《相似》同步练习(三)__人教版九年级下册__

合集下载

人教版数学九年级下册 第二十七章 相似 习题练习(附答案)

人教版数学九年级下册 第二十七章  相似  习题练习(附答案)

人教版数学九年级下册第二十七章相似习题练习(附答案)一、选择题1.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有一个B.可以有2个C.可以有3个D.无数个2.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个3.如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是()A.△AED与△ACBB.△AEB与△ACDC.△BAE与△ACED.△AEC与△DAC4.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A 出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A . 6米B . 8米C . 10米D . 12米5.如图所示格点图中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,以原点O 为位似中心,相似比为12,把△ABC 缩小,则点C 的对应点C ′的坐标为( )A . (1,32)B . (2,6)C . (2,6)或(-2,-6)D . (1,32)或(-1,−32)6.如图,AD ∥BC ,∠D =90°,AD =2,BC =5,DC =8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( )A . 1个B . 2个C . 3个D . 4个7.志远要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A . 540元B . 1 080元C . 1 620元D . 1 800元8.△ABC 的三边之比为3∶4∶5,与其相似的△DEF 的最短边是9 cm ,则其最长边的长是( ) A . 5 cm B . 10 cm C . 15 cm D . 30 cm9.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A .CD EF =AD AFB .AB CD =BC ECC.ADBC =AFBED.CEBE =AFAD10.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4∶9B. 2∶5C. 2∶3D.√2∶√311.若a5=b7=c8,且3a-2b+c=3,则2a+4b-3c的值是()A. 14 B. 42 C. 7 D.14312.一个数与3、4、6能组成比例,这个数是()A. 2或8B. 8 或4.5C. 4.5 或2D. 2,8或4.513.两个相似三角形的面积比为1∶4,那么它们的周长比为()A. 1∶√2B. 2∶1 C. 1∶4 D. 1∶2二、填空题14.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM∶MN∶ND等于____________.15.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是________________.(写出一个即可)16.如图,AD =DF =FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=__________.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为______________.18.某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3,…,若△ABC 的边长为a ,则CD 1=√32a ,D 1D 2=√34a ,D 2D 3=√38a ,依此规律,则D 5D 6的长为________.19.如图是测量玻璃管内径的示意图,点D 正对“10 mm”刻度线,点A 正对“30 mm”刻度线,DE ∥AB .若量得AB 的长为6 mm ,则内径DE 的长为____________ mm.三、解答题20.如图,△ABC 在方格纸中.(1)请建立平面直角坐标系.使A 、C 两点的坐标分别为(2,3)、C (5,2),求点B 的坐标.(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′.(3)计算△A ′B ′C ′的面积S .21.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP 的周长为____________.23.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC 的长.图①图②答案解析1.【答案】B【解析】∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或√7.∴x的值可以有2个.故选B.2.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴OCOD =OBOA1,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴F1G =OCOD=OB1OA1=OBOA是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.3.【答案】C【解析】∵斜边中线长为斜边的一半,∴AD=BD=CD,∴∠C=∠DAC,∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,∴∠BAE=∠DAC,∴∠C=∠BAE,∵∠E=∠E,∴△BAE∽△ACE.故选C.4.【答案】B【解析】∵∠APB =∠CPD ,∠ABP =∠CDP ,∴△ABP ∽△CDP ,∴AB CD =BP PD, 即1.4CD =2.112,解得CD =8米.故选B.5.【答案】D【解析】∵以原点O 为位似中心,相似比为12,把△ABC 缩小,∴点C 的对应点C ′的坐标(1,32)或(-1,−32).故选D.6.【答案】C【解析】∵AD ∥BC ,∠D =90°,∴∠C =∠D =90°,∵DC =8,AD =2,BC =5,设PD =x ,则PC =8-x .①若PD ∶PC =AD ∶BC ,则△PAD ∽△PBC ,则x 8−x =25,解得x =167;②若PD ∶BC =AD ∶PC ,则△PAD ∽△BPC ,则x 5=28−x ,解得PD =4±√6,所以这样的点P 存在的个数有3个.故选C.7.【答案】C【解析】∵一块10 cm×5 cm 的长方形版面要付广告费180元, ∴每平方厘米的广告费为180÷50=185元, ∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×185=1 620元故选C.8.【答案】C【解析】∵△ABC 和△DEF 相似,∴△DEF 的三边之比为3∶4∶5,∴△DEF 的最短边和最长边的比为3∶5,设最长边为x ,则3∶5=9∶x ,解得x =15,∴△DEF 的最长边为15 cm ,故选C.9.【答案】C【解析】∵AB ∥CD ∥EF ,∴AD AF =BC BE ,A 错误;AD DF =BC EC ,B 错误;AD AF =BC BE ,∴AD BC =AF BE ,C 正确;CE BE =DF AF ,D 错误,故选C.10.【答案】A【解析】∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA ∶OA ′=2∶3, ∴DA ∶D ′A ′=OA ∶OA ′=2∶3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为(23)2=49, 故选A.11.【答案】D【解析】设a =5k ,则b =7k ,c =8k ,又3a -2b +c =3,则15k -14k +8k =3,得k =13,即a =53,b =73,c =83,所以2a +4b -3c =143.故选D.12.【答案】D【解析】设这个数是x ,则3x =4×6或4x =3×6或6x =3×4, 解得x =8或x =4.5或x =2,所以,这个数是2,8或4.5.故选D.13.【答案】D【解析】∵两个相似三角形的面积比为1∶4,∴它们的相似比为1∶2,∴它们的周长比为1∶2.故选D.14.【答案】5∶3∶2【解析】如图,作PD ∥BF ,QE ∥BC ,∵D 为BC 的中点,∴PD ∶BF =1∶2,∵E ,F 为AB 边三等分点,∴PD ∶AF =1∶4,∴DN ∶NA =PD ∶AF =1∶4,∴ND =15AD ,AQ ∶AD =QE ∶BD =AE ∶AB =1∶3, ∴AQ =13AD ,QM =14QD =14×23AD =16AD , ∴AM =AQ +QM =12AD ,MN =AD -AM -ND =310AD ,∴AM ∶MN ∶ND =5∶3∶2.15.【答案】∠D =∠B【解析】这个条件可能是∠D =∠B ;理由如下: ∵∠DAB =∠CAE ,∴∠DAB +∠BAE =∠CAE +∠BAE ,即∠DAE =∠BAC ,又∵∠D =∠B ,∴△ADE ∽△ABC .16.【答案】1∶3∶5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD =DF =FB ,∴AD ∶AF ∶AB =1∶2∶3,∴S △ADE ∶S △AFG ∶S △ABC =1∶4∶9,∴S Ⅰ∶S Ⅱ∶S Ⅲ=1∶3∶5.17.【答案】113°或92°【解析】∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°. 18.【答案】√364a 【解析】CD 1=√32a =√321a , D 1D 2=√34a =√322a , D 2D 3=√38a =√323a , 则D 5D 6的长为√326a =√364a , 19.【答案】2【解析】由题意可得DE ∥AB ,∴△CDE ∽△CAB ,∴DE AD =DC AC , 即DE 6=1030,解得DE =2,20.【答案】解 (1)如图画出原点O ,x 轴、y 轴,建立直角坐标系,可知B 的坐标为(2,1);(2)如(1)中图,画出图形△A ′B ′C ′,即为所求;(3)S △A ′B ′C ′=12×4×6=12.【解析】(1)根据A ,C 点坐标进而得出原点位置,进而得出B 点坐标;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.21.【答案】解在△ABC与△AMN中,ACAB =3054=59,AMAN=1?0001?800=59,∴ACAB=AMAN,又∵∠A=∠A,∴△ABC∽△AMN,∴BCMN =ACAM,即45MN=301?000,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.22.【答案】解(1)如图所示:点B的坐标为(-2,-5);故答案为(-2,-5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为(-2,1),四边形ABCP的周长为√42+42+√22+42+√22+22+√22+42=4√2+2√5+2√2+2√5=6√2+4√5.故答案为6√2+4√5.【解析】(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.23.【答案】(1)证明∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS);(2)解连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2【解析】。

新人教版九年级数学下册第二十七章相似练习12套附详细解析答案

新人教版九年级数学下册第二十七章相似练习12套附详细解析答案

成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

九年级数学下册第二十七章相似[27.1 第1课时 相似图形]一、选择题1.观察图K -6-1中各组图形,其中相似的图形有()图K -6-1A .3组B .4组C .5组D .6组2.在图K -6-2(b)中,由图K -6-2(a)放大或缩小而得到的图形有()图K -6-2A .0个B .1个C .2个D .3个3.图K -6-4中与图K -6-3相似的图形是链接听课例题归纳总结()图K -6-3成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

图K -6-44.下列关于相似图形的说法错误的是( )A .相似图形的形状一定相同,大小不一定相同B .全等图形是一种特殊的相似图形C .同一个人在平面镜和在哈哈镜中的形象是相似图形D .若甲与乙是相似图形,乙与丙是相似图形,则甲与丙是相似图形二、填空题5.图K -6-5②~⑥中,与图①相似的图形有________(填图形的序号).链接听课例题归纳总结图K -6-56.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题7.如图K -6-6是用相似图形设计的图案.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).如何将图K -6-7中的图形ABCDE放大,使新图形的各个顶点仍在格点上?图K -6-7详解详析[课堂达标]1.[解析] B 由观察知(a)(b)(c)(e)中的图形是相似图形.故选B.2.[解析] B 由观察知图(b)中的第3个图形与图(a)相似.应选B.[点评] 注意相似的要求是形状相同,这是判断两个图形是不是相似图形的根本标准.3.D 4.C5.③⑤⑥6.[答案] 是不是[解析] 放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不是相似图形.7.解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形.(2)答案不唯一,只要是用相似图形做的,都符合要求.如图:[素养提升][解析] 相似图形只要求形状相同,而与位置无关,这样同学们可以有不同的画法,下图中的图形A′B′C′D′E′只是其中的一种.解:答案不唯一,如图所示.[点评]先确定各个顶点在方格图中的位置,然后再依次连接构成新图形.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

【九年级】九年级数学下27.2相似三角形(三)同步练习(人教版附答案和解释)

【九年级】九年级数学下27.2相似三角形(三)同步练习(人教版附答案和解释)

【九年级】九年级数学下27.2相似三角形(三)同步练习(人教版附答案和解释)27.2相似三角形同步练习(三)一、单选题(本大题共15个子题,每个子题得3分,共计45分)1、如果,则下列各式中不成立的是()A.b.Cd.如果四段的长度是成比例的()a.Bc.D3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是()A.② 和④ 两者相似b.①和④相似C① 和③ 两者相似d.①和②相似4.已知点、、和的对应点分别等于()a.Bc.D5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()a、原始三角形将一个单位平移到轴的负方向,即结果三角形b.关于原点对称c、关于轴对称d.关于轴对称6.如图所示,已知和相交于一点,则以下公式是正确的()a.Bc.D7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.b.Cd.8.如图所示,如果已知,,,则的值为()a.Bc.D9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.b.Cd.10.如果是,则等于()a.Bc.D11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A.①②b.①②③C①④d.①②④12.阳光通过窗户照射到房间里,在地面上留下一个米的明亮区域(如图所示)。

如果亮区到窗下角的距离为米,窗高为米,则窗底边离地高度为()a.米b、仪表c.米d、仪表13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()14.如图所示,和是边缘和边缘上的点。

如果,则的值为()d.15.如图所示,在平行四边形中,,,的平分线在点处相交,延长线在点处相交,垂直脚为。

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。

人教新版数学九年级下册《相似》习题含答案

人教新版数学九年级下册《相似》习题含答案

人教版初中数学九年级第二十七章-相似-及习题-含答案第二十七章相似本章小结小结1 本章概述本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,通过大量的实践活动来探索三角形相似的条件,并应用相似三角形的性质及判定方法来研究和解决实际问题.在研究相似三角形的基础上学习位似图形,知道位似变换是特殊的相似变换.小结2 本章学习重难点【本章重点】通过具体实例认识图形的相似,探索相似图形的性质,掌握相似多边形的对应角相等,对应边成比例,面积的比等于相似比的平方.了解两个三角形相似的概念,探索两个三角形相似的条件.【本章难点】通过具体实例观察和认识生活中物体的相似,利用图形的相似解决一些实际问题.【学习本章应注意的问题】通过生活中的实例认识物体和图形的相似,探索并认识相似图形的特征,掌握相似多边形的对应角相等,对应边成比例以及面积的比与相似比的关系,能利用相似三角形的性质解决一些简单的实际问题,了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置,并能表示出点的坐标.小结3 中考透视图形的相似在中考中主要考查:(1)了解比例的基本性质,了解线段的比及成比例线段.(2)认识相似图形,了解相似多边形的对应角相等,对应边成比例,面积比等于相似比的平方.(3)了解两个三角形相似的概念,掌握两个三角形相似的条件,能利用图形的相似解决一些实际问题.(4)了解图形的位似,能利用位似将一个图形放大或缩小.相似是平面几何中重要的内容,在近几年的中考中题量有所增加,分值有所增大,且题型新颖,如阅读题、开放题、探究题等.由于相似图形应用广泛,且与三角形、平行四边形联系紧密,估计在今后中考的填空题、选择题中将会注重相似三角形的判定与性质等基础知识的考查,并在解答题中加大知识的横向与纵向联系.具体考查的知识点有相似三角形的判定、相似三角形的性质、相似三角形的实际应用、图形的放大与缩小等.知识网络结构图专题总结及应用一、知识性专题专题1 比例线段【专题解读】解决有关比例线段的问题时,常常利用三角形相似来求解.例1 如图27-96所示,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,AE=8,OC=12,∠EDC=∠BAO.(1)求证CD CE AC CB=;(2)计算CD·CB的值,并指出CB的取值范围.分析利用△CDE∽△CAB,可证明CD CE AC CB=.证明:(1)∵∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴CD CE AC CB=.解:(2)∵AE=8,OC=12,∴AC=12+4=16,CE=12-4=8.又∵CD CE AC CB=,∴CD·CB=AC·CE=16×8=128.连接OB,在△OBC中,OB=12AE=4,OC=12,∴8<BC<16.【解题策略】将证CD CEAC CB=转化为证明△CDE∽△CAB.专题2 乘积式或比例式的证明【专题解读】证明形如22a cb d=,33a cb d=或abcdef=1的式子,常将其转化为若干个比例式之积来解决.如要证22a cb d=,可设法证a cb x=,a xb d=,然后将两式相乘即可,这里寻找线段x便是证题的关键。

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 352.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:93.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:34.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .355.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米26.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4)7.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:68.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:359.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=F E ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.14.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.三、解答题(共60分)21.(本题7分)如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为23.(本题7分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的一动点(不与端点A、D重合),连结PC,过点P作P E⊥PC交AB于点E,在P点运动过程中,图中各角和线段之间是否存在的某种关系和规律?特例求解当E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中B E的取值范围.28.(本题9分)如图,AB是⊙O的直径,直线l与⊙O相切于点C,AE⊥l交直线l于点E、交⊙O于点F,BD⊥l交直线l于点D.(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;cm s的速度运动,点Q从点B出发沿(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时线段BC向点C以1/间为t秒,求当t为何值时,△BPQ为等腰三角形?答案(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 35【答案】C 【解析】先根据比例的性质可得a b +1=23+1,进而可得53a b b +=. 故选C .2.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:9【答案】C 【解析】根据题意可得:△ADE ∽△ACB ,则ADE ACB S S △△:=1:9,则BCED ADE S S 四边形△:=1:8.故选C3.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:3 【答案】C 【解析】由AD ∥BC ,得出∠ACB=∠DAC ,证得△A BC ∽△DCA ,可得AB BC ACDC AC AD==,再由面积的比等于相似比的平方,即可得到24()9ABC DCAS AB SDC ==, 故选C .4.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .35【答案】D .5.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米2【答案】B 【解析】如图设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以得CB OC AD OD =,再把OD=3,CD=1代入可求出OC= OD-CD=3-1=2,BC=12×1.2=0.6,然后求出地面影子的半径AD=0.9,这样可以求出阴影部分的面积S ⊙D =π×0.92=0.81πm 2,这样地面上阴影部分的面积为0.81πm 2. 故选B6.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4) 【答案】A7.如图,△D EF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6【答案】B 【解析】由D ,F 分别是OA ,OC 的中点,根据三角形的中位线的性质得DF=12AC ,根据三角形相似的性质可知△DEF 与△ABC 的相似比是1:2,因此△DEF 与△ABC 的面积比是1:4. 故选B .8.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:35 【答案】C9.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m 【答案】A【解析】 根据题意可得:1.185.07.1x,解得:x=2.2,则2.2-1.7=0.5m ,即小刚举起的手臂超出头顶0.5m. 10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个【答案】D二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.【答案】【解析】∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:9.故答案为:1:9.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).【答案】6.2【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为:6.2.13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.【答案】12.614.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.【答案】【解析】作DE∥AB,DF∥BC,可得相似,作∠CDG=∠B,∠ADH=∠C,也可得相似三角形.所以可作4条.故答案为:4.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.【答案】答案不唯一,如△DFE∽△CBE【解析】∵四边形ABCD是平行四边形,∴BC//AD,即BC//DF,∴△DEF∽△CEB,故答案为:△DEF∽△CEB(答案不唯一).16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)【答案】不可能这就是说,按照人的最小视角1′观察地球上长城的厚度,最远的距离只能是34.4km,而月球与地球之间的距离为380000km,这个数字很大,它相当于34.4km的11046倍,从这么远看长城,根本无法看见. 17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.【答案】【解析】由三边对应成比例的两个三角形相似,易得相似比为:,故要使△ABC和△A1B1C1的三边成比例,则第三边长为2÷=,故答案为:.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.【答案】21或65【解析】①当点A落在如图1所示的位置时,∵BD:DC=1:4,BC=30,∴DB=6,CD=24,设AN=x,则CN=30-x,∴=,∴DM=,BM=,∵BM+DM=30,∴+=30,解得x=21,∴AN=21;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN,∴得,∵BD:DC=1:4,BC=10,∴DB=10,CD=40,设AN=x,则CN=x-10,∴=,∴DM=,BM=,∵BM+DM=30,∴+=10,解得:x=65,∴AN=65.故答案为:21或65.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).【答案】20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.【答案】18【解析】∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,∴2EH=AD+FG,2FG=EH+BC,∴EH=,FG=,∵四边形EFGH的面积为6cm2,∴(EH+FG)h=6,∴四边形ADEH的面积和四边形FBCG的面积和为:(EH+AD)h+(BC+FG)h=12,则梯形ABCD的面积为:18.故答案为:18.三、解答题(共60分)21.(本题7分)如图,D是△AB C外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.【答案】(1)、△ABD∽△AEC;△ABE∽△ADC;(2)、证明见解析22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为【答案】(1)图形见解析;(2)、105;(3)、(2,6).【解析】(1)、如图所示;(2)、高105(3)、(2,6);23.(本题7分) 如图,梯形ABCD 中,AB//CD ,且AB=2CD ,E ,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ; (2)若DB=9,求BM .【答案】(1)、证明见解析;(2)、BM=3.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方O yxAB CDEF法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【答案】99m25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【答案】(1)、证明见解析;(2)、12 7【解析】(1)∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)、∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=127,∴DE的长是127.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【答案】(1)证明见解析(2)证明见解析在△ACE和△ABD中,AC ADEAC BADEA AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD 中,AB=2,BC=3,P 是线段AD 边上的一动点(不与端点A 、D 重合),连结PC ,过点P 作PE ⊥PC 交AB 于点E ,在P 点运动过程中,图中各角和线段之间是否存在的某种关系和规律? 特例求解当E 为AB 的中点,且AP >AE 时,求证:PE=PC . 深入探究当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求整个运动过程中BE 的取值范围.【答案】(1)证明见解析;(2)87≤BE <2. (2)深入探究,设AP=x ,AE=y ,∵△AP E ∽△DCP ,∴AP AE DC DP ,即x (3﹣x )=2y ,∴y=12x 3﹣x )=﹣12x +32x=﹣12(x ﹣32)2+98,∴当x=32时,y 的最大值为98,∵AE=y 取最大值时,BE 取最小值为2﹣98=78BE的取值范围为78≤BE <2.28.(本题9分)如图,AB 是⊙O 的直径,直线l 与⊙O 相切于点C ,AE ⊥l 交直线l 于点E 、交⊙O 于点F ,BD ⊥l 交直线l 于点D .(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,点Q从点B出发沿线段BC向点C以1/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时间为t秒,求当t为何值时,△BPQ为等腰三角形?【答案】(1)证明见解析;(2)证明见解析;(3)t=103或t=6017或t=258时又∵AE⊥DE,BD⊥DE,∴OC∥BD∥AE,又∵O是AB的中点,∴OC//AE//BD∴OC=1()2BD AE+,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BFE=90°,又∵∠AED=∠BDE=90°,∴四边形BDEF是矩形,∴BD=FE ,∴AE+EF=AE+BD,∴1(AE)2EF+。

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知a b c k b ca ca b===+++,则直线2y kx k =+一定经过( )A .1第,2象限B .2第,3象限C .3第,4象限D .1第,4象限A .13B .2C .5D .33.若:2:3x y =,则下列各式不成立的是( )A .53x y y += B .13y x y -= C . 123x y = D .1314x y +=+ 4.如图,在平行四边形ABCD 中,4AC =,6BD =,P 是BD 上的任一点,过点P 作EF AC ∥,与平行四边形的两条边分别交于点E 、F ,设BP x =,EF y =,则能反映y 与x 之间关系的图象是( )A .B .C .D . 5.如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFCFD+的值为( )A .52 B .1 C .32D .2 6.如图,小明站在C 处看甲、乙两楼顶上的点A 和点E C E A ,、、三点在同一直线上,点B D 、分别在点E A 、的正下方,且D B C 、、三点在同一直线上,B C 、相距20米,D C 、相距40米,乙楼BE 高15米,则甲楼AD 的高为(小明身高忽略不计)( )A .40米B . 20米C . 15米D . 30米 7.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) A .第一、二象限 B .第一、二、三象限 C .第二、三、四象限 D .第三、四象限8.若两个相似三角形的面积之比为14∶,则它们的周长之比为( )A .12∶B .14∶C .15∶ D .116∶ 9.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变A DEFCB10.已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的B ∠(如图所示),那么下列关于A ∠与放大镜中的B ∠关系描述正确的是( )A.090A B ∠+∠=B.=A B ∠∠C.090A B ∠+∠>D.A B ∠+∠的值无法确定二 、填空题(本大题共5小题,每小题3分,共15分)11.如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .12.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为 .13.如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 分别交中位线EF 于点H 、G ,且121EG GH HF =∶∶∶∶,那么AD BC ∶等于 .14.如图,在ABC △中,CD 是高,CE 为ACB ∠的角平分线,若15,20,12AC BC CD ===,则CE 的长等于 .15.如图,点1234,,,A A A A 在射线OA 上,点123,,B B B 射线OB 上,且112233A B A B A B ∥∥,CDHGFE DCBA ABCD E21A B ∥32A B 43A B ∥.若212323,A B B A B B △△的面积分别为1,4,则图中三个阴影三角形面积之和为 .三 、解答题(本大题共7小题,共55分)16.已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC的延长线交EF 于G .求证:EG GF =.17.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.⑴若4a =厘米,1t =秒,则PM =______厘米;⑵若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; ⑶若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;⑷是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.4321G FECDBAP N NMQDC BAQPMDCBA18.如图所示,已知四边形BDEF 是菱形,12DC BD =,且4DC =,求AF 的长.19.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.20.如图, Rt ABC △中,90C ∠=︒,有一内接正方形DEFC ,连接AF 交DE 于G ,15AC = ,10BC =,求GE .21.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?ABCDEF EFD C B AGABC DEP22.在ABC ∆中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,求证:AD AB AC=+.D CB A人教版九年级下册数学《相似》单元测试卷答案解析一 、选择题1.B;当0a b c ++≠时,根据比例的等比性质,得:()122a b c k a b c ++==++,此时直线为112y x =+,直线一定经过1,2,3象限. 当0a b c ++=时,即a b c +=-,则1k =-,此时直线为2y x =--,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限. 【解析】分情况讨论:3.D;根据比例的性质公式:bd b d =⇔=;b d b d=⇔=可知,,A B C 正确,只有D 错误. 4.C;设AC 交BD 于O ,∵四边形ABCD 是平行四边形, ∴132OD OB BD ===,当P 在OB 上时, ∵EF AC ∥,∴BP BF EF OB BC AC ==,∴34x y =,∴43y x =, 当P 在OD 上时,同法可得:DP DF EF OD DC AC ==,∴634x y -=,∴483y x =-+,∵两种情况都是一次函数,图象是直线.故选CPFEDCBA5.C;这类题的解法:找适当的点,作适当的平行线,构造基本图形解题,或者直接运用梅氏定理来解题. 6. D ;BC BECD AD=20BC DB == 15BE = ∴30AD = 7.A;由已知得()b c t a +=;()c a t b +=;()a b t c +=,三式相加得:()2a b c t a b c ++=++,①当0a b c ++≠时,12t =;②当0a b c ++=时,a b c +=-,1t =-. ∴一次函数2y tx t =+为1y x =-+或1124y x =+ ∵1y x =-+过第一、二、四象限;1124y x =+过第一、二、三象限; ∴一次函数2y tx t =+的图象必定经过的象限是第一、二象限.【解析】先根据等式求出t 的值,从而得到一次函数的解析式,再根据一次函数的性质分析经过的象限即可.(注意有两种情况). 8.A10.A二 、填空题11.40;点C 是靠近点B 的黄金分割点,∴:AC AB =,即8040AC AB ==,又∵点D 是靠近点A 的黄金分割点,∴160-40BD =,∴8080160DC AC BD AB =+-=-=12.8;3【解析】根据已知可证ABC DEF △∽△,且ABC △和DEF △的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求DEF △的周长、面积.13.1∶3;∵根据平行线分线段成比例定理可得:EG 、GF 分别是ABD △和DBC △的中位线.那么2AD EG =,2BC GF =. ∴:21:[221]1:3AD BC =⨯⨯+=()()由勾股定理知9,16AD BD ==.所以,25AB AD BD =+=. 故由勾股定理的逆定理知ACB △为直角三角形,且90ACB ∠=︒. 作EF BC ⊥,垂足为F .设EF x =.由1452ECF ACB ∠=∠=︒,得CF x =.于是,20BF x =-. 因为EF AC ∥,所以,EF BF AC BC =,即206015207x x x -=⇒=.因此,7CE ==.15.10.5∵212A B B △,323A B B △的面积分别为1,4 又∵22332132,A B A B A B A B ∥∥ ∴2233212323,OB A OB A A B B A B B ∠=∠∠=∠ ∴122233B B A B B A △∽△ ∴1222233312B B A B B B A B == FE DCBA∴233412A A A A = ∵22323322323331,4A B A B A B S A B A B B S A B ==△△△的面积是4 ∴223323122A B A A B B S S ==△△(等高的三角形的面积的比等于底边的比)同理可得:3343232248A B A A B B S S ==⨯=△△,1122121110.522A B A A B B S S ==⨯=△△∴三个阴影面积之和为0.52810.5++=.【解析】由平行得到相似的三角形.已知212A B B △△A 2B 1B 2,323A B B △的面积分别为1,4,且两三角形相似,因此可得出223312A B A B =,由于223A B A △与233B A B △是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据323A B B △的面积为4,可求出223A B A △的面积,同理可求出334A B A △和112A B A △的面积.即可求出阴影部分的面积.三 、解答题16.证法一:过C 作MN EF ∥交AE 、AF 于M N ,, 则有MC EM FN CNBD EB FD BD===, ∴MC CN =, 又∵MN EF ∥, ∴MC AC CNEG AG GF==, ∴EG GF =.证法二:由塞瓦定理的充分性可得:1EG FD AB GF DA BE ⋅⋅=.又因为AB ADBE DF=,代入上式得1EG FD AD GF DA DF ⋅⋅=,即1EGGF=.所以.EG GF =NM G FECD B A17.⑴ 34PM =,⑵ 2t =,使PNB PAD △∽△,相似比为3:2⑶ ∵PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,∴PM AM BN AB =即PM a t t a -=,∵()t a t PM a -=, ∵(1)3t a QM a-=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM ++= ()33(1)()22t a t t a a t t t a a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+, ∵3t ≤,∴636a a+≤,则6a ≤,∴36a <≤, ⑷ ∵36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM = ∴()3ta t t a -=-,把66a t a=+代入,解之得a =±a = 所以,存在a,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.18.由平行线的性质能判定AFE △和EDC △的任意两个角相等,证明AFE EDC△∽△得到对应线段成比例21FE AF DC DE ==,4DC =,8FE DE BD BF ====,所以16AF =. 19.连接AF∵EF 垂直平分AD ,∴AF DF =,∴4DAF ∠=∠,即423∠=∠+∠,又∵41B ∠=∠+∠,∴231B ∠+∠=∠+∠,∵AD 平分BAC ∠,∴12∠=∠,∴3B ∠=∠,4321AEB DC F又∵CFA AFB ∠=∠,∴CFA AFB ∆∆∽,∴2FA FC FB =⋅.又∵AF DF =,∴2FD FB FC =⋅20.设正方形的边长为a ,则15-AD a =∵DE BC ∥ ∴AD DE AC BC = 15-1510a a = 解得6a =又在AFB △中GE BF ∥ 有GE AE DE BF AB BC==, GE AD BP AC =∴9415GE = 125GE =21.1,3AM DM =M 是AD 的黄金分割点.(1)在Rt APD △中,1,2AP AD ==,由勾股定理知:PD ==∴1AM AF PF AP PD AP ==-=-,3DM AD AM =-=故1,3AM DM ==(2)点M 是AD 的黄金分割点.由于AM DM AD AM = ∴点M 是AD 的黄金分割点.【解析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ==1,3AM AF DM AD ===(2)根据(1)中的数据得:,AM DM AD AM =根据黄金分割点的概念,则点M 是AD 的黄金分割点.22.解法一:本题可根据角平分线类相似的模型首先试着作出辅助线:过点D 作AB 的平行线,由于所给120BAC ∠=︒平分之后有两个60的特殊角,可判定ADE △为等边三角形,再根据相似和平行导出线段的比例关系,最关键的一步是,将所得的两组线段整体相加,得到一个新的等式,最后发现问题得证.解法二:分别以,AB AC 为边向外作两个等边三角形,即ABM △和ACN △,由平分后的角度为60,可轻易证明AD BM CN ∥∥得到两组比例线段CD AD BC BM=和BD AD BC CN=,两者相加后又重新得到一个新的等式,再根据等边三角形的特点代换相等的线段,最后问题也得证. (本题只给出第一种解法的步骤).【解析】过点D 作AB 的平行线,交AC 于点E . ∵120BAC ∠=︒,BAD CAD ∠=∠, ∴60BAD CAD ∠=∠=︒∵DE AB ∥,∴60ADE BAD ∠=∠=︒∴AD AE DE == ∵DE CD DE AB AB BC ⇒=∥,AE BD AC BC = ∴1DE AE CD BD AB AC BC BC+=+= 等式两边同除以AD ,则有:111AB AC AD += E D C B ANM DC B A。

九年级数学下册相似三角形同步练习新人教版

九年级数学下册相似三角形同步练习新人教版

九年级数学下册相似三角形同步练习新人教版专题一相似形中的开放题1.如图,在正方形网2.格中,点A·B·C·D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A·D·E为顶点的三角形与△ABC相似.1.已知:如图,△ABC中,点D·E分别在边AB·AC上.连接DE并延长交BC的延长线于点F,连接DC·BE,∠BDE+∠BCE=180°.(1)写出图中三对相似三角形[注意:不得添加字母和线];(2)请你在所找出的相似三角形中选取一对,说明它们相似的理由.专题二相似形中的实际应用题3.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳[两条尺长AC和BD相等]去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.专题三相似形中的探究规律题4.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图在Rt△ABC中,∠C=90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm的矩形纸条a1·a2·a2…若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A.24 B.25 C.26 D.275.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.[1]如图①,四边形DEFG为△ABC的内接正方形,求正方形的边长;[2]如图②,正方形DKHG,EKHF组成的矩形内接于△ABC,求正方形的边长;[3]如图③,三个正方形组成的矩形内接于△ABC,求正方形的边长;[4]如图④,n个正方形组成的矩形内接于△ABC,求正方形的边长.专题四相似形中的阅读理解题6.某校研究性学习小组在研究相似图形时,发现相似三角形的定义·判定及其性质,可以拓展到扇形的相似中去,例如,可以定义:圆心角相等且半径和弧长对应成比例的两个扇形叫相似扇形;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方…,请你协助他们探索下列问题:〔1)写出判定扇形相似的一种方法:若 ,则两个扇形相似;(2)有两个圆心角相同的扇形,其中一个半径为a,弧长为m,另一个半径为2a,则它的弧长为;(3)如图1,是—完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同,面积是它的一半的纸扇[如图2],求新做纸扇[扇形]的圆心角和半径.图1 图2专题五相似形中的操作题7.宽与长的比是215的矩形叫黄金矩形,心理测试表明:黄金矩形令人赏心悦目,它给我们以协调·匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下[如图所示]:第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.8.如图①,将菱形纸片AB[E]CD[F]沿对角线BD[EF]剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.[1]操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H[H点不与B点重合],FE交DA于点G[G点不与D点重合].求证:BH•GD=BF2;[2]操作:如图③,△ECF的顶点F在△ABD的BD边上滑动[F点不与B·D点重合], 且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= DB,请给予证明.专题六相似形中的综合题9.正方形ABCD的边长为4,M·N分别是BC·CD上的两个动点,且始终保持AM⊥MN.当BM= 时,四边形ABCN的面积最大.10.如图,在锐角△ABC 中,AC 是最短边,以AC 的中点O 为圆心,21AC 长为半径作⊙O,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连接AE ·AD ·DC .[1]求证:D 是 ⌒AE 的中点;[2]求证:∠DAO =∠B +∠BAD ;[3]若21=∆∆OCD CEF S S ,且AC =4,求CF 的长.【知识要点】1.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例.2.平行于三角形一边的直线截其他两边[或两边的延长线],所得的对应线段的比相等.3.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似.5.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.6.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.7.相似三角形周长的比等于相似比.相似多边形周长的比等于相似比.8.相似三角形对应高的比等于相似比.9.相似三角形面积的比等于相似比的平方. 相似多边形面积的比等于相似比的平方.【温馨提示】1.平行线分线段成比例时,一定找准对应线段.2.当已知两个三角形有一组对应角相等,利用夹这个角的两边对应成比例来判定它们相似时,比例式常有两种情况,考虑不全面是遗漏解的主要原因.3.数学猜想需要严密的推理论证说明其正确性,规律的发现与提出需要从特殊到一般的数学归纳思想,平时要养成观察·分析问题的习惯.【方法技巧】1.相似三角形对应角平分线的比等于相似比;相似三角形对应中线的比等于相似比.2.在平面几何中,求图形中等积式或等比式时,一般地首先通过观察找出图形中相似的三角形,再从理论上证明观察结论的正确性,最后运用相似形的性质来解决问题.参考答案1.22或42 【解析】根据题意得AD =1,AB=3,AC =2266+=26,∵∠A=∠A ,∴若△ADE∽△ABC 时,ACAE AB AD =,即2631AE =,解得AE =22. 若△ADE∽△ACB 时,AB AE AC AD =,362AE =,解得AE=42. ∴当AE =22或42时,以点A ·D ·E 为顶点的三角形与△ABC 相似. 2.解:[1]△ADE∽△ACB ,△CEF∽△DBF,△EF B∽△CFD 〔不唯一).[2]由∠BDE+∠BCE =180°,可得∠ADE=∠BCE . ∵∠A=∠A ,∴△ADE∽△ACB ; ∴AC AD =ABAE .∵ ∠A=∠A , ∴△AEB∽△ADC ;∵∠BDE+∠BC E =180°,∠BCE+∠ECF =180°,∴∠ECF=∠BDF ,又∠F=∠F ,∴△CEF∽△DBF ;∴BF EF =DFCF ,而∠F=∠F ,∴△EFB∽△CFD . 3.解:∵ OA :OC =OB :OD =n 且∠AOB=∠COD,∴△AOB∽△COD .∵ OA:OC =AB:CD =n ,又∵CD =b,∴AB=CD ·n =nb,∴x =a -AB 2 =a -nb 2 . 4.C 【解析】设裁成的矩形纸条的总数为n,且每条纸条的长度都不小于5cm,2240(cm)BC AB AC =-=.设矩形纸条的长边分别与AC ·AB 交于点M ·N ,因为 △AMN ∽△ACB,所以BC MN AC AM =.又因为AM=AC-1·n=30-n,MN ≥5 cm,所以4053030≥-n ,得n ≤26.25,所以n 最多取整数26.5.解:[1]在题图①中过点C 作CN ⊥AB 于点N,交GF 于点M .因为∠C =90°,AC =4,BC =3,所以AB =5. 因为21×5CN=21×3×4,所以CN=512. 因为GF∥AB ,所以∠CGF=∠A ,∠CFG=∠B ,所以△CGF∽△CAB ,所以AB GF CN CM =.设正方形的边长为x ,则1251255x x -=,解得3760=x .所以正方形的边长为3760. [2]同[1],有12251255x x -=,解得4960=x . [3]同[1],有12351255x x -=,解得6160=x . [4]同[1],有1251255x nx -=,解得nx 122560+=. 6.解:(1)答案不唯一,如“圆心角相等” “半径和弧长对应成比例”(2)由相似扇形的性质知半径和弧长对应成比例,设另一个扇形的弧长为x ,则a a 2=x m ,∴x =2m.(3)∵两个扇形相似,∴新做扇形的圆心角与原来扇形的圆心角相等,等于120°.设新做扇形的半径为γ,则230γ⎛⎫ ⎪⎝⎭=21,γ=152,即新做扇形的半径为152㎝. 7.证明:在正方形ABCD 中,取AB=2a ,∵N 为BC 的中点,∴12NC BC a ==. 在Rt△DNC 中,2222(2)5.ND NC CD a a a =+=+=∵NE=ND,∴(51)CE NE CN a =-=-. ∴2152)15(-=-=a a CD CE ,故矩形DCEF 为黄金矩形. 8.解:[1]证明:∵将菱形纸片AB [E ]CD [F ]沿对角线BD [EF ]剪开,∴∠B =∠D .∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF .∵∠HFG =∠B ,∴∠GFD =∠BHF ,∴△BFH∽△DGF ,∴BF BH DG DF =, ∴BH•GD =BF 2.[2]证明:∵AG∥CE ,∴∠FAG∥∠C .∵∠CFE=∠CEF ,∴∠AGF=∠CFE ,∴AF=AG . ∵∠BAD=∠C ,∴∠BAF=∠DAG ,△ABF≌△ADG ,∴FB=DG ,∴FD+DG=DB ,9.210.解:[1]证明:∵AC 是⊙O 的直径,∴AE ⊥BC. ∵OD ∥BC,∴AE ⊥OD,∴D 是 ⌒AE 的中点.[2]方法一:证明:如图,延长OD 交AB 于G ,则OG ∥BC .∴∠AGD=∠B.∵OA=OD,∴∠DAO=∠ADO. ∵∠ADO=∠BAD+∠AGD ,∴∠DAO=∠B +∠BAD.方法二:证明:如图,延长AD交BC于H ,则∠ADO=∠AHC.∵∠AHC=∠B +∠BAD,∴∠ADO =∠B +∠BAD. ∵OA=OD,∴∠DAO=∠B +∠BAD.[3] ∵AO=OC,∴12OCD ACDS S∆∆=.∵12CEFOCDSS∆∆=,∴14CEFACDSS∆∆=.∵∠ACD=∠FCE,∠ADC=∠FEC=90°,∴△ACD∽△FCE.∴2CEFACDS CFS AC∆∆⎛⎫= ⎪⎝⎭,即2144CF⎛⎫= ⎪⎝⎭,∴CF=2.。

人教版九年级数学下册相似三角形的判定同步练习及答案【新改】

人教版九年级数学下册相似三角形的判定同步练习及答案【新改】

相似三角形的判定
1.已知△MNP如图所示,则下列四个三角形中与△MNP相似的是()
2. 如图,不等长的两对角线AC、BD相交于O点,且将四边形ABCD分成甲、乙、丙、丁四个三角形.若
OA﹕OC=OB﹕OD=1﹕2,则此四个三角形的关系,下列叙述正确的是()
A.甲、丙相似,乙、丁相似
B.甲、丙相似,乙、丁不相似
C.甲、丙不相似,乙、丁相似
D.甲、丙不相似,乙、丁不相似
3. 如图,在正方形网格上的三角形①②③中,与△ABC相似的三角形有.(填写序号)
4. 在△ABC中,AB=12,AC=15,D是BA延长线上的一点,且AD=8.在CA的延长线上取一点E,
要使得以点A、D、E为顶点的三角形与△ABC相似,则AE的长为.
5. 如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,求证:△DEF∽△CBA.
参考答案 1.C 2.B 3.①② 4.10或6.4
5. 证明:∵点D 、E 、F 分别是AB 、AC 、BC 的中点,∴12DE BC =,12DF AC =,1
2
EF AB =, ∴DE DF EF
BC AC AB
==
,∴△DEF ∽△CBA .。

人教版九年级数学下册《第27章相似》同步测试(含答案)

人教版九年级数学下册《第27章相似》同步测试(含答案)

九年级数学第27章《相似》同步测试一、选择题:1、已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:92、如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.83、两个相似三角形的对应边的比是2∶3,周长之和是20,那么这两个三角形的周长分别为()A. 8和12B. 9和11C. 7和13D. 8和154、已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为( )A.9 B.4 C.6 D.4.85、位似图形的位似中心可以在( )A.原图形外B.原图形内C.原图形上D.以上三种可能都有6、已知△ABC∽△A1B1C1,且∠A=60°,∠B=95°,则∠C1的度数为( )A.60° B.95° C.25° D.15°7、如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.8、要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm9、如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.A.10/3 B.4.5 C.3.6 D.810、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈 B.四丈五尺 C.一丈 D.五尺11、如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A .①②③B .①C .①②D .②③12、如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1二、填空题: 13、两三角形的相似比是2:3,则其面积之比是 .14、.若a 4=b 5=c 6,且a -b +c =10,则a +b -c 的值为 . 15、学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO=4m ,AB=1.6m ,CO=1m ,则栏杆C 端应下降的垂直距离CD 为 .16、已知a 5=b 3=c 4,则a +2b +c 2a +b +2c=____. 17、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 千米.18、如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG:GF 的值是 .19、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为 .20、如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为 .21、在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为 .22、如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BD:AD的值为 .三、解答题:23、已知矩形ABCD中,AD=3,AB=1.若EF把矩形分成两个小的矩形,如图所示,其中矩形ABEF 与矩形ABCD相似.求AF∶AD的值.24、如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是多大?25、如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为多大?26、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果=.求证:EF=EP.27、如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.参考答案一、选择题:1、D2、B3、A4、A5、D6、C7、A8、C9、A10、B11、A12、B二、填空题:13、4∶914、615、0.4m16、5/717、22218、6:519、420、2√521、1:422、(√2-1):1三、解答题:23、1∶924、10.5m25、1226、证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.27、(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.。

九年级数学下册第二十七章相似27.1图形的相似习题3新版新人教版(含参考答案)

九年级数学下册第二十七章相似27.1图形的相似习题3新版新人教版(含参考答案)

九年级数学下册第二十七章相似:图形的相似1.对于四条线段A.B.C.d,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a cb d(即ad=bc),我们就说这四条线段________.2.(1)相似多边形的性质:相似多边形的________相等,________成比例;(2)相似多边形的判定:如果两个多边形满足________相等,________成比例,那么这两个多边形相似.3.相似多边形________的比叫做相似比.如果五边形ABCDE与五边形A′B′C′D′E′的相似比为k,那么五边形A′B′C′D′E′与五边形ABCDE的相似比为________.4.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形5.下列各组线段(单位:cm)中,成比例的线段是( )A.1、2、3、4B.1、2、2、4C.3、5、9、13D.1、2、2、36.下列各组图形中,相似的是( )A.①②③B.②③④C.①③④D.①②④7.已知线段A.B.C.d成比例,且a=6cm,b=3cm,32dcm,则线段c的长度为________.8.在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示,飞机从台湾直飞上海的距离约为620km,那么飞机从台湾绕道香港再到上海的飞行距离约为多少千米?9.如图,四边形模板ABCD和EFGH相似,求这两块模板中∠α、∠β的度数和x、y、z的值.10.在比例尺为1︰40000的工程示意图上,一段铁路的长度约为54.3cm,它的实际长度约为( )A.0.2172kmB.2.172kmC.21.72kmD.217.2km11.两个相似多边形,一组对应边的长分别为3cm和4.5cm,则这两个多边形的相似比可能是( )A.34B.56C.1 2D.3 212.已知四边形ABCD与四边形A′B′C′D′相似,且AB︰BC︰CD︰DA=20︰15︰9︰8.若四边形A′B′C′D′的周长为26,则A′B′的长为( )A.6B.10C.7.5D.813.(1)(2014·柳州)若12ab=,则________a bb+=;(2)若23a ba-=,则________ab=.14.已知三条线段的长度分别为1、2、3,请你再添一条线段,使这四条线段的长度能构成一个比例式,则可添加的线段长度为________.15.如图,将矩形ABCD沿线段AE翻折,使点B恰好落在边AD上的点F处,再沿边EF将矩形ABCD剪开,所得的另一个矩形ECDF和原来的矩形相似,则原来的矩形ABCD的宽AB与长AD的比值为________.16.如图,在矩形ABCD和矩形A′B′C′D′中,AB=16,AD=10,A′D′=6,矩形A′B′C′D′的面积为57.6,那么这两个矩形相似吗?17.(2014·南通)如图,E是菱形ABCD的对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG与菱形ABCD相似,连接EB.GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,3AG ,求GD的长.18.如图,在矩形ABCD中,AB=2AD.线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH和矩形MFGN,使矩形MFGN与矩形ABCD相似,令MN=x.当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?参考答案1.成比例2.(1)对应角对应边(2)对应角对应边3.对应边1 k4.D 5.B 6.B 7.3cm8.设飞机从台湾绕道香港再到上海的飞行距离约为xkm .由题意,得553 3.6 5.46201010x +=⨯,解得x =1860.∴飞机从台湾绕道香港再到上海的飞行距离约为1860km9.∠α=90°,∠β=60°,x =10.5,y =3,z =1210.C11.D12.B13.(1)32(2)314或15.16.∵矩形A′B′C′D′的面积为57.6,A′D′=6,∴A′B′=9.6.∴1659.63AB A B ==''.根据矩形的性质,知53DC AB D C A B ==''''.同理,10563BC AD B C A D ===''''∴53AB AD DC BC A B A D D C B C ====''''''''.又∵矩形的各内角都是90°,∴矩形ABCD 与矩形A′B′C′D′相似17.(1)∵菱形AEFG 与菱形ABCD 相似,∴∠GAE =∠DAB .∴∠GAE +∠GAB =∠DAB +∠GAB ,即∠EAB =∠OAD .又∵四边形AEFG 和ABCD 是菱形,∴AE =AG ,AB =AD .∴△ABE ≌△ADG .∴EB =GD(2)连接BD 交AC 于点O .∵四边形ABCD 是菱形,∴AD =AB =2,BO ⊥AC ,1302OAB DAB ∠=∠=︒.在Rt △AOB 中,112BO AB==.∴AO ==EO AE AO AG AO =+=+=.在Rt △BOE 中,BE===GD BE ==18.∵矩形MFGN与矩形ABCD相似,∴MN MFAD AB=.又∵AB=2AD,MN=x,∴MF=2x.∴EM=EF-MF=10-2x.∴22525(102)2102()22S x x x x x=-=-+=--+.∴当52x=时,S有最大值,最大值是25 2.。

人教版 九年级数学下册 第27章 相似 同步训练(含答案)

人教版 九年级数学下册  第27章 相似 同步训练(含答案)

人教版 九年级数学 第27章 相似 同步训练一、选择题1. 如图,在平面直角坐标系中,以原点O 为中心,将△ABO 扩大到原来的2倍,得到△A ′B ′O .若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2. (2020·绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2︰5,且三角板的一边长为8cm .则投影三角板的对应边长为( )A .20cmB .10cmC .8cmD .3.2cm3. (2019•沈阳)已知△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,若AD =10,A'D'=6,则△ABC 与△A'B'C'的周长比是 A .3∶5 B .9∶25 C .5∶3 D .25∶94. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =6. (2020·广西北部湾经济区)如图,在△ABC中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .307. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) 个 D.7个AB二、填空题8. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.9. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF 的顶点都在网格线的交点上,设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 ▲ . ABCDEF10. (2019•郴州)若32x y x +=,则yx=__________.11. (2019•永州)如图,已知点F 是△ABC 的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作FG ∥BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为S 1,S 2,则S 1:S 2=__________.12.如图,在R t △ABC 中,∠ACB =90°,AC =3, BC =4, CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________.FE DB CA13. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.14. (2020湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知R t△ABC是6×6网格图形中的格点三角形,则该图中所有与R t△ABC相似的格点三角形中.面积最大的三角形的斜边长是.三、解答题15. 在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图②,连接A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′和S△BCB′.求证:S△ACA′∶S△BCB′=1∶3;(3)如图③,设AC中点为E,A′B′中点为P,AC=a,连接EP,当θ=________°时,EP长度最大,最大值为________.图①图②图③16. (2020·江苏徐州)我们知道:如图①,点B把线段AC分成两部分,如果BC AB AB AC=,那么称点B为线段AC的黄金分割点.51-.(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B的对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E (AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.A CBHGB CA DPEFDA图①图②图③17. 如图,在平面直角坐标系xOy中,直线y=-x+3与x轴交于点C,与直线AD交于点A(43,53),点D的坐标为(0,1).(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD 与△BCE相似时,求点E的坐标.人教版九年级数学第27章相似同步训练-答案一、选择题1. 【答案】C解析:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A的坐标是(1,2),则点A′的坐标是(-2,-4).2. 【答案】A【解析】本题考查了相似三角形的性质.相似三角形的对应边之比等于相似比,所以8︰(投影三角形的对应边长)=2︰5,则投影三角形的对应边长是20 cm.因此本题选A.3. 【答案】C【解析】∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD∶A′D′=10∶6=5∶3.故选C.4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF ∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC的高,∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:C因此本题选A.二、填空题 8. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.9. 【答案】2【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:1:2.10. 【答案】12【解析】∵32x y x +=,∴223x y x +=, 故2y =x ,则12y x =,故答案为:12.11. 【答案】18【解析】∵点F 是△ABC 的重心,∴BF =2EF ,∴BE =3EF , ∵FG ∥BC ,∴△EFG ∽△EBC ,∴13EF BE =,1EBC S S =△(13)219=, ∴S 1∶S 2,故答案为:18.12. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DFDF =-,所以DF =,故答案为5485. GF E DB CA13. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.14. 【答案】解:∵在R t △ABC 中,AC =1,BC =2,∴AB ,AC :BC =1:2,∴与R t △ABC 相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE ,EF =2,DF =5的三角形, ∵,∴△ABC ∽△DEF ,∴∠DEF =∠C =90°,∴此时△DEF 的面积为:22=10,△DEF 为面积最大的三角形,其斜边长为:5.故答案为:5.三、解答题15. 【答案】(1)证:∵AB ∥CB ′,∴∠BCB ′=∠ABC =30°, ∴∠ACA ′=30°;又∵∠ACB =90°,∴A ′CD =60°,又∠CA ′B ′=∠CAB =60°. ∴△A ′CD 是等边三角形.(2)证:∵AC =A ′C ,BC =B ′C ,∴AC BC =A ′CB ′C.又∠ACA ′=∠BCB ′,∴△ACA ′∽△BCB ′. ∵AC BC =tan30°=33,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=1∶3.(3)120,3a2.16. 【答案】解: (1)10.解:∵ABAC=,AC=20,∴AB=10.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:==∴EJ=AJ=JE-AE=,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ==,∴G 是AB 的黄金分割点.J(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴ a.∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BC A FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴a.∴AF BF BF AB==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB ==, ∵AE=BF,∴PB=AB ,∴PB=BC.17. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为 y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1,解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°, ∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F ,即E 2F 2=CF·BF , (12x +1)2=(3-x)(x +2),解得:x1=2,x2=-2(舍去),∴E2(2,2);(9分)③当∠EBC=90°时,此情况不存在.综上所述,点E的坐标为E1(3,52)或E2(2,2).(10分)。

人教版九年级数学下册第二十七章《相似——相似三角形》同步检测3附答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步检测3附答案

1 / 1 人教版九年级数学下册第二十七章《相似——相似三角形》
同步检测3附答案——相似三角形》同步检测3附答案
1﹨已知D ﹨E 分别是ΔABC 的边AB ﹨AC 上的点,请你添加一个条件,
使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).
2﹨如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF =
3﹨如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,
连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对
4﹨如图,在大小为4×4的正方形网格中,是相似三角形的是( )
① ② ③ ④
A.①和②
B.②和③
C.①和③
D.②和④
.5﹨如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,
⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )
(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥
6﹨在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.
如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角
形AB C 相似(相似比不为1).
7﹨如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4c m ,如果图中的两
个直角三角形相似,求AD 的长.
答案
1﹨D E ∥BC 2﹨C 3﹨C 4﹨C 5﹨B 6﹨略 7﹨AD=5
16cm。

人教版九年级下册数学《相似》同步测试及答案

人教版九年级下册数学《相似》同步测试及答案

相似同步测试一、基础训练1.如图1所示,E、F分别是平行四边形的边BC、AD的中点,且平行四边形ABFE∽平行四边形ADCB,则ABBC=_______.(1) (2) (3) 2.如果两个相似多边形的最长边分别为35cm和14cm,•那么最短边分别为5cm•和_______cm.3.在长为8cm,宽为6cm的矩形中,截去一个矩形(图2中的阴影部分),•若留下的矩形与原矩形相似,那么留下的矩形面积是_________.4.下列说法正确的是()A.矩形都是相似的 B.有一个角相等的菱形都是相似的C.梯形的中位线把梯形分成两个相似图形 D.任意两个等腰梯形相似5.如图3所示,内外两个矩形相似,且对应边平行,则下列结论中正确的是()A.xy=1 B.xy=abC.xy=baD.以上答案都不对6.(扬州市)如图4所示,有两个形状相同的星星图案,则x的值为()A.15 B.12 C.10 D.87.如图5所示,小明将一张报纸对折后,发现对折后的半张报纸与整张报纸相似,•你能推算出整张报纸的长与宽的比是下面哪一个答案吗()A 1 B.4:1 C.1:4 D.1(4) (5) (6) 8.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,• 则△ADE•是△ABC放大后的图形;B.两位似图形的面积之比等于位似比;C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方9.若两个图形位似,则下列叙述不正确的是()A.每对对应点所在的直线相交于同一点;B.两个图形上的对应线段之比等于位似比C.两个图形上对应线段必平行 D.两个图形的面积比等于位似比的平方10.下列说法正确的是()A.所有的矩形都是相似形 B.所有的正方形都是相似形C.对应角相等的两个多边形相似 D.对应边成比例的两个多边形相似11.如图6所示,有三个矩形,其中是相似形的是()A.甲和乙 B.甲和丙 C.乙和丙 D.甲、乙和丙二、能力提升:12.按如下方法将△ABC的三边缩小来原来的1 2:如图所示,任取一点O,•连AO,•BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法中正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF是周长的比为2:1; ④△ABC与△DEF面积比为4:1A.1个 B.2个Array C.3个 D.4个13.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点.()A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)14.如图所示,点E为矩形ABCD的边AB的黄金分割点(AE>EB),且AEFD为正方形.问:矩形ABCD和矩形EFCB相似吗?为什么?15.(淮安市)如图所示,已知O是坐标原点,B、C两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(•即新图与原图的位似比为2),画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.三、应用与探究:16.印刷一张矩形的张贴广告,如图所示,它的印刷面积是32分米2,•上下空白各1分米,两边空白各0.5分米.设印刷部分从上到下的长是x分米,•四周空白处的面积为5分米.(1)求S与x的关系式.(2)当要求四周空白处的面积为18分米2时,求用来印刷这张广告的纸张的长和宽各是多少?(3)在(2)的条件下,内外两个图形是位似图形吗?参考答案1.1 2.2 3.27cm2 4.B 5.B 6.D 7.A 8.C 9.C 10.B 11.B 12.D 13.A 14.相似 15.略 16.略。

人教版九年级数学下册第27章《相似》单元检测及答案【精选】

人教版九年级数学下册第27章《相似》单元检测及答案【精选】

人教版数学九年级下学期第27章《相似》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.已知2x=5y (y ≠0),则下列比例式成立的是( )A .x y 25=B .x y52= C .x 2y 5= D .x 52y =2.若a b c 234==,则a 2b 3c a ++等于( )A .8B .9C .10D .113.下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A .∠A=∠E 且∠D=∠F B .∠A=∠B 且∠D=∠FC .∠A=∠E 且AB EF AC ED = D .∠A=∠E 且AB DFBC ED=4.如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.NMED CBAABCD5.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )FEDCB AA .AD DEDB BC=B .BF EFBC AD=CAE BFEC FC=. D .EF DEAB BC=6.如图,在△ABC 中,DE ∥BC ,AD 1DB 2=,DE=4,则BC 的长是( ) EDCBAA .8B .10C .11D .127.如图,四边形ABCD ∽四边形A 1B 1C 1D 1,AB=12,CD=15,A 1B 1=9,则边C 1D 1的长是( )D 1C 1B 1A 1DCBAA .10B .12C .454 D.3658.已知△ABC ∽△A ′B ′C ′且AB 1A B 2='',则S △ABC :S △A'B'C ′为( ) A .1:2 B .2:1 C .1:4 D .4:19.如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)( ) 0.5m16m?A .4mB .6mC .8mD .12m10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )D CBAA .32 B .92CD .二、填空题(共6小题,每小题3分,共18分)11.在直角△ABC 中,AD 是斜边BC 上的高,BD=4,CD=9,则AD= .12.如图,直线AD ∥BE ∥CF ,BC=13AC ,DE=4,那么EF 的值是 .FEDCB A13.已知△ABC ∽△DEF ,且它们的面积之比为4:9,则它们的相似比为 .14.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.OD C15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).C16.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN 与AC边交于点N,使截得的三角形与原三角形相似,则MN=.CBA三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求DEBC的值.ECB18.(本题8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.DB19.(本题8分)如图,在△ABC 中,AB=AC ,∠A=36°,BD 为角平分线,DE ⊥AB ,垂足为E . (1)写出图中一对全等三角形和一对相似比不为1的相似三角形; (2)选择(1)中一对加以证明.EDCB A20.(本题8分)如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点. (1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1的坐标;(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.21.(本题8分)在△ABC 中,点D 为BC 上一点,连接AD ,点E 在BD 上,且DE=CD ,过点E 作AB 的平行线交AD 于F ,且EF=AC .如图,求证:∠BAD=∠CAD ;CBAFED22.(本题10分)如图,在梯形ABCD 中,已知AD ∥BC ,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E ,连接DE ,作EF ⊥DE ,交直线AB 于点F . (1)若点F 与B 重合,求CE 的长;(2)若点F 在线段AB 上,且AF=CE ,求CE 的长.CBA F ED23.(本题10分)如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数; (2)求DE 的长.D EBCA24.(本题12分)在Rt △ABC 中,∠C=90°,AC=20cm ,BC=15cm ,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动,如果点P 的速度是4cm/秒,点Q 的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求:(1)当t=3秒时,这时,P ,Q 两点之间的距离是多少? (2)若△CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与△ABC 相似?BCA第27章《相似》单元测试卷解析一、选择题1. 【答案】∵2x=5y ,∴x y52=.故选B . 2.【答案】设a b c234===k , 则a=2k ,b=3k ,c=4k ,即a 2b 3c a ++=2k 23k 34k 2k+⨯+⨯=10,故选C .3. 【答案】A 、∠D 和∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误; B 、∠A=∠B ,∠D=∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C 、由AB EF AC ED=可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC 与△DEF 相似,故此选项正确;D 、∠A=∠E 且AB DFBC ED=不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误; 故选:C .FEDC B A4. 【答案】∵四边形ABCD 是正方形,∴AB=BC , ∵BE=CE ,∴AB=2BE ,又∵△ABE 与以D 、M 、N 为顶点的三角形相似,∴①DM 与AB 是对应边时,DM=2DN∴DM 2+DN 2=MN 2=1∴DM 2+14DM 2=1,解得;②DM 与BE 是对应边时,DM=1DN ,∴DM 2+DN 2=MN 2=1,即DM 2+4DM 2=1,解得DM 时,△ABE 与以D 、M 、N 为顶点的三角形相似. 故选C .5. 【答案】∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE=BF ,BD=EF ;∵DE ∥BC ,∴AD AE BF AB AC BC ==,EF CE BCAB AC DE ==, ∵EF ∥AB ,∴AE BFEC FC=故选C .6.【答案】∵AD 1DB 2=,∴AD 1AB 3=, ∵在△ABC 中,DE ∥BC ,∴DE AD 1BC AB 3==,∵DE=4,∴BC=3DE=12.故选D . 7. 【答案】∵四边形ABCD ∽四边形A 1B 1C 1D 1,∴1111AB CDA B C D =, ∵AB=12,CD=15,A 1B 1=9,∴C 1D 1=454. 故选C .8.【答案】∵△ABC ∽△A ′B ′C ′,AB 1A B 2='',∴S △ABC :S △A'B'C ′==(AB A B '')2=14,故选C . 9.【答案】设长臂端点升高x 米,则0.5:x=1:16,∴解得:x=8.故选;C . 10. 【答案】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴AC 2=AD •AB ,又∵AC=3,AB=6,∴32=6AD ,则AD=32.故选:A .二、填空题11.【答案】∵△ABC 是直角三角形,AD 是斜边BC 上的高,∴AD 2=BD •CD (射影定理), ∵BD=4,CD=9,∴AD=6. DCBA12.【答案】∵BC=13AC ,∴AB 2BC 1=,∵AD ∥BE ∥CF ,∴AB DE BC EF =,∵DE=4,∴EF=2.故答案为:2.13.【答案】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方, 因为S △ABC :S △DEF =2:9=(2:3)2, 所以△ABC 与△DEF 的相似比为2:3, 故答案为:2:3.14.【答案】∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA , ∴AB :DE=OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4. 故答案为:1:4.15.【答案】由题意知:光线AP 与光线PC ,∠APB=∠CPD ,∴Rt △ABP ∽Rt △CDP , ∴AB:BP=CD:PD,,∴CD=1.2×12÷1.8=8(米). 故答案为:8.16.【答案】如图1,当MN ∥BC 时,则△AMN ∽△ABC ,故AM:AB=AN:AC=MN:BC , 则3:9=MN:12,解得:MN=4, 如图2所示:当∠ANM=∠B 时,又∵∠A=∠A ,∴△ANM ∽△ABC ,∴AM:AC=MN:BC ,即3:6=MN:12, 解得:MN=6, 故答案为:4或6.图2图1ABCCBA三、解答题17.【解答】∵DE ∥BC ,∴AD:AB=DE:BC ,∵AD=3,AB=5,∴DE BC =35. 18.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD , ∴GF:CF=DF:BF ,CF:EF=DF:BF ,∴GF:CF=CF:EF , 即CF 2=GF •EF . 19.【解答】(1)△ADE ≌△BDE ,△ABC ∽△BCD ; (2)证明:∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,∵BD 为角平分线,∴∠ABD=12∠ABC=36°=∠A ,在△ADE 和△BDE 中, ∠A=∠DBA,∠AED=∠BED,ED=ED , ∴△ADE ≌△BDE (AAS );∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°,∵BD 为角平分线,∴∠DBC=12∠ABC=36°=∠A ,∵∠C=∠C ,∴△ABC ∽△BCD . 20.【解答】(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1); (2)符合条件△A 2B 2C 2有两个,如图所示.A 1B 1C 1各点的坐标,继而画出图形; (2)利用位似的性质,可求得△A 2B 2C 2各点的坐标,继而画出图形. 21.【解答】延长FD 到点G ,过C 作CG ∥AB 交FD 的延长线于点M , 则EF ∥MC ,∴∠BAD=∠EFD=∠M ,在△EDF 和△CMD 中,∠EFD=∠M ,∠EDF=∠MDC ,ED=DC , ∴△EDF ≌△CMD (AAS ),∴MC=EF=AC ,∴∠M=∠CAD ,∴∠BAD=∠CAD ;BAM22.【解答】(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴BF:EM=BE:DM,∴(7-a):(a-3)=(12-a):7,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.EDF(F)D23.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴AB:AD=BC:DE,即30:18=20:DE,解得DE=12cm.24.【解答】由题意得AP=4t,CQ=2t,则CP=20﹣4t,(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=10cm;(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为S=12×(20-4t)×2t=(20t-4t2)cm2;(3)分两种情况:①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t=4011秒.因此t=3秒或t=4011秒时,以点C、P、Q为顶点的三角形与△ABC相似.。

人教版初中数学九年级下册同步测试 第27章 相似(共21页)

人教版初中数学九年级下册同步测试 第27章  相似(共21页)

第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________. 反之亦真.即______(a ,b ,c ,d 不为零). 7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若则x =______. 9.若则______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题14.已知:如图,梯形ABCD 与梯形A ′B ′C ′D ′相似,AD ∥BC ,A ′D ′∥B ′dcb a =⇔=dcb a ,571=+x x ,532z y x ===-+x z y x2C′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF 上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则______,______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______.4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_________________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②③二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.=AC DF =EFBC;)(,)(BC AB AD AE AB AD ==⋅==CABA BD AE DB AD )(,)((1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:(2)若AB =4,BC =6,DE =5,求EF .;DFDEAC AB9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:P A ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求; (2)若E 为AD 上的一点,且,射线CE 交AB 于F ,求测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.23=DEAE BFAFkED AE 1=⋅BF AF2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC 交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5B.8.2C.6.4D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .2.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .B .C .D .3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m 二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .第5题图m 310m 711m 710m 79m 236.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______. 10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______.11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若,则此三角形移动的距离AA '是( )A.B .C .1D .三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.2=AB 12-2221综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且相交于F 点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .AE BD EC BE ,,21(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△=2∶3,求S△AOB∶S△COD.DOC22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),C .(2,2),2D .(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD 的顶点坐标分别为A (-4,2),B (-2,-4),C (6,-2),D (2,4).试以O 点为位似中心作四边形A 'B 'C 'D ′,使四边形ABCD 与四边形A ′B ′C ′D ′的相似比为1∶2,并写出各对应顶点的坐标.214.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D 点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc . 7.3∶2. 8. 9.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15. 16.相似. 17.时,S 的最大值为 测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,3.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1)(2) (3) 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:P A ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1)(2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等. 5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等. 7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相⋅k1⋅25⋅==750,730AE AD 25=x ⋅225⋅21;BC CA BD CD CD AD ==;BC CD AC AD AB AC ==⋅==ACCDBC BD BA BC ;21=BF AF等.8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对.11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3) (4)(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得再有BA =BD ,AC =AE .则:再有∠HBD =∠HAE ,得△BDH ∽△AEH .22.提示:可证△APE ∽△ACB ,则则 测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10. 11.∵EF ∥AC ,∴∠CAB =∠EFD .;4,54,52===CD BC AC ;36,33,3===BC CD AD ⋅=∴CBBDOB AD ⋅=21FB AF ,ACBAAH BH =,AE BD AH BH =.2423+-=x y ⋅=ACAPBC PE ).10(6)458(43,45,43x x x y x AE x PE -++-+===.31AB B A =''又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4. 9. 10. 11. 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2)18.(1) (2)54cm 2. 19.(1) (2)20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶922.BP =2,或或9. 当BP =2时,S △ABP ∶S △PCD =1∶9; 当时,S △ABP ∶S △DCP =1∶4; 当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1)(2)B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ;(2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G ';)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC .2:1,2:1.4:3,2:3.4:3,2:3.215a -;31;22⋅724,311311=BP );32,2(),2,3(+A E ).332,6(1+A ),332,10(2--A(3)连结BF',延长交AC于F;(4)作FG∥CB,交AB于G,从F,G各作BC的垂线FE,GD,那么DEFG就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH(h)⊥BC(a);(2)求h+a,a,h的比例第四项x;(3)在AH上取KH=x;(4)过K作GF∥BC,交两边于G,F,从G,F各作BC的垂线GD,FE,那么DEFG就是所求的内接正方形.6.提示:正方形EFGH即为所求.实用文档专业整理21。

(完整版)人教版九年级数学下《第27章相似》专项训练含答案,推荐文档

(完整版)人教版九年级数学下《第27章相似》专项训练含答案,推荐文档
(1)求直线 BD 和抛物线对应的函数解析式; (2)在第一象限内的抛物线上,是否存在一点 M,作 MN 垂直于 x 轴,垂足 为点 N,使得以 M,O,N 为顶点的三角形与△BOC 相似?若存在,求出点 M 的坐 标;若不存在,请说明理由.
(第 3 题) 相似三角形与反比例函数 4.如图,矩形 OABC 的顶点 A,C 分别在 x 轴和 y 轴上,点 B 的坐标为
1 DE=2BC.
建议收藏下载本文,以便随时学习!
(第 3 题)
4.如图,AM 为△ABC 的角平分线,D 为 AB 的中点,CE∥AB,CE 交 DM 的延 长线于 E.
求证:AC=2CE.
(第 4 题)
证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点 D 为等腰直角三角形 ABC 的斜边 AB 上一点,连接 CD,DE⊥CD,DE=CD,连接 CE,AE.求证:AE∥BC.
k (2,3),双曲线 y=x(x>0)经过 BC 的中点 D,且与 AB 交于点 E,连接 DE.
(1)求 k 的值及点 E 的坐标; (2)若点 F 是 OC 边上一点,且△FBC∽△DEB,求直线 FB 对应的函数解析 式.
(第 4 题)
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
(第 1 题) 2.如图,一直线和△ABC 的边 AB,AC 分别交于点 D,E,和 BC 的延长线交 于点 F,且 AECE=BFCF. 求证:AD=DB.
(第 2 题) 类型2:证明两线段的倍分关系
我去人3也.如就图,有在人△AB!C 中为,BUD⊥R扼AC 于腕点入D,站CE⊥内AB 信于点不E,存∠A在=6向0°,你求偶证:同意调剖沙
建议收藏下载本文,以便随时学习! (第 11 题)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似》同步练习(三)
人教版九年级下册
一.选择题(每小题4分,共32分)
1. 下列各组图形有可能不相似的是( ).
(A)各有一个角是50°的两个等腰三角形
(B)各有一个角是100°的两个等腰三角形
(C)各有一个角是50°的两个直角三角形
(D)两个等腰直角三角形
2. 如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC2=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD的个数是()
(A)1(B)2(C)3(D)4
3.如图,∠ABD=∠ACD,图中相似三角形的对数是()
(A)2(B)3(C)4(D)5
4.如图,在矩形ABCD中,点E是AD上任意一点,则有()
(A)△ABE的周长+△CDE的周长=△BCE的周长
(B)△ABE的面积+△CDE的面积=△BCE的面积
(C)△ABE∽△DEC
(D)△ABE∽△EBC
5. 已知两个相似三角形周长分别为8和6,则它们的面积比为()。

(A)4:3;(B)16:9;(C)2:;(D)。

6. 两个相似三角形对应边之比是1:5,那么它们的周长比是()。

(A);(B)1:25;(C)1:5;(D)。

7. 若⊿ABC∽⊿,∠A=40°, ∠B=110°,则∠C =( )
A. 40°B110°C70° D30°
8.如图,在ΔABC中,AB=30,BC=24,CA=27, AE=EF=FB,
EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周
长之和为()
A、70
B、75
C、81
D、80
二、填空题(每小题3分,共24分)
9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______.
10、在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际周长
为。

11、如果两个相似三角形对应高的比为4:5,则这两个三角形的相似比是
,它们的面积的比是。

12、三角形的三条边长分别为5cm,9cm,12cm,则连结各边中点所成三角形的周长为
________cm。

13、△ABC中,∠ACB=90°,CD是斜边AB上的高,AB=4cm,AC=cm,则AD=________ cm。

14. 在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_______cm2
15.如图,由边长为1的25个小正方形网格上有一个与⊿ABC相似且面积最大的⊿A1B1C1,使它的三个顶点都落在小正方形的顶点上,则⊿A1B1C1的面积为___________
16. 如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地上形成阴
影(圆形)的示意图,已知桌面的直径为1.2米,桌面距地面1米,灯泡距地面3米,则地上阴影部分的面积是______.
三、解答题(17题10分、18题10分,19、20题9分,共38分)
17. 如图,点C、D在线段AB上,⊿PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,⊿ACP∽⊿PDB?
(2)当⊿ACP∽⊿PDB时,求⊿APB的度数.
18.如图,BD、CE为⊿ABC的高,求证⊿AED=⊿ACB.
19. 已知矩形ABCD中,E为DC的中点,连接BE,AF⊥BE于点F,AB=10cm,BC=12cm,求AF长。

20. 已知:如图,BC为半圆的直径,O为圆心,D是弧AD的中点,四边形ABCD的对角线AC、BD交于点E。

求证:⊿ABE∽⊿DBC。

四、综合题(12分)
21.如图,四边形DEFG是ΔABC的内接矩形,如果ΔABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.
五、探究题(14分)
22. 在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。

求(1)几秒时PQ∥AB
(2)设△OPQ的面积为y,求y与t的函数关系式
(3)△OPQ与△OAB能否相似,若能,求出点P的坐标,
若不能,试说明理由
参考答案
一、1.A 2.B 3.C 4. B 5. B 6. C 7 D 8 C
二、9. ⊿ACE 10 1800米 11. 4:5,16:25 12.13 13.3 14. 27 15. 5
16. 0.81π米2
三、17. (1)CD 2=AC ·DB (2)1200
18.先证⊿ABD ∽⊿ACE 可得AE :AD=AC :AB,加上∠A=∠A 可证⊿ADE ∽⊿ABC 得⊿AED =⊿ACB
19. AF =cm 。

20. 提示:∠BAE=∠BDC ,弧AD=弧DC ,∠ABE=∠DBC ,可证结论。

四、21.Y=-0.8x+8 (0<x<10)
五、22. (1)由已知得106822=+=OA ,当PQ ∥AB 时OB OQ OA OP =,则:1621610
t t -=,得:t=40/9
(2) 过P 作PC ⊥OB, 垂足为C, 过A 作AD ⊥OB, 垂足为D t PC t PC OA OP AD PC 53,106
,=∴== t t t t PC OQ y 5245353)216(21212+-=∙-=∙=
(3)能相似。

PQ ∥AB, △OPQ ∽△OAB
∵t=409 ∴OP= 40
9, ∵OD OC OA OP AD PC == 其中AD=6,OA=10,OD=8 ∴OC=329,PC=83,∴P 点坐标是(329,8
3 ).。

相关文档
最新文档