北师大版七年级数学期中考试考前知识点大总结
北师大七年级数学上册期中复习资料
七年级期中复习资料☞考点归纳第一章:丰富的图形世界1.几何图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
长方形、正方形、三角形、圆等都是平面图形。
立体图形与平面图形:许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
2.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线;线和线相交的地方是点;几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
(2)点动成线,线动成面,面动成体。
3.生活中的立体图形柱体包括圆柱和棱柱棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……4.棱柱及其有关概念棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n 棱柱有两个底面,n个侧面,共( n+2 )个面; 3n 条棱, n 条侧棱;2n 个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5.正方体的平面展开图 11 种6.截一个正方体用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7.三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
新北师大版七年级数学知识点汇总
新北师大版七年级数学知识点汇总算数和代数1. 整数•正整数、负整数、零•相反数•绝对值及其性质•定义和判断整数的大小关系•整数的加减法、乘法、除法及其混合运算•分数与整数的乘除运算2. 分数•分数的定义及其表示法•分数与整数的互化(化分数为整数,化整数为分数)•分数的简化与约分•分数的加减法、乘法、除法及其混合运算•分数的比较3. 小数•小数的定义•小数和分数的互化•小数的加减乘除及其混合运算•小数的比较•有理数和无理数4. 代数式•代数式的定义及其基本运算(加、减、乘、除)•代数式的合并同类项及其应用•代数式的提公因式及其应用5. 一元一次方程式•一元一次方程式的基本概念,如:方程式、未知数、系数、常数项•一元一次方程式的解法,如:等式两边加减同一数、等式两边乘除同一数、移项变号等•一元一次方程式的解的判定几何1. 图形的分类与性质•点、线、线段、射线、角、平面及其相互关系•平行、垂直、重合、相交、夹角等概念•三角形、四边形、圆等几何图形的定义及其性质2. 三角形•三角形的定义、分类及其性质•三角形内角和定理及其推论•相似三角形及其性质3. 三角形的运用•已知三边或两边及夹角求第三边•已知一边及与其相邻的两个角求另外两边和角•判断三角形的形状和大小•利用相似三角形解决实际问题4. 圆的运用•圆的定义及其性质•圆的相交关系和判定方法•垂直线段的性质及其应用•利用圆解决实际问题统计与概率1. 数据的收集和整理•调查数据的收集方式和数据来源•频数和频数分布表•分组数据的制作及其分析2. 数据的描述和应用•中心倾向的度量,如:平均数、中位数、众数•数据的离散程度度量,如:极差、方差、标准差•相关性分析3. 简单概率•随机事件和样本空间•概率及其性质,如:互斥事件、独立事件、全概率公式、贝叶斯公式•组合数及其计算方法以上是新北师大版七年级数学知识点的汇总,希望对你的学习有所帮助。
北师大七年级数学知识点归纳总结
北师大七年级数学知识点归纳总结一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,是有理数;0.25是有限小数,可化为(1)/(4),是分数,也是有理数;0.3̇是无限循环小数,可化为(1)/(3),是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,还可能表示无理数)。
- 例如:在数轴上表示2,就是在原点右边距离原点2个单位长度的点;表示-1.5,就是在原点左边距离原点1.5个单位长度的点。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
- 若a与b互为相反数,则a + b=0,反之也成立。
例如:3与-3互为相反数,5+(-5) = 0。
4. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如:| 5| = 5,| - 3|=3。
5. 有理数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数比较大小,绝对值大的反而小。
例如:5>0,0>-2,5>-2;| -3| = 3,| -5| = 5,因为3<5,所以-3>-5。
6. 有理数的加减法。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-2)+(-3)=-(2 + 3)=-5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:5+(-3)=2,(-5)+3=-2。
北师大版七年级数学知识点与典型例题总结大全
3)1.5 ×10−4 = _____________
2
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它
的指数不变,作为积的一个因式。
练习六:计算下列各式。
(1)(5x3 ) ⋅ (−2x2 y),
(2)(−3ab)2 ⋅ (−4b3 )
(3)(−am )2 b ⋅ (−a3b2n ),
1
3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方
的积。) 符号表示:
(ab)n = anbn , (其中n为正整数),
(abc)n = anbncn (其中n为正整数)
练习四:计算下列各式。
1)(2xyz)4 ,
2) (1 a 2b)3 , 2
3) (−2xy 2 )3 ,
6、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)
练习一:
(1)指出下列单项式的系数与指数各是多少。
(1)a
(2)2x3 y 4
(3)23 mn
(2)指出下列多项式的次数及项。
(4) − 2 πr 3
(1)2x3 y 2 + 5m5n − 2
二、整式的运算
(2) − 2x3 y 2 z + 3 ab 4 72
( ),改正:________________________________ ( )改正:________________________________
( )改正:________________________________ ( )改正:________________________________
北师大版七年级数学上册知识点总结
北师大版七年级数学上册知识点总结北师大版七年级数学上册知识点总结1代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。
(分母中含有字母有除法运算的,那么式子叫做分式)1.单项式:数或字母的积(如5n),单个的数或字母也是单项式。
(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。
(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
2.多项式(1)概念:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
(2)多项式的次数:多项式中次数最高的项的次数就是该多项式的次数。
(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:(1)由于单项的项包含了前面的属性符号,所以在排列时,每一项的属性符号仍应视为该项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
3.整式:单项式和多项式统称为整式。
4.列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。
北师大七年级数学知识点
北师大七年级数学知识点一、整数的加减运算整数是由正整数、负整数和零组成的数集。
在整数的加减运算中,我们需要掌握符号相同和符号不同两种情况的运算规律。
当符号相同时,我们将两个整数的绝对值相加,结果的符号与原整数的符号相同;当符号不同时,我们将两个整数的绝对值相减,结果的符号由绝对值较大的整数决定。
二、整数的乘除运算在整数的乘法运算中,符号相同的两个整数相乘,结果为正;符号不同的两个整数相乘,结果为负。
在整数的除法运算中,被除数和除数的符号相同,商为正;被除数和除数的符号不同,商为负。
需要注意的是,整数除法中,除数不能为零。
三、整数的乘方运算整数的乘方运算是指一个整数自己乘以自己若干次的运算。
例如,2的3次方等于2乘以2乘以2,结果为8。
在整数的乘方运算中,需要注意负数的乘方运算,负数的偶次幂为正,负数的奇次幂为负。
四、小数的加减乘除运算小数是整数与小数点组成的数。
在小数的加减乘除运算中,我们需要对齐小数点,然后按照整数的运算规律进行计算。
需要注意的是,小数的乘法运算中,我们需要注意小数位数的乘法规律,小数的除法运算中,我们需要将被除数和除数的小数位数调整为相同,然后按照整数的除法规律进行计算。
五、分数的加减乘除运算分数是有理数的一种形式,由分子和分母组成。
在分数的加减乘除运算中,我们需要找到它们的最小公倍数或最大公约数,然后进行计算。
需要注意的是,分数的除法运算中,我们需要倒数相乘。
六、数的倍数和约数一个数的倍数是指可以被这个数整除的数,例如,6的倍数有6、12、18等。
一个数的约数是指可以整除这个数的数,例如,6的约数有1、2、3、6等。
在求一个数的倍数和约数时,我们可以利用整除的概念进行计算。
七、数的整除和余数当一个数a能被另一个数b整除时,我们称a是b的倍数,b是a 的约数。
例如,12能被3整除,所以12是3的倍数,3是12的约数。
当我们用一个数b去除以另一个数a时,如果除不尽,得到的余数不为零;如果除尽,得到的余数为零。
北师大初一数学知识点总结6篇
北师大初一数学知识点总结6篇北师大初一数学学问点总结篇11、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中全部字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置一样的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开头,到准确的那位止,全部的数字都是有效数字。
13、概率:一个大事发生的可能性的大小,就是这个大事发生的概率。
14、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。
19、自变量:在变化的量中主动发生变化的,变叫自变量。
20、因变量:随着自变量变化而被动发生变化的量,叫因变量。
21、轴对称图形:假如一个图形沿一条直线折叠后,直线两旁的局部能够相互重合,那么这个图形叫做轴对称图形。
22、对称轴:轴对称图形中对折的直线叫做对称轴。
北师大初一数学学问点总结篇21、做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注意学问的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
(完整版)北师大版初一数学知识点总结
初一数学定理知识点汇总[七年级上册]第一章生活中的立体图形1. 圆柱:底面是圆面,侧面是曲面柱体棱体:底面是多边形,侧面是正方形或长方形圆锥:底面是圆面,侧面是曲面2. 锥体棱锥:底面是多边形,侧面都是三角形3•球体:由球面围成的(球面是曲面)4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。
5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。
6. 侧棱:相邻两个侧面的交线叫做侧棱.,所有侧棱长都相等。
7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……9. 长方体和正方体都是四棱柱。
10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
12. 设一个多边形的边数为n(n且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有•也3)条对角线。
213. 圆上两点之间的部分叫做弧.,弧是一条曲线。
14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
15. 凸多边形和凹多边形都属于多边形。
有弧或不封闭图形都不是多边形。
第二章有理数及其运算正整数(如:1, 2, 3 )整数零(0)负整数(如:1, 2, 3 )有理数1 1正分数(如:-,-,5.3, 3.8 )分数21 3 1分数负分数(如:丄,丄,2.3, 4.8 )2 3★数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
★任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)★如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
北师大版初一数学知识点总结(合集5篇)
北师大版初一数学知识点总结第1篇有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。
在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(si gnificant digit)。
上面内容是初中数学有理数的乘除法知识点总结,想必大家都已经做好笔记了,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的'原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
【精品】北师大版七年级上册期中数学知识点总结
七年级上册期中数学知识点总结第一章丰富的图形世界1、常见的几何体(1 ).柱体①正方体:它有8 个顶点、12 条棱、6 个面,其中12 条梭长都相等, 6 个面都是相等的正方形.②长方体:它有8 个顶点、12 条棱、6 个面,其中各个面都是长方形(或正方形),且相对的两个面大小相等.③棱柱体:〔如图( 1 ) ( 2 )〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的梭.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.正方体和长方体是特殊的梭柱,它们都是四棱柱.正方体是特殊的长方体.④圆柱:图(3 )中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.棱柱和圆柱统称柱体.(2 ).锥体3、棱柱及其有关概念:n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
4、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
5、三视图:主视图、左视图、俯视图强化练习:1.用平面去截一个圆柱,可以截得的平面图形是、、(只写出三种即可)2.小明从观察图1所示的两个物体,看到的是图2中的………………( )正面图一A B C D图二3.下列各图经过折叠能围成一个正方体的是(A)(B)(C)(D)4.长方体的截面中,边数最多的多边形是() A.四边形 B.五边形 C.六边形 D.七边形5.下面各正多面体的每个面是同一种图形的是 ( )①正四面体②正六面体③正八面体④正十二面体⑤正二十面体A. ①②③B. ①③④C. ①③⑤D. ①④⑤6.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,___,______.7.如图是一个正方体盒子的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C内的三个数依次为()A.1,-2,0B.0,-2,1C.-2,0,1D.-2,1,08.如图所示的立体图形从上面看到的图形是()第3题图9.用小立方块搭一个几何体,它的主视图与俯视图如下图所示,则它最少需个立方块,最多需个立方块主视图 俯视图10. 根据已知条件搭建几何体或根据已知条件画出另外两个视图,由俯视图画主视图、左视图. 主视图 左视图11. 画出下图几何体的主视图、左视图与俯视图。
北师大版七年级数学上册知识点总结
20XX年北师大版七年级数学上册知识点总结七年级数学考试前,同学们记得把知识点背得滚瓜烂熟。
下面小编为大家精心整理的北师大版七年级数学上册知识点的总结,仅供参考。
北师大版七年级数学上册知识点总结(一)数据的收集与整理1、普查与抽样调查为了特定目的对全部考察对象进行的全面调查,叫做普查。
其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(各个扇形所占的百分比之和为1)圆心角度数=360°×该项所占的百分比。
(各个部分的圆心角度数之和为360°)3、频数直方图频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
北师大版七年级数学上册知识点总结(二)整式及其加减1、代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、、、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a; ③带分数与字母相乘时,应先把带分数化成假分数,如2a应写作④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作137a; 34;注意:a 4分数线具有“÷”号和括号的双重作用。
北师大版数学七年级所有知识点总结
北师大版数学七年级所有知识点总结一、整数的认识与运算1. 整数的概念:正整数、负整数、零。
2. 整数的比较与排序。
3. 整数的加法与减法运算。
4. 整数的乘法与除法运算。
5. 整数的混合运算。
二、分数的认识与运算1. 分数的概念:分子、分母。
2. 分数的比较与排序。
3. 分数的加法与减法运算。
4. 分数的乘法与除法运算。
5. 分数的混合运算。
6. 分数与整数的运算。
三、小数的认识与运算1. 小数的概念:整数部分、小数部分、小数点。
2. 小数的读法与写法。
3. 小数的比较与排序。
4. 小数的加法与减法运算。
5. 小数的乘法与除法运算。
6. 小数与分数的互化。
四、代数式的认识与运算1. 代数式的概念:变量、常数、系数、幂。
2. 代数式的展开与因式分解。
3. 代数式的合并与分拆。
4. 代数式的加法与减法运算。
5. 代数式的乘法与除法运算。
五、平面图形的认识与运算1. 点、线、线段、射线、角的概念。
2. 直线、平行线、垂直线的判定。
3. 三角形、四边形、多边形的特点与分类。
4. 面积的概念与计算。
5. 周长的概念与计算。
六、比例与比例运算1. 比例的概念:比例关系、比例常数。
2. 比例的性质与判断。
3. 比例的计算与应用。
4. 百分数的认识与计算。
5. 利率、税率、折扣率的认识与计算。
七、方程与方程运算1. 方程的概念:等式、未知数。
2. 方程的解与解集。
3. 一元一次方程的解法与应用。
4. 一次方程的加减消元与代入消元法。
5. 一元一次方程组的解法与应用。
八、统计与概率1. 统计的概念:调查、数据、频数、频率。
2. 统计图表的制作与分析。
3. 概率的概念:随机事件、样本空间、概率值。
4. 概率的计算与应用。
九、函数的认识与应用1. 函数的概念:自变量、因变量、函数值。
2. 函数图像的绘制与分析。
3. 函数的性质与判断。
4. 函数的运算与应用。
以上是北师大版数学七年级的所有知识点总结。
通过学习这些知识点,学生可以对整数、分数、小数、代数式、平面图形、比例、方程、统计、概率和函数等数学概念有更深入的认识,并能够掌握相关的运算方法与应用技巧。
最新北师大版七年级数学上册全章检测卷期中期末检测卷含答案解析及单元知识点总结和思维导图
第一章检测卷(总分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.下列几何体中,是圆柱的是()2.下列几何体没有曲面的是()A.圆锥B.圆柱C.球D.棱柱3.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是()4.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面,侧面均为长方形D.从正面、左面、上面看球体得到的图形均为同样大小的圆形5.如图,一个长方形绕轴l旋转一周得到的立体图形是()A.棱锥B.圆锥C.圆柱D.球第5题图第7题图6.如图是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是()7.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥8.下列展开图不能叠合成无盖正方体的是()9.如图,圆柱高为8,底面半径为2,若截面是长方形,则长方形的最大面积为() A.16 B.20 C.32 D.18第9题图第10题图10.一个几何体由几个大小相同的小正方体搭成,其从左面看和从上面看得到的图形如图所示,则搭成这个几何体的小正方体的个数是()A.3个B.4个C.5个D.6个二、填空题(每小题3分,共18分)11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了____________的数学事实.12.下面的几何体中,属于柱体的有______;属于锥体的有_____;属于球体的有______.13.用一个平面去截正方体,截面__________是三角形(填“可能”或“不可能”).14.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于________.第14题图第16题图15.用平面去截一个几何体,如果得到的是长方形,那么所截的这个几何体可能是________________(至少填两种).16.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为__________.三、解答题(共72分)17.(8分)下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.18.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.19.(10分)小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有________种添补的方法;(2)任意画出一种成功的设计图.20.(10分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.21.(12分)如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?22.(11分)用5个相同的正方体搭出如图所示的组合体.(1)分别画出从正面、左面、上面看这个组合体时看到的图形;(2)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同.你认为这个设想能实现吗?若能,画出添加正方体后,从上面看这个组合体时看到的图形;若不能,说明理由.23.(12分)如图所示,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x=________,y=________;(2)如果面“2”是右面,面“4”在后面,则上面是________(填“6”“10”“x”或“y”);(3)图①中,M,N为所在棱的中点,试在图②中找出点M,N的位置,并求出图②中三角形ABM的面积.参考答案与解析1.A 2.D 3.B 4.B 5.C 6.B 7.D 8.C 9.C10.B 解析:由图可知,底层有3个小正方体,第2层有1个小正方体.故搭成这个几何体的小正方体的个数是3+1=4(个).11.点动成线 12.①③⑤⑥ ④ ② 13.可能 14.24cm 3 15.圆柱、长方体(答案不唯一)16.4π或π 解析:(1)当底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;(2)当底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故其底面圆的面积为4π或π.17.解:如图所示.18.解:如图所示.19.解:(1)4(2)答案不唯一,如图.20.解:(1)长方体(2)由题可知,长方体的底面是边长为3cm 的正方形,高是4cm ,则这个几何体的体积是3×3×4=36(cm 3).答:这个几何体的体积是36cm 3.21.解:(1)甲三角形旋转一周可以形成一个圆锥体,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是3.14×62×10-13×3.14×62×10=753.6(立方厘米).22.解:(1)画出的图形如图①所示.(2)能实现.(6分)添加正方体后从上面看到的图形如图②所示,有两种情况.23.解:(1)12 8 (2)6(3)有两种情况.如图甲,三角形ABM 的面积为12×10×5=25.如图乙,三角形ABM 的面积为12×(10+10+5)×10=125.∴三角形ABM 的面积为25或125.第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
七年级数学北师大版的知识点
七年级数学北师大版的知识点要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的攻克、落实。
下面是小编为大家精心整理的七年级数学北师大版的知识点,希望对大家有所帮助。
1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; π不是有理数;(2)注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0 ;(2)注意:a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b 的相反数是- a-b ;4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意: |a|?|b|= |a?b|,5.有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比 0 大,负数永远比 0 小 ; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数>0,小数-大数<0.二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是 1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法; (2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质 1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质 2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质 3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是 1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是 ax+b0 或 ax+b0, (a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质 3 的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
北师大初一数学知识点总结【5篇】
北师大初一数学知识点总结【5篇】北师大初一数学知识点总结【5篇】计算机知识可以帮助我们更好地与现代技术和信息化社会接轨。
艺术知识可以开阔我们的审美视野和文化娱乐活动。
下面就让小编给大家带来北师大初一数学知识点总结,希望大家喜欢!北师大初一数学知识点总结篇1初一下册知识点总结1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:(1)a0=1 (a≠0); a-n= ,(a≠0)。
注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
北师大版七年级数学知识点总结
北师大版七年级数学知识点总结期末复习(七年级数学)学问点,要订一个方案。
下面是学习啦我为大家细心推举的北师大版七年级数学学问点(总结),期望能够对您有所帮忙。
北师大版七年级数学学问点总结(一)同底数幂的除法mnm-n1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aa=a(a0)。
m-nmn2、此法则也可以逆用,即:a = aa(a0)。
零指数幂零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a=1(a0)。
负指数幂任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
北师大版七年级数学学问点总结(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc。
2、运算时留意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,留意运算挨次,结果有同类项时要合并同类项,从而得到最简结果。
多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必需做到不重不漏。
相乘时,要按肯定的挨次进行,即一个多项式的每一项乘以另一个多项式的每一项。
在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用"同号得正,异号得负'。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:2(x+a)(x+b)=x+(a+b)x+ab。
北师大版七年级数学学问点总结(三)有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数打算,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
北师大版七年级数学期中必考点
北师大版七年级数学期中必考点一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)3.数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
(2)方法总结:两个正数比较大小,与小学一致;正数与零比较,正数大于零;正数与负数比较,正数大于负数;负数与零比较,负数小于零;两个负数比较,绝对值大的反而小。
2024年北师大版七年级数学下册知识点总结(二篇)
2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。
方程的解是使得方程成立的数。
2.解方程:通过变量的运算和移项,求出方程的解。
3.解一元一次方程:如ax+b=0,解得x=-b/a。
4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。
5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。
6.解不等式:通过移项,求出不等式的解的范围。
7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。
第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。
2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。
3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。
第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。
2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。
3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。
4.正多边形:具有相等边长和相等内角的多边形。
5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。
6.图形的相似性:具有相等比例关系的图形称为相似图形。
7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。
第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。
2.梯形:有两个底边,两个腰。
3.平行四边形:具有相对边平行的四边形。
4.矩形:具有四个直角的四边形,对角线相等。
5.菱形:具有四个相等边的四边形,对角线互相垂直。
6.正方形:具有四个相等边且具有对称性的四边形。
第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。
比值相等时称为成比例。
2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。
北师大版七年级数学知识点总结七年级数学知识点总结
一、整数1.整数的概念及性质:包括正整数、负整数、零,整数加法、减法、乘法、除法的性质。
2.整数的比较:根据整数的大小进行比较。
3.整数的加减法:正整数与负整数、负整数与负整数的加减法。
4.整数的乘法:正整数与负整数、负整数与负整数的乘法。
5.整数的除法:正整数除以负整数、负整数除以正整数、负整数除以负整数。
6.整数的混合运算:整数加减乘除混合运算的应用。
二、有理数1.有理数的概念及性质:包括整数、分数,有理数的比较。
2.有理数的加减法:有理数的相反数、有理数加法、减法的性质。
3.有理数的乘法:有理数乘法的性质。
4.有理数的除法:有理数除法的性质。
5.有理数的混合运算:有理数加减乘除混合运算的应用。
三、代数式与多项式1.代数式的概念:包括字母、常数和运算符号组成的式子。
2.代数式的运算:代数式的加法、减法、乘法。
3.代数式的因式分解:利用公因式提取法进行因式分解。
4.一元一次方程:解一元一次方程的基本方法。
5.两个一元一次方程组:解两个一元一次方程组的基本方法。
四、两点间的连线与平行线1.直线与线段的概念:直线的性质、线段的性质。
2.连线与垂线的作图:连接两点、作垂线。
3.平行线的概念:平行线的性质、平行线间的距离。
4.平行线的判定:根据定理进行平行线的判定。
五、三角形1.三角形的概念:三角形的性质、三角形的分类。
2.三角形的内角和:三角形内角和的计算。
3.直角三角形:直角三角形的性质、勾股定理的应用。
4.等腰三角形:等腰三角形的性质及判定。
六、比例与倍数1.比例的概念:比例的性质、比例的表示方法。
2.倍数与倍数关系:整数倍数、分数的倍数。
3.同比例、反比例:解同比例、反比例问题。
七、图形的面积1.长方形、正方形、三角形的面积:计算图形的面积。
2.复合图形的面积:复合图形的面积计算。
以上是北师大版七年级数学知识点的总结,掌握了这些知识点,可以帮助学生在数学学习中从容应对各种问题。
北师大版七年级数学知识点总结
北师大版七年级数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!北师大版七年级数学知识点总结知识是一座宝库,而实践就是开启宝库的钥匙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数第二章 有理数及其运算1.有理数分类正数和负数相对,整数和分数相对。
记忆:0既不是正数也不是负数,但0是整数也是有理数。
0是正、负数的分界点。
有限小数如0.1,或者是无线循环小数例如1/3都是有理数,但无线不循环小数不是有理数。
一个有理数不是整数就是分数,换句话如果一个数既不是整数也不是分数,那这个数一定不是有理数数轴2.数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
注:同一数轴单位长度相等。
3.任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)注:数轴上的点不仅表示整数也可以表示分数。
同样可以表示无理数。
4.相反数定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)注:单独的一个数是不能说是相反数。
几何意义:在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
求一个数的相反数,只需要在这个数的前面加上个“ — ”号。
如a 的相反数是:—a 数轴上比较大小:数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
5.倒数如果两个数的乘积等于1,则这两个数互为倒数。
(如2与1/2、-2与-1/2等) 等价于:若a 、b 互为倒数且a ≠0、b ≠0,则有ab=1.,反之若ab=1,则a 、b 互为倒数注意:0没有倒数,倒数等于它本身的数有两个1±正数的倒数是正数,负数的倒数是负数求真分数、假分数的倒数就是把分数的分子分母交换位置 求带分数的倒数,第一步把带分数化成假分数,再求倒数 求小数的倒数,第一步把小数化成分数,再求倒数7.绝对值定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
几何意义:a =数轴上表示数a 的点到原点的距离,离原点越远绝对值越大,离原点越近绝对值越小。
去绝对值法则:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a性质:若|a|=0,则|a|=0,反之亦然除0外,绝对值为一正数的数有两个,它们互为相反数;若|a|=b ,则a=±b 例10=10± 互为相反数的两数(除0外)的绝对值相等;即|a|=|-a| 反之绝对值相等的两个数相等或者互为相反数。
任何数的绝对值总是非负数,即|a|≥0 不存在绝对值为负数的情况。
(绝对值具有非负性) 比较两个数的大小:两个正数 绝对值大的数就大 两个负数 绝对值大的数反而小 一正一负 正数大于一切负数8.有理数加法.有理数加法法则:“一定二求三加减”①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
¤灵活运用运算律,使用运算简化,通常有下列规律: 加法交换律:a b b a +=+加法交结合换律:()()c b a c b a ++=++①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加;0 -1 -2 -3 1 2 3越来越大定符号 加或减 求绝对值③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
9.有理数减法有理数减法法则: 减去一个数,等于加上这个数的相反数。
)(b a b a -+=-¤有理数减法运算时,将“-”变“+”注意两“变”一“不变”: ①改变运算符号; - → +②改变减数的性质符号(变为相反数)一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
注:aa a a =--=-00 和)(0=-+=-a a a a10.有理数的加减法混合运算的步骤:①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
11.有理数的乘法有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
多个有理数连乘法则:积的符号由负因数的个数决定。
当负因数有奇数个时积为负,当负因数个数是偶数时积为正注:如果两个数互为倒数,则它们的乘积为1。
(如:-2与21 、 3553与…等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。
()()acab c b a c b a c b a a b b a +=+⋅⋅⋅=⋅⋅⋅=⋅¤有理数乘法运算步骤: ①先确定积的符号;②求出各因数的绝对值的积。
12.有理数除法有理数除法法则:①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
※有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
⑦负数的乘方与乘方的相反数不同。
例:()443-3-与13有理数混合运算法则:(五种运算符号:、乘方、、、÷⨯+-) ①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
同级运算(+、-)或者(×、∕)按从左到右依次计算,同时注意运算律的灵活运用。
第三章 字母表示数 1.代数式的概念:定义:用运算符号(加、减、乘除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式...。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2.代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米=⨯⨯⨯⨯a n a a a a 个n a指数 底数幂3.单项式定义:由数与字母的乘积组合成的这样的代数式叫单项式。
巧计:单项式中只含乘(包括乘方)除不含加减。
注:单独的一个数与字母也是单项式 。
单项式分母中不能含有字母。
例a22或a ÷不是单项式 单项式的系数:定义:单项式中数字因数叫做单项式的系数。
注:①一个单项式中只含字母因数,它的系数是1或是-1 ②一个单项式是一个常数,它的系数是它本身 ③负数做系数应该包括它前面的“-”号 ④当一个单项式的系数是1或-1 时,“1”通常省略不写。
如:-mn⑤单项式系数是常数项时,通常写成假分数。
如2223211x x →单项式的次数:定义:一个单项式中所有字母的指数的和叫做单项式的次数。
注:单项式的系数与次数没有关系。
4.多项式定义:n 个单项式的和叫多项式。
多项式的项:定义:在多项式中,每个单项式叫多项式的项。
注:①多项式的每一项应该包括其前面的符号。
如7632+-x x 由 23x 、三项组成、76+-x ②多项式中单项式的个数叫做多项式的项数7632+-x x 是三项多项式 多项式的次数:定义:多项式中次数最高项的次数作为多项式的次数。
7632+-x x 是二次三项式5.常数项定义:多项式中不含字母的项。
7632+-x x 常数项是 +7 6.整式定义:单项式和多项式统称为整式。
注:①单项式一定只含乘除不含加减,但多项式一定含加减,不一定含乘除。
②单项式、多项式都可以有除法运算,但要写成分数的的形式且分母中不含字母。
③一个整式不是单项式就是多项式。
7.同类项:定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;如22baba和是同类项③几个常数项也是同类项。
合并同类项:定义:把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。
单一括号:去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
多重括号:遵循‘由里向外逐层去’,即先小括()号再中括号【】最后大括号{}注:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。