叉树的存储结构可以支持高效的算法 实现,例如遍历、查找、插入和删除 等操作。
PART 02
顺序存储结构
顺序存储结构的定义
• 顺序存储结构是指将叉树中的节点按照某种顺序(如层序或按 值)连续地存储在数组中。每个节点在数组中的位置与其在叉 树中的位置相对应。
顺序存储结构的优缺点
存储空间利用率高
节点在数组中的位置与其在叉树 中的位置一一对应,因此不需要 额外的指针或链接来存储节点之 间的关系。
随机访问速度快
由于节点在数组中是连续存储的 ,因此可以通过索引直接访问任 意节点,速度较快。
树和二叉树的知识点总结
树和二叉树的知识点总结一、树的基本概念1. 树的定义:树是一种非线性数据结构,由 n(n>=1)个结点组成的有限集合。
对于每个非终端节点,都有一个被称为根的结点,且除根节点外,其他结点可以分为 m(m>=0)个互不相交的子集合,而每个子集合本身又是一个树。
2. 树的基本特点:树是一种分层数据的抽象模型,具有层级关系的数据结构。
树的结点包括根结点、子节点、叶子结点、父节点等。
3. 树的术语解释:树的根节点是树的顶端结点,没有父节点;子节点是一个结点向下连接的结点;叶子结点是没有子节点的结点;父节点是有一个或多个子节点的结点。
二、树的分类1. 二叉树:一种特殊的树,每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树有左子树和右子树,必须遵循左子树 < 根节点 < 右子树的顺序。
2. 平衡树:每个结点的左子树和右子树的高度之差不能超过1的二叉树。
3. 满二叉树:每个结点要么没有子节点,要么有两个子节点的二叉树。
4. 完全二叉树:除了最底层,所有层的结点数都达到最大,并且最底层的结点都依次从左到右排列。
三、二叉树的基本概念1. 二叉树的特点:每个结点最多有两个子结点,分别为左子结点和右子结点。
二叉树的子树都遵循左子树 < 根节点 < 右子树的顺序。
2. 二叉树的遍历:分为前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,再递归左右子树;中序遍历先递归左子树,再访问根节点,最后递归右子树;后序遍历先递归左右子树,最后访问根节点。
3. 二叉树的存储:二叉树的存储方式可以采用链式存储和顺序存储。
链式存储是通过结点间的指针链接,顺序存储是通过数组或列表进行存储。
四、二叉树的应用1. 二叉搜索树:是一种特殊的二叉树结构,对于任意节点,其左子树上的结点值都小于该节点的值,右子树上的结点值都大于该节点的值。
2. 堆:是一种特殊的完全二叉树,分为最大堆和最小堆。
最大堆的每个结点的值都大于或等于其子节点的值,最小堆的每个结点的值都小于或等于其子节点的值。
数据结构-二叉树的存储结构和遍历
return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
树和二叉树——精选推荐
第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
前序后序中序详细讲解
前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。
它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。
通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。
前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
它们的不同之处在于访问根节点的时机不同。
前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。
中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。
后序遍历常用于删除二叉树或者释放二叉树的内存空间。
在实际应用中,前序、中序和后序遍历算法有着广泛的应用。
它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。
在图像处理中,前序遍历可以用于图像压缩或者图像识别。
另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。
综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。
通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。
1.2文章结构文章结构是指文章中各个部分的布局和组织方式。
一个良好的文章结构可以使读者更好地理解和理解文章的内容。
本文将详细讲解前序、中序和后序三个部分的内容和应用。
首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。
接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。
在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。
通过详细的解释和实例,读者将能更好地理解前序的概念和用途。
数据结构树和二叉树知识点总结
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
计算机数据结构知识点梳理 二叉树的定义及其主要特征
当 n ≠ 2k , 即 n 不是2的方幂或者 n = 2k 但是一棵满二叉树,其高度为
。
当 n = 2k 但是非满二叉树,其高度为
。
②有n个结点的完全k叉树的高度为
。
性质5推广:一棵满k叉树,如果按层次顺序从1开始对全部结点编号,
①编号为p=1的结点无父结点,否则编号为p结点的父结点的编号是
(k≥2);
[题1]若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.32
B.64
C.63
D.不存在第7层
分析:根据二叉树的性质,第7层至多有64(27-1)个结点,但是题目中给出了二叉树的结点 总数126,由此来判断第7层是否可以有64个结点?
要在二叉树的第7层达到最多的结点个数,其上面6层必须是一个满二叉树,深度为6的满 二叉树有63(26-1)个结点,由此可以判断出此二叉树的第7层不可能达到64个结点,最 多是126-63=63个结点。
(2)完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到 右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树 中的位置相同,则这棵二叉树称为完全二叉树。它的特点是:叶子结点只能出现在最下 层和次下层,且最下层的叶子结点集中在树的左部。
任何完全二叉树中度为1的结点只有0个或1个。
中的所有结点从1开始顺序编号,则对于任意的序号为i的结点,有:
(1)如果i>1,则序号i的结点的双亲结点的序号为 ;如果i=1,则序号为i的结点是根 结点,无双亲结点。
(2)如果2i≤n,则序号为i的结点的左孩子结点的序号为2i;如果2i>n,则序号为i的结 点无左孩子。
(3)如果2i+1≤n,则序号为i的结点的右孩子结点的序号为2i+1;如果2i+1>n,则 序号为i的结点无右孩子。
数据结构与算法第5章课后答案
page: 1The Home of jetmambo - 第 5 章树和二叉树第 5 章树和二叉树(1970-01-01) -第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n≥0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m (m>0)个()的集合,每个集合都是根结点的子树。
【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。
【解答】度,孩子,双亲⑶一棵二叉树的第i(i≥1)层最多有()个结点;一棵有n(n>0)个结点的满二叉树共有()个叶子结点和()个非终端结点。
【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。
⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。
【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。
⑸深度为k的二叉树中,所含叶子的个数最多为()。
【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。
⑹具有100个结点的完全二叉树的叶子结点数为()。
【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。
⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。
则该树中有()个叶子结点。
【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。
⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。
c++关于树的知识点
c++关于树的知识点C++关于树的知识点一、树的基本概念1、树是一种有序的数据结构,它由节点组成,每个节点有一个根,一个父节点,可以有零个或多个子节点。
2、每个节点都有一个唯一的路径,从根节点到它的子节点的路径称为节点的路径。
3、树是递归的数据结构,每一个子节点都可以看作是另一个子树。
4、树的高度是指根节点到最深节点的最长路径的长度。
5、树的深度是指一个节点到另一个节点的最短路径的长度。
二、树的属性1、二叉树:每个节点最多有两个子节点的树称为二叉树。
2、多叉树:每个节点有多个子节点的树称为多叉树。
3、多路树:每个节点有多个子树的树称为多路树。
4、完全二叉树:每个节点都有两个或没有子节点,并且所有叶子节点都在同一层的树称为完全二叉树。
5、完美二叉树:每个节点都有两个子节点,并且所有叶子节点都在同一层的树称为完美二叉树。
三、树的操作1、插入:将新节点插入树中的特定位置。
2、删除:从树中删除特定节点。
3、查找:在树中查找特定节点。
4、遍历:按特定顺序访问树中的所有节点。
四、树的遍历方法1、前序遍历:先访问根节点,再访问它的左右子树。
2、中序遍历:先访问根节点的左子树,再访问根节点,最后访问右子树。
3、后序遍历:先访问左右子树,然后访问根节点。
4、层次遍历:从根节点开始,沿着树的宽度访问,先访问第一层,再访问第二层,依次类推。
五、树的应用1、树可以用来表示文件系统结构。
2、树也可以用来表示组织结构,如政府机构和企业组织结构。
3、树是高效的数据结构,通常用于存储和检索大量数据。
4、树还被用来表示数学表达式,语法分析、决策分析等。
数据结构C++版第5章 树和二叉树 ppt课件
A
B
C
D
E
A
DEF G
GBF C
16
5.1 树的逻辑结构
树结构和线性结构的比较
线性结构
树结构
第一个数据元素
根结点(只有一个)
无前驱
无双亲
最后一个数据元素 无后继
叶子结点(可以有多个) 无孩子
其它数据元素
其它结点
一个前驱,一个后继
一对一
一个双亲,多个孩子
一对多
17
5.1 树的逻辑结构
树的遍历操作
树的遍历:从根结点出发,按照某种次序访问树中所有结点 ,使得每个结点被访问一次且仅被访问一次。 Nhomakorabea……
……
6
5.1 树的逻辑结构
树的基本术语
结点的度:结点所拥有的子树的个数。 树的度:树中各结点度的最大值。
A
BC
D
E F GH I J
KL
M
7
5.1 树的逻辑结构
树的基本术语
叶子结点:度为0的结点,也称为终端结点。 分支结点:度不为0的结点,也称为非终端结点。
A
BC
D
E F GH I J
KL
M
下标 data 0A
B
C
1B 2C
3D
DEF G H
第 5 章 树和二叉树
本章的主要内容是
➢树的逻辑结构 ➢树的存储结构 ➢二叉树的逻辑结构 ➢二叉树的存储结构及实现 ➢树、森林与二叉树的转换
1
5.1 树的逻辑结构
树的定义
树:n(n≥0)个结点的有限集合。 当n=0时,称为空树; 任意一棵非空树满足以下条件: ⑴ 有且仅有一个特定的称为根的结点; ⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互 不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树, 并称为这个根结点的子树。
二叉树的顺序存储结构代码
二叉树的顺序存储结构代码介绍二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。
在计算机中,我们通常使用顺序存储结构来表示二叉树。
顺序存储结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。
本文将详细介绍二叉树的顺序存储结构代码,包括初始化、插入节点、删除节点以及遍历等操作。
二叉树的顺序存储结构代码实现初始化二叉树首先,我们需要定义一个数组来存储二叉树的节点。
假设数组的大小为n,则二叉树的最大节点数量为n-1。
# 初始化二叉树,将数组中所有元素置为空def init_binary_tree(n):binary_tree = [None] * nreturn binary_tree插入节点在二叉树的顺序存储结构中,节点的插入操作需要保持二叉树的特性,即左子节点小于父节点,右子节点大于父节点。
插入节点的算法如下:1.找到待插入位置的父节点索引parent_index。
2.如果待插入节点小于父节点,将其插入到父节点的左子节点位置,即数组索引2*parent_index+1处。
3.如果待插入节点大于父节点,将其插入到父节点的右子节点位置,即数组索引2*parent_index+2处。
# 插入节点def insert_node(binary_tree, node):index = 0 # 当前节点的索引值,初始值为根节点的索引值while binary_tree[index] is not None:if node < binary_tree[index]:index = 2 * index + 1 # 插入到左子节点else:index = 2 * index + 2 # 插入到右子节点binary_tree[index] = node删除节点删除节点需要保持二叉树的特性,即在删除节点后,仍然满足左子节点小于父节点,右子节点大于父节点的条件。
删除节点的算法如下:1.找到待删除节点的索引delete_index。
数据结构中的树、图、查找、排序
数据结构中的树、图、查找、排序在计算机科学中,数据结构是组织和存储数据的方式,以便能够有效地对数据进行操作和处理。
其中,树、图、查找和排序是非常重要的概念,它们在各种算法和应用中都有着广泛的应用。
让我们先来谈谈树。
树是一种分层的数据结构,就像是一棵倒立的树,有一个根节点,然后从根节点向下延伸出许多分支节点。
比如一个家族的族谱,就可以用树的结构来表示。
最上面的祖先就是根节点,他们的后代就是分支节点。
在编程中,二叉树是一种常见的树结构。
二叉树的每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉搜索树是一种特殊的二叉树,它具有特定的性质,即左子树中的所有节点值都小于根节点的值,而右子树中的所有节点值都大于根节点的值。
这使得在二叉搜索树中查找一个特定的值变得非常高效。
二叉搜索树的插入和删除操作也相对简单。
插入时,通过比较要插入的值与当前节点的值,确定往左子树还是右子树移动,直到找到合适的位置插入新节点。
删除节点则稍微复杂一些,如果要删除的节点没有子节点,直接删除即可;如果有一个子节点,用子节点替换被删除的节点;如果有两个子节点,通常会找到右子树中的最小节点来替换要删除的节点,然后再删除那个最小节点。
接下来,我们聊聊图。
图是由顶点(也称为节点)和边组成的数据结构。
顶点代表对象,边则表示顶点之间的关系。
比如,社交网络中的用户可以看作顶点,用户之间的好友关系就是边。
图可以分为有向图和无向图。
有向图中的边是有方向的,就像单行道;无向图的边没有方向,就像双向车道。
图的存储方式有邻接矩阵和邻接表等。
邻接矩阵用一个二维数组来表示顶点之间的关系,如果两个顶点之间有边,对应的数组元素为 1,否则为 0。
邻接表则是为每个顶点建立一个链表,链表中存储与该顶点相邻的顶点。
图的遍历是图算法中的重要操作,常见的有深度优先遍历和广度优先遍历。
深度优先遍历就像是沿着一条路一直走到底,然后再回头找其他路;广度优先遍历则是先访问距离起始顶点近的顶点,再逐步扩展到更远的顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲树的定义和二叉树的顺序存储
重点:二叉树的性质、顺序存储
难点:二叉树性质的应用
一、树的定义和和基本术语
1.定义
树是n个结点的有限集。
在任意一棵非空树中,
(1)有且仅有一个称为根的结点。
(2)其余的结点被分为若干个互不相交的有限集,每个集合又是一棵树,称为该树的子树。
2.树的表示法
图示法
广义表表示法
集合表示法
缩进表示法
3.结点的分类
终端结点和非终端结点
根、叶子、分支
双亲、孩子、祖先、子孙、兄弟、堂兄弟4.度
结点的度
树的度
5.深度(高度/层数)
结点深度
树的深度
6.有序树与无序树
7.有向树与无向树
8.n元树:度为n
(d) 缩进表示法
图5.1 树的几种表示法
9.位置树:有序树,每个结点位置固定 *10.m 叉树:m 元位置树 11.森林:多个树构成。
**12.结论:n 个结点的树中一定有n-1条边!!! e=n-1
二、二叉树的性质
1.二叉树的定义
二叉树或者为空,或者是由一个根结点和两个互不相交的分别称为左子树和右子树的二叉树构成。
2.二叉树的五种形态
3.二叉树性质
性质1:在二叉树的第i 层上至多有2i-1个结点。
性质2:深度为k 的二叉树至多有2k -1结点。
**性质3:在二叉树中,叶子结点总数总比度为2的结点总数多一个。
n0=n2+1 证明:
设n1和n 为度为1的结点总数和整个结点总数。
则,n0+n1+n2=n (1) 又 n1+n2*2=n-1 (2) 作差并整理,得 n0=n2+1 证毕
(a) 满二叉树 (b) 完全二叉树 图5.5 满二叉树与完全二叉树
满二叉树和完全二叉树
下面的性质均以完全二叉树为前提!!!
性质4:有n个结点的完全二叉树的深度为log2n +1。
2k-1-1≤n≤2k-1
(略)
性质5:对于完全二叉树,双亲i/2,左孩子2i,右孩子2i+1。
性质6:对于完全二叉树,结点个数为偶数时,n1=1,否则n1=0。
性质7:对于完全二叉树,编号大于n/2的均为叶子结点。
例,已知一棵完全二叉树中有723个结点,问
(1)树的高度?
(2)最后两层上各有多少个结点?
(3)n0、n1、n2各是多少?
解:(1)log2723 +1= log2512 +1=10
(2)第9层有:29-1=256个,第10层上有:723-(29-1)=723-511=212 (3)n1=0, n2=361 , n0=362 (n0=n2+1)
三、二叉树的顺序存储
利用一维数组将二叉树按完全(满)二叉树的形状存储,注意虚结点。
○
○
○
○
○
1.类型定义
#define VirNode ‘‘ /* 用空格符描述“虚结点” */ #define MAXSIZE 64
typedef char ElemType;
typedef ElemType SqBitTree[MAXSIZE];
0号单元存结点总数(满二叉树),(有时也存高度)
2.基本操作实现
(1)建立二叉树
void crebitree(SqBitTree BT,int n) /* n为二叉树真实结点数*/
{ int i,j,m;
i=1; m=0;
while(m<n)
{ for(j=i;j<2*i;j++)
{ scanf("%c",BT+j);
if(BT[j]!=VirNode) m++;
}
i=2*i;
}
BT[0]=i-1;
}
(2)层次遍历(输出)
void levellist(SqBitTree BT)
{ int i,j;
i=1;
while(i<=BT[0])
{ for(j=i;j<2*i;j++)
if(BT[j]==VirNode) printf("*");
else printf("%c",BT[j]);
printf("\n");
i*=2;
}
}
(3)求二叉树的高度
int high(SqBitTree BT)
{ int h=0,i;
i=1;
while(i<=BT[0])
{ h++;i*=2;}
return h;
}
(4)交换所有结点的左右子树
void exchlr(SqBitTree BT)
{ int i,m,n;ElemType t;
i=2;
while(i<BT[0])
{ for(m=i,n=2*i-1;m<n;m++,n--)
{ t=BT[m];BT[m]=BT[n];BT[n]=t;}
i*=2;
}
}
(5)统计各类结点的数目(n0,n1,n2)
int countleaf(SqBitTree BT)
{ int i,n=0;
for(i=1;i<=BT[0]/2;i++)
if(BT[i]!=VirNode&&BT[2*i]==VirNode&&BT[2*i+1]==VirNode) n++;
for(;i<=BT[0];i++)
if(BT[i]!=VirNode) n++;
return n;
}
int countn1(SqBitTree BT)
{ int i,n=0;
for(i=1;i<=BT[0]/2;i++)
if(BT[i]!=VirNode&&(BT[2*i]==VirNode&&BT[2*i+1]!=VirNode||
BT[2*i]!=VirNode&&BT[2*i+1]==VirNode))
n++;
return n;
}
int countn2(SqBitTree BT)
{ int i,n=0;
for(i=1;i<=BT[0]/2;i++)
if(BT[i]!=VirNode&&BT[2*i]!=VirNode&&BT[2*i+1]!=VirNode)
n++;
return n;
}
main()
{ SqBitTree T;int n;
clrscr();
crebitree(T,5); (见右侧图)
levellist(T);
printf("High=%d\n",high(T));
exchlr(T);
levellist(T);
printf("n2=%d\n",countn2(T));
getch();
}
作业:查找值为x的第一个结点,并输出其双亲结点和孩子结点的值。