遗传算法详解

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。

运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。

因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。

1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。

常见的编码方式有二进制编码、实数编码等。

2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。

3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。

4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。

5.交叉操作:通过交叉配对和重组,生成新的个体。

6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。

遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。

二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。

以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。

同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。

2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。

在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。

3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。

在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。

4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。

在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。

这启示我们在生活中要学会竞争与合作,互相促进,共同成长。

遗传算法的基本原理及流程

遗传算法的基本原理及流程

遗传算法的基本原理及流程遗传算法(Genetic Algorithm,简称GA)是一种通过模拟自然界进化过程来求解优化问题的算法。

它是一种群体性优化算法,最初由美国学者J. Holland提出,目前已经被广泛应用于优化、搜索、分类、数据挖掘等领域。

本文将从基本原理和流程两方面介绍遗传算法。

一、基本原理1.1 模拟自然进化过程遗传算法的灵感来源于自然界,它主要是模拟了生物进化的过程。

在遗传算法中,问题的解被表示成一个个体,每个个体都具有一定的适应度(Fitness),代表着它对问题的解决程度。

所有个体组成一个种群(Population),这个种群包含了多个可能的解决方案。

1.2 遗传操作在遗传算法中,种群经过不断的遗传操作(Cross、Mutation、Selection),产生新的个体,新个体替代原个体,直到达到最优解。

其操作的具体过程如下:(1)Cross:交叉操作,即将两个个体的某些部分进行交换,创造出新的个体。

(2)Mutation:变异操作,即对某个个体的某些部分进行修改,创造出一个新个体。

(3)Selection:选择操作,根据个体的适应度对种群进行选择,留下较优的个体,淘汰劣质的个体。

1.3 评价适应度在遗传算法中,每个个体都有一个适应度值,代表着解决问题的效果。

评价适应度通常采取如下方式:(1)目标函数:根据问题的定义,构建一个目标函数,根据该函数的值评价个体的适应度。

(2)实验法:在实际操作中,通过实验方法进行评价,得到与问题解决程度相关的数据。

二、流程介绍2.1 初始化遗传算法的第一步是初始化,首先随机生成一批个体,构成种群。

个体的生成可以采用数值或二进制方式。

在这个过程中,可以设置种群大小、交叉率、变异率等参数。

2.2 选择根据个体的适应度值,从当前种群中选择一部分个体作为下一代的种群。

选择的过程中,可以采用轮盘赌(Roulette Wheel)选择等方式。

2.3 交叉在构建新一代种群时,采用交叉操作,即两个个体随机交换某一部分基因。

《遗传算法详解》课件

《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率

遗传算法及几个例子

遗传算法及几个例子

遗传算法及几个例子遗传算法是一种模拟自然选择和遗传机制的优化算法。

它是由约翰·霍兰德(John Holland)于1975年首次提出的。

遗传算法通过模拟生物的进化过程,利用适者生存的原则来问题的最优解。

遗传算法的主要应用领域包括优化问题、机器学习、组合优化、图像处理等。

本文将介绍遗传算法的工作原理及几个应用实例。

首先,遗传算法的工作原理是模拟自然界的进化过程。

它由三个基本操作组成:选择、交叉和变异。

选择操作是指根据适应度函数选择出优秀个体,将它们作为父代参与下一代的繁衍。

适应度函数是用来评估个体在问题空间中的优劣程度的函数。

交叉操作是指将两个父代个体的染色体进行交换,产生子代个体。

交叉操作可以通过染色体的交叉点位置进行分类,如一点交叉、多点交叉、均匀交叉等。

变异操作是指对个体的部分基因进行突变,以增加空间的多样性。

变异操作在遗传算法中起到"探索"新解的作用。

下面是几个遗传算法的应用实例:1. 旅行商问题(Traveling Salesman Problem,TSP)旅行商问题是指在给定的一系列城市中,找到一条路径使得旅行商遍历每个城市且每个城市仅访问一次,最终回到起点城市。

遗传算法可以通过优化路径找到满足条件的最短路径。

2.集装箱装载问题集装箱装载问题是指如何在给定的一系列货物和一些规定的集装箱中,找到一种最佳的装载方案,以使得尽可能多的货物被装载到集装箱中。

遗传算法可以通过调整货物装载顺序和集装箱布局等来解决这个问题。

3.入侵检测系统入侵检测系统(Intrusion Detection System,IDS)用于检测计算机网络中的恶意入侵行为。

遗传算法可以通过学习适应网络环境的特征和规则,以准确地识别出正常和异常的网络流量。

4.机器学习中的特征选择和参数优化在机器学习任务中,特征的选择和参数的优化对于模型性能的提升非常重要。

遗传算法可以通过优化特征子集的选择和调整模型参数的取值,来提高机器学习模型的性能。

遗传算法基本概念

遗传算法基本概念

遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。

遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。

二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。

其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。

1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。

常用的编码方式有二进制编码、实数编码和排列编码等。

2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。

适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。

3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。

常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。

4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。

常用的交叉方法有单点交叉、多点交叉和均匀交叉等。

5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。

常用的变异方法有随机变异、非一致性变异和自适应变异等。

三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。

具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。

2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。

3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。

4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。

5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

遗传算法的详解及应用

遗传算法的详解及应用

遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。

在人工智能和优化问题中得到了广泛的应用。

本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。

一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。

在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。

在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。

通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。

遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。

这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。

所以我们可以认为群体是由很多染色体组成的。

2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。

其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。

在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。

3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。

例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。

4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。

例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。

5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。

遗传算法的原理与实现

遗传算法的原理与实现

遗传算法的原理与实现遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。

它基于通过模拟遗传过程实现问题求解的思想,广泛应用于优化问题、机器学习、人工智能等领域。

本文将介绍遗传算法的基本原理与实现方法。

一、原理介绍1.1 遗传算法的基本概念遗传算法是由美国计算机科学家John Holland于1975年提出的,主要基于生物进化理论,以自然选择、遗传遗传和变异为基础。

它通过模拟自然界的进化过程,在解决复杂问题时搜索全局最优解或近似最优解。

1.2 基因编码遗传算法中的基本单位是染色体,染色体由一串基因组成。

基因编码是将待解决问题的参数转化为染色体上的一串二进制码或实数值,以便进行遗传操作。

1.3 适应度函数适应度函数(Fitness function)用于评价染色体的优劣程度。

它根据问题的性质设计,能够将每个染色体映射为一个实数值,表示其在解空间中的优化程度。

1.4 选择操作选择操作是基于适应度函数,按照染色体适应度高低进行选择,优秀的染色体被选中,普通的染色体可能也有一定概率被选中,而较差的染色体会被淘汰。

选择操作中常用的方法有轮盘赌选择和锦标赛选择。

1.5 交叉操作交叉操作是模拟自然界的杂交过程,用于生成新的个体。

在交叉操作中,从两个父代染色体中随机选择一点(交叉点),将两条染色体按照交叉点分隔,交叉生成两个新的个体。

1.6 变异操作变异操作是引入新的个体差异的过程。

在变异操作中,随机地选择染色体上的一个基因位,进行基因值的突变。

变异操作的目的是增加解的多样性,防止陷入局部最优解。

二、实现方法2.1 初始化种群遗传算法首先需要初始化一个种群,种群中的每个个体即为一个染色体,染色体通过基因编码来表示问题的解空间。

通常使用随机生成的初始解来初始化种群。

2.2 评估适应度对种群中的每个个体,使用适应度函数来评估其优劣程度。

适应度越高,个体在选择中的概率越大。

通过评估适应度,可以进一步确定种群中的优秀个体。

遗传算法的基本遗传操作及操作原理

遗传算法的基本遗传操作及操作原理

遗传算法的基本遗传操作及操作原理
遗传算法是一种模拟自然界进化的优化算法,利用遗传学中的基本遗传操作模拟自然界的进化过程,通过模拟种群的遗传变异、选择和交叉等操作,在优化问题的搜索空间中寻找最优解。

遗传算法包含四个基本遗传操作:选择、交叉、变异和复制。

1. 选择(Selection):选择是从种群中选出具有适应性较高的个体,将其遗传给下一代的过程。

选择过程的目标是从种群中选择最优解,即适应度最高的个体。

2. 交叉(Crossover):交叉是将两个个体的染色体部分互相交换,产生新的个体。

交叉的目的是产生新的个体,在新个体中保留原有个体的优点,避免遗传过程中的收敛现象。

3. 变异(Mutation):变异是对某一个个体的染色体进行随机改变,以增加种群的多样性。

变异的目的是为了使种群不断进化,避免陷入局部最优解。

4. 复制(Elitism):复制是指将适应度最高的个体直接复制到下一代,确保种群中的优良基因不被遗传变异所破坏。

遗传算法的基本原理是利用自然进化规律进行搜索,通过不断的遗传操作,逐步优化种群中的染色体,直到找到最优解。

在遗传算法的优化过程中,种群的初始
状态、适应度函数的选择以及遗传操作的选择都对算法的性能有着重要影响。

遗传算法具有适应于不同问题的优点,并且可以在大规模问题中有效地进行搜索。

三分钟学会遗传算法

三分钟学会遗传算法

三分钟学会遗传算法遗传算法此节介绍最著名的遗传算法(GA)。

遗传算法属于进化算法,基本思想是取自“物竞天泽、适者生存”的进化法则。

简单来说,遗传算法就是将问题编码成为染色体,然后经过不断选择、交叉、变异等操作来更新染色体的编码并进行迭代,每次迭代保留上一代好的染色体,丢弃差的染色体,最终达到满足目标的最终染色体。

整个流程由下图构成(手写,见谅 -_-!!)流程图步骤由以下几步构成:编码(coding)——首先初始化及编码。

在此步,根据问题或者目标函数(objective function)构成解数据(solutions),在遗传算法中,该解数据就被称为染色体(chromosome)。

值得一提的是,遗传算法为多解(population based)算法,所以会有多条染色体。

初始化中会随机生成N条染色体,, 这里表示染色体包含了n条。

其中,这里表示第i条染色体由d维数值构成。

GA会以这个N个数据作为初始点开始进行进化。

评估适应度(evaluate fitness)——这一步用染色体来进行目标函数运算,染色体的好坏将被指明。

选择(selection)——从当前染色体中挑选出优良的个体,以一定概率使他们成为父代进行交叉或者变异操作,他们的优秀基因后代得到保留。

物竞天择这里得以体现。

交叉(crossover)——父代的两个两个染色体,通过互换染色体构成新的染色体。

例如下图,父亲母亲各提供两个基因给我。

这样我既保留了父母的基于,同时又有自己的特性。

交叉变异(mutation)——以一定概率使基因发生突变。

该算子一般以较低概率发生。

如下图所示:变异下面我们将一步一步为各位呈现如何用matlab编写一个简单的GA算法。

本问题为实数最小化minimization问题。

我们需要在解空间内找到最小值或近似最小值,此处我们使用sphere函数作为目标函数(读者可以自行修改为其他的目标函数)。

sphere function•初始化:在这一步中,我们将在给定问题空间内生成随机解,代码如下:% %% 初始化% % 输入:chromes_size,dim维数,lb下界,ub 上界% % 输出:chromes新种群function chromes=init_chromes(chromes_size,dim,lb,ub) % 上下界中随机生成染色体 chromes = rand(chromes_size,dim)*(ub-lb)+lb;end•选择:选择是从当前代中挑选优秀的染色体保留以繁殖下一代。

算法】超详细的遗传算法(GeneticAlgorithm)解析

算法】超详细的遗传算法(GeneticAlgorithm)解析

算法】超详细的遗传算法(GeneticAlgorithm)解析01 什么是遗传算法?1.1 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

1.2 遗传算法的执行过程(参照百度百科)遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。

初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

第七讲遗传算法

第七讲遗传算法
群体的染色体都将逐渐适应环境,不断进化,最后收敛到 一族最适应环境的类似个体,即得到问题最优解。
一、遗传算法概述
与传统的优化算法相比,遗传算法主要有以下几 个不同之处
遗传算法不是直接作用在参变量集上而是利用参变量集 的某种编码 遗传算法不是从单个点,而是从一个点的群体开始搜索; 遗传算法利用适应值信息,无须导数或其它辅助信息; 遗传算法利用概率转移规则,而非确定性规则。
三、简单遗传算法
遗传算法基本步骤:
把问题的解表示成 “染色体”,在算法中就是以二进 制编码的串,给出一群 “染色体”,也就是假设的可行 解 把这些可行解置于问题的 “环境” 中,按适者生存的原 则,选取较适应环境的“染色体”进行复制,并通过交叉、 变异过程产生更适应环境的新一代 “染色体” 群
三、简单遗传算法
⑤ 计算群体中的个体或染色体解码后的适应值; ⑥ 按照遗传策略,运用选择、交叉和变异算子作用于群
体,形成下一代群体; ⑦ 判断群体性能是否满足某一指标,或者已完成预定的
迭代次数,不满足则返回第五步,或者修改遗传策略 再返回第六步.
产生初始群体
得到遗结果传是算法是否具满体足终步止条骤件
行解,去掉小的可行解
二、遗传学相关概念
遗传学
9 交叉 10 交叉概率 11 变异 12 变异概率 13 进化、
适者生存
遗传算法
数学
一组染色体上对应基因段 的交换
染色体对应基因段交换的 概率(可能性大小)
染色体水平上基因变化
根据交叉原则产生的 一组新解
闭区间[0,1]上的一个 值,一般为0.65~0.90
s1= 13 (01101), s2= 24 (11000) s3= 8 (01000), s4= 19 (10011)

遗传算法的原理及应用实例

遗传算法的原理及应用实例

遗传算法的原理及应用实例遗传算法是由Holland教授在20世纪六七十年代提出的一种优化算法。

原始的遗传算法是模拟生物进化的过程,经过多次交叉、变异和选择操作,寻找最佳的解决方案。

它的主要特点是全局优化、鲁棒性强、可以处理高维复杂问题。

本文将详细介绍遗传算法的原理及应用实例。

一、遗传算法的原理遗传算法的运行机制与自然选择类似,具体过程包括三个部分:初始化种群、交叉、变异和选择。

首先,将问题的解表示成染色体。

染色体由多个基因组成,每个基因对应一个变量的取值。

然后,生成一个初始种群,其中每个个体包括一个染色体,代表一个解。

接着进行交叉操作和变异操作。

交叉操作是将两个个体的染色体随机选择一段染色体交换,从而产生两个新个体。

变异操作是基于一定概率对某一个个体的染色体进行变异,即基因发生变化。

最后,从新个体和未发生变异的原始个体中留下适应度高的一部分作为下一代父代,进入下一轮循环。

二、遗传算法的应用实例1. 数据挖掘遗传算法可以用于分类、聚类和关联规则挖掘等数据挖掘任务。

例如,可以通过遗传算法优化数据集中的特征权重,使得分类器性能更好。

还可以使用遗传算法生成关联规则,找到一些潜在的关联规则。

2. 机器学习遗传算法可以用于解决参数寻优的问题。

例如,在神经网络中,可以使用遗传算法优化神经网络的权重和偏置,从而提高神经网络的性能。

3. 优化设计遗传算法也可以用于优化设计问题,例如在工程设计问题中,可以把需要设计的问题转化成为一个优化问题,由遗传算法寻找最优解。

比如,在结构设计中,可以使用遗传算法寻找材料最优设计,优化设计中的约束很多。

4. 游戏遗传算法也可以用来训练智能体解决游戏问题,例如围棋、下棋等。

通过演化过程,逐渐提高智能体的适应度,并生成更好的智能体来玩游戏。

总之,遗传算法具有实现灵活、收敛速度较快且不易陷入局部最优解等特点,可以解决各种优化问题,特别是多目标、高维、非线性、非凸和具有约束的优化问题。

随着科学技术的发展,遗传算法在实际问题中的应用将会越来越广泛。

遗传算法总结

遗传算法总结

遗传算法总结简介遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化过程中的遗传机制和自然选择原理的优化方法。

它模拟了自然界的进化过程,通过对问题空间中的个体进行选择、交叉和变异等操作,逐步搜索并优化解的过程。

遗传算法被广泛应用于解决各种优化、搜索和机器学习问题。

基本原理遗传算法的基本原理是通过模拟自然选择和遗传机制,寻找问题空间中的最优解。

其主要步骤包括初始化种群、选择操作、交叉操作、变异操作和确定终止条件等。

1.初始化种群:遗传算法的第一步是生成一个初始种群,其中每个个体代表一个可能的解。

个体的编码可以使用二进制、整数或实数等形式,具体根据问题的特点而定。

2.选择操作:选择操作通过根据适应度函数对种群中的个体进行评估和排序,选择较优的个体作为下一代种群的父代。

通常采用轮盘赌选择、竞争选择等方法来进行选择。

3.交叉操作:交叉操作模拟了生物遗传中的交配过程。

从父代个体中选择一对个体,通过交叉染色体的某个位置,生成下一代个体。

交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式进行。

4.变异操作:变异操作引入了种群中的一定程度的随机性,通过改变个体的染色体或基因,以增加种群的多样性。

变异操作可以是位变异、部分反转、插入删除等方式进行。

5.确定终止条件:遗传算法会循环执行选择、交叉和变异操作,直到满足一定的终止条件。

常见的终止条件有达到最大迭代次数、找到最优解或达到计算时间限制等。

优点和局限性优点•遗传算法可以在大规模问题空间中进行全局搜索,不受问题的线性性和连续性限制。

它适用于解决多目标和多约束问题。

•遗传算法具有自适应性和学习能力,通过不断的进化和优胜劣汰过程,可以逐步收敛到最优解。

•遗传算法易于实现和理解,可以直观地表示问题和解决方案。

局限性•遗传算法需要选择合适的编码方式和适应度函数,以及调整交叉和变异的概率等参数。

这些参数的选择对算法的性能和结果有较大影响,需要经验和调整。

遗传算法的基本原理和优化方法

遗传算法的基本原理和优化方法

遗传算法的基本原理和优化方法遗传算法是一种模拟生物进化过程的优化方法,它模仿生物基因的变异、交叉和与环境的适应等特征,在多维空间中搜索最优解。

本文将详细介绍遗传算法的基本原理和优化方法,以及应用场景和优缺点。

一、基本原理遗传算法的基本原理是通过模拟自然选择,将每个解看作个体,将问题转化为优化个体的适应度,不断迭代,直到找到最优解。

遗传算法的实现包括解码、变异、交叉和选择四个步骤。

解码:将候选解转化为适应度函数可以处理的形式,通常是二进制编码。

变异:对个体染色体进行变异,引入随机性,增加探索性,避免陷入局部最优解。

交叉:对个体染色体进行交叉,产生新的个体,并保留原有染色体中优秀的特征。

选择:根据染色体适应度大小进行筛选,保留优秀个体,淘汰劣秀个体。

二、优化方法遗传算法的优化方法主要包括参数调整、多目标优化和约束优化三个方面。

参数调整:在遗传算法中,有很多参数需要调整,例如种群大小、变异率、交叉率等。

如何选择合适的参数可以大幅提升算法的性能。

多目标优化:多目标优化是指尝试优化多个目标函数,通常会出现一些矛盾的目标。

遗传算法可以用多个适应度函数来表示多个目标,同时生成具有多目标的优化解集。

约束优化:约束优化是指在解决问题中加入一些限制条件,通常存在矛盾。

例如,在选课问题中,学生有时间限制和课程容量限制等约束。

遗传算法可以将这些约束条件引入适应度函数,从而产生可行解。

三、应用场景遗传算法可以应用于很多场景,例如工程设计、拟合分析、图像处理等。

工程设计:在产品设计领域,遗传算法经常用于优化产品参数,比如设计飞机的翼型和大小、优化燃油效率等。

拟合分析:在拟合数据的问题中,遗传算法可以用来寻找最优曲线和最小二乘拟合。

图像处理:对于图像处理中的问题,遗传算法可以用于优化图像处理算法,例如图像分割、滤波和特征提取等。

四、优缺点遗传算法的优点在于它可以自适应地搜索解空间,在寻找全局最优解和局部最优解有较好表现。

同时,遗传算法突出了把优秀的特征从一代迁移到下一代,有很强的稳定性。

(完整版)遗传算法简介及代码详解

(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。

遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。

遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。

初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。

适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。

SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。

遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。

前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。

非常重要的过程。

遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.3 遗传算法的基本操作
一般的遗传算法都包含三个基本操作:复制 一般的遗传算法都包含三个基本操作:复制(reproduction)、 、 交叉(crossover)和变异 和变异(mutation)。 交叉 和变异 。 1. 复制 复制(又称繁殖),是从一个旧种群( ),是从一个旧种群 复制(又称繁殖),是从一个旧种群(old population) ) 中选择生命力强的字符串( 中选择生命力强的字符串(individual string)产生新种群 ) 的过程。或者说,复制是个体位串根据其目标函数f( 的过程。或者说,复制是个体位串根据其目标函数 (即 适值函数)拷贝自己的过程。直观地讲, 适值函数)拷贝自己的过程。直观地讲,可以把目标函数 f看作是期望的最大效益的某种量度。根据位串的适值所 看作是期望的最大效益的某种量度。 看作是期望的最大效益的某种量度 进行的拷贝, 进行的拷贝,意味着具有较高适值的位串更有可能在下一 代中产生一个或多个子孙。显然,在复制操作过程中, 代中产生一个或多个子孙。显然,在复制操作过程中,目 标函数(适值 是该位串被复制或被淘汰的决定因素。 适值)是该位串被复制或被淘汰的决定因素 标函数 适值 是该位串被复制或被淘汰的决定因素。
复制操作的初始种群(旧种群 的生成往往是随机产生 复制操作的初始种群 旧种群)的生成往往是随机产生 旧种群 例如,通过掷硬币20次产生维数 次产生维数n= 的初始种群如下 的。例如,通过掷硬币 次产生维数 =4的初始种群如下 (正面 ,背面 : 正面=1,背面=0): 正面 01101 11000 01000 10011 显然, 显然,该初始种群可以看成是一个长度为五位的无符 号二进制数,将其编成四个位串,并解码为十进制的数: 号二进制数,将其编成四个位串,并解码为十进制的数: 位串1 01101 13 位串1: 位串2 11000 24 位串2: 位串3 01000 8 位串3: 位串4 10011 19 位串4:
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。按表5-1可绘制如图的转轮 可绘制如图的转轮。 的一个扇区。按表 可绘制如图的转轮。 复制时, 复制时,只要简单地转动这个按权重 划分的转轮4次 从而产生4个下一代 划分的转轮 次,从而产生 个下一代 的种群。例如对于表5-1中的位串 中的位串1, 的种群。例如对于表 中的位串 , 其适值为169,为总适值的 其适值为 ,为总适值的14.4%。 。 因此, 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 的概率为 。 代时, 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 的转轮,产生一个复制的候选者。 这样位串的适值越高, 这样位串的适值越高,在其下代中 图5-1 产生的后代就越多。 产生的后代就越多。
一般的交叉操作过程: 一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。 遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体; 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。 表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 列出了交叉操作之后的结果数据, 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位 的具体过程。首先,随机配对匹配集中的个体,将位串1 配对, 串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4, 配对;然后,随机选取交叉点,设位串1 =4, 二者只交换最后一位,从而生成两个新的位串, 二者只交换最后一位,从而生成两个新的位串,即
遗传算法的特点
同常规优化算法相比,遗传算法有以下特点: 同常规优化算法相比,遗传算法有以下特点: 遗传算法是对参数的编码进行操作, ① 遗传算法是对参数的编码进行操作,而非对参 数本身。 数本身。 遗传算法是从许多点开始并行操作, ② 遗传算法是从许多点开始并行操作,并非局限 于一点, 于一点 , 从而可有效防止搜索过程收敛于局部最 优解。 优解。 遗传算法通过目标函数计算适值, ③ 遗传算法通过目标函数计算适值,并不需要其 它推导和附加信息,因而对问题的依赖性较小。 它推导和附加信息,因而对问题的依赖性较小。
当一个位串被选中时, 当一个位串被选中时,此位串将被完整地复 然后将复制位串送入匹配集(缓冲区) 制,然后将复制位串送入匹配集(缓冲区)中。 旋转4次转轮即产生 个位串。 次转轮即产生4个位串 旋转 次转轮即产生 个位串。这4个位串是上代种 个位串是上代种 群的复制,有的位串可能被复制一次或多次, 群的复制,有的位串可能被复制一次或多次,有 的可能被淘汰。在本例中,位串3被淘汰 位串4 被淘汰, 的可能被淘汰。在本例中,位串 被淘汰,位串 被复制一次。如表6-2所示 所示, 被复制一次。如表 所示,适值最好的有较多的 拷贝, 拷贝,即给予适合于生存环境的优良个体更多繁 殖后代的机会,从而使优良特性得以遗传,反之, 殖后代的机会,从而使优良特性得以遗传,反之, 最差的则被淘汰。 最差的则被淘汰。
遗传算法的寻优规则是由概率决定的, ④ 遗传算法的寻优规则是由概率决定的,而非确 定性的。 定性的。 遗传算法在解空间进行高效启发式搜索, ⑤ 遗传算法在解空间进行高效启发式搜索,而非 盲目地穷举或完全随机搜索。 盲目地穷举或完全随机搜索。 ⑥ 遗传算法对所求解的优化问题没有太多的数学 要求。 要求。 遗传算法具有并行计算的特点, ⑦ 遗传算法具有并行计算的特点,因而可通过大 规模并行计算来提高计算速度。 规模并行计算来提高计算速度。
5.遗传算法 遗传算法
遗传算法( 简称GA) 遗传算法(genetic algorithms,简称 )是人工智能 简称 的重要分支,是基于达尔文进化论, 的重要分支,是基于达尔文进化论,在微型计算机上模拟 生命进化机制而发展起来的一门新学科。它根据适者生存、 生命进化机制而发展起来的一门新学科。它根据适者生存、 优胜劣汰等自然进化规则来进行搜索计算和问题求解。 优胜劣汰等自然进化规则来进行搜索计算和问题求解。对 许多用传统数学难以解决或明显失效的非常复杂问题, 许多用传统数学难以解决或明显失效的非常复杂问题,特 别是最优化问题, 提供了一个行之有效的新途径 提供了一个行之有效的新途径。 别是最优化问题,GA提供了一个行之有效的新途径。近 年来, 年来,由于遗传算法求解复杂优化问题的巨大潜力及其在 工业控制工程领域的成功应用, 工业控制工程领域的成功应用,这种算法受到了广泛的关 注。
选择决定生物进化的方向。在进化过程中, 选择决定生物进化的方向。在进化过程中,有的要保 有的要被淘汰。 留,有的要被淘汰。自然选择是指生物在自然界的生存环 境中适者生存,不适者被淘汰的过程。 境中适者生存,不适者被淘汰的过程。通过不断的自然选 有利于生存的变异就会遗传下去,积累起来, 择,有利于生存的变异就会遗传下去,积累起来,使变异 越来越大,逐步产生了新的物种。 越来越大,逐步产生了新的物种。 生物就是在遗传、 生物就是在遗传、变异和选择三种因素的综合作用过 程中,不断地向前发展和进化。 程中,不断地向前发展和进化。选择是通过遗传和变异起 作用的,变异为选择提供资料, 作用的,变异为选择提供资料,遗传巩固与积累选择的资 而选择则能控制变异与遗传的方向, 料,而选择则能控制变异与遗传的方向,使变异和遗传向 着适应环境的方向发展。 着适应环境的方向发展。遗传算法正是吸取了自然生物系 适者生存、优胜劣汰”的进化原理, 统“适者生存、优胜劣汰”的进化原理,从而使它能够提 供一个在复杂空间中随机搜索的方法, 供一个在复杂空间中随机搜索的方法,为解决许多传统的 优化方法难以解决的优化问题提供了新的途径。 优化方法难以解决的优化问题提供了新的途径。
通过一个5位无符号二进制数, 通过一个 位无符号二进制数,可以得到一个 位无符号二进制数 的数值x,它可以是系统的某个参数。 从0到31的数值 ,它可以是系统的某个参数。计算 到 的数值 目标函数或适值f(x)=x2,其结果如表 所示。计算 其结果如表6-1所示 所示。 目标函数或适值 种群中所有个体位串的适值之和,同时, 种群中所有个体位串的适值之和,同时,计算种群 全体的适值比例,其结果示于表中。 全体的适值比例,其结果示于表中。
பைடு நூலகம்
5.1.1 基本遗传学基础
遗传算法是根据生物进化的模型提出的一种优化算法。 遗传算法是根据生物进化的模型提出的一种优化算法。 自然选择学说是进化论的中心内容,根据进化论, 自然选择学说是进化论的中心内容,根据进化论,生物的 发展进化主要由三个原因,即遗传、变异和选择。 发展进化主要由三个原因,即遗传、变异和选择。 遗传是指子代总是和亲代相似。 遗传是指子代总是和亲代相似。遗传性是一切生物所 共有的特性,它使得生物能够把其特性、性状传给后代。 共有的特性,它使得生物能够把其特性、性状传给后代。 遗传是生物进化的基础。 遗传是生物进化的基础。 变异是指子代和亲代有某些不相似的现象, 变异是指子代和亲代有某些不相似的现象,即子代永 远不会和亲代完全一样。它是一切生物所具有的共有特性, 远不会和亲代完全一样。它是一切生物所具有的共有特性, 是生物个体之间相互区别的基础。引起变异的原因主要是 是生物个体之间相互区别的基础。 生活环境的影响及杂交等。 生活环境的影响及杂交等。生物的变异性为生物的进化和 发展创造了条件。 发展创造了条件。
5.1.2 遗传算法的原理和特点
遗传算法将生物进化原理引入待优化参数形成的编码 串群体中, 串群体中,按着一定的适值函数及一系列遗传操作对各个 体进行筛选,从而使适值高的个体被保留下来, 体进行筛选,从而使适值高的个体被保留下来,组成新的 群体,新群体包含上一代的大量信息, 群体,新群体包含上一代的大量信息,并且引入了新的优 于上一代的个体。这样周而复始, 于上一代的个体。这样周而复始,群体中各个体适值不断 提高,直至满足一定的极限条件。此时, 提高,直至满足一定的极限条件。此时,群体中适值最高 的个体即为待优化参数的最优解。 的个体即为待优化参数的最优解。正是由于遗传算法独具 特色的工作原理,使它能够在复杂空间进行全局优化搜索, 特色的工作原理,使它能够在复杂空间进行全局优化搜索, 并且具有较强的鲁棒性;另外,遗传算法对于搜索空间, 并且具有较强的鲁棒性;另外,遗传算法对于搜索空间, 基本上不需要什么限制性的假设(如连续、 基本上不需要什么限制性的假设(如连续、可微及单峰 等)。
相关文档
最新文档