实验五(信号抽样与恢复)

合集下载

实验五 信号的采样与恢复

实验五 信号的采样与恢复

信号与系统实验报告【实验原理】1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S⁄称抽样频率。

图1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。

而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。

当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使f s =2B ,恢复后的信号失真还是难免的。

图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图2抽样过程中出现的两种情况4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。

实验五抽样定理及信号恢复

实验五抽样定理及信号恢复
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,比照观 察信号恢复情况:
3. 设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分 别通过截止频率为fc1和fc2低通滤波器,观察其原信号 的恢复情况,并完成以下观察和记录任务:
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 5. W41改变抽样频率,使抽样频率分别为3K、6K和12K, 6. 观察并记录这3种情况下抽样信号的波形。
2. 验证抽样定理与信号恢复
信号恢复实验方框图如图5-7:
F(பைடு நூலகம்)
抽样器
FS(t)
S(t)
低通 滤波器
F’(t)
图5-7 信号恢复实验方框图
1. 分别设计两个有源低通滤波器,电路形式如图5-6所示。 〔利用U43、R43、R44、C42与C41、C43来实现〕分别 设fc1=2KHz,fc2=4KHz,R1=R2=5.1KΩ,试计算C1 和C2值〔计算公式见5-1,5-2〕。
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;

数字信号处理实验五

数字信号处理实验五

实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。

(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。

信号采样与恢复实验

信号采样与恢复实验

信号的采样与恢复实验1、实验目的a 熟悉信号的采样与恢复的过程b 学习和掌握采样定理c 了解采样频率对信号恢复的影响2、实验原理及内容a 采样定理采样定理:对于一个具有有限频谱且最高频率为w max 的连续信号进行采样,当采样频率w s 满足w s >=2w max 时,采样函数能够无失真地恢复出原信号。

b 采样信号的频谱连续周期信号经过经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s n j F n Sa T A j F ωωτωτω-=∑+∞-∞= 它包含了原信号频谱以及重复周期为 ωs 的原信号频谱的搬移,且幅度按)2(τωτs n Sa T A 规律变化。

所以抽样信号的频谱便是原信号频谱的周期性拓延。

c 采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。

低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。

d 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。

其中的采样保持部分电路由一片 CD4052 完成。

此电路由两个输入端,其中 IN1 端输入被采样信号,Pu 端入采样脉冲。

3、测试步骤3.1 信号的采样a 使波形发生器第一路输出幅值 3V 、频率 10Hz 的三角波信号;第二路输出幅值 5V ,频率 100Hz 、占空比 50%的脉冲信号。

将第一路信号接入 IN1 端,作为输入信号;将第二路信号接入 Pu 端,作为采样脉冲。

b 用示波器分别测量 IN1 端和 OUT1 端,观察采样前后波形的差异c 增加采样脉冲的频率为 200、500、800 等值。

观察 OUT1 端信号的变化。

解释现象的产生。

图1:频率为100Hz 的采样脉冲 图2:频率为200Hz 的采样脉冲图3:频率为500Hz 的采样脉冲 图4:频率为800Hz 的采样脉冲原因:取样的周期不能过大,必须满足ms f T 21≤,)。

北航3系自控原理实验五-采样系统研究

北航3系自控原理实验五-采样系统研究

自动控制原理实验报告班级:学号:姓名:实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

其传递函数:s e Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

5. 最小拍无差系统: 通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。

对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。

从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。

三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:系统开环脉冲传递函数为:系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

2. 当采样周期1T s =时, ,设计D (z ),使该系统分别在单位阶跃信号作用下和单位斜坡信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。

四、实验设备1. HHMN-1型电子模拟机一台。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。

2、理解抽样频率对信号恢复的影响。

3、学会使用实验设备进行抽样和信号恢复的操作。

4、通过实验观察和数据分析,验证抽样定理的正确性。

二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。

设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。

以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。

抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。

2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。

理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。

通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。

三、实验设备1、信号发生器:用于产生连续信号。

2、抽样脉冲发生器:产生抽样脉冲。

3、示波器:用于观察信号的波形。

4、低通滤波器:实现信号的恢复。

四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。

2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。

3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。

4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。

5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。

五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。

信号的采样与恢复

信号的采样与恢复

实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。

2.验证采样定理。

二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。

2.用采样定理分析实验结果。

四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。

采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。

S(t)是一组周期性窄脉冲。

由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。

平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。

当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。

采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。

2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。

3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。

Fmin=2B 为最低采样频率。

当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。

在实际使用时,一般取fs=(5-10)B 倍。

实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。

4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

实验五 信号的采样与恢复

实验五 信号的采样与恢复

2、 语音信号的抽样与恢复
把话筒插进 V1 耳机插进 V2(看清标识不要接错),用导线将“PCM 信号输 出”连接到“PCM 信号输入”,检查无误后就可以对着话筒讲话了,会在耳机 里听到清楚的声音。 (W01 用来调节语音信号的放大倍数,W02 用来调节声音 的大小)
数据处理:
抽样频率变化后的采样信号与其分别对应的恢复信号
s
2
2
t)
该信号在采样周期 2
s 整数倍点上
的值都是零;因此在这个采样频率下所产生的信号全是零。当这个零输入加到理想低通 滤波器上时,所得输出当然也都是零。 5、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外, 常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。但这也会造 成失真。原始的语音信号带宽为 40Hz 到 10000Hz,但实际中传输的语音信号的带宽为 300Hz 到 3400Hz,并不影响我们的听觉效果,因此本实验加了前置滤波器。 6、语音抽样还原实验采用集成方式,本实验采用PCM编译码器TP3067专用大规模集 成电路,它是CMOS工艺制造的单片PCM A律编译码器.片内带有输入输出话路滤波器.它 把编译码器(Codec)和滤波器(Filter)集成在一个芯片上。 脉冲编码调制(PCM)就是把一个时间连续、取值连续的模拟信号变换成时间离散、 取值离散的数字信号后在信道中进行传输。而脉冲编码调制就是对模拟信号先进行抽样 后,再对样值的幅度进行量化、编码的过程。话音信号先经过防混叠低通滤波器,得到 限带信号(300Hz~3400Hz),进行脉冲抽样,变成 8kHz 重复频率的抽样信号(即离散 的脉冲调幅 PAM 信号),然后将幅度连续的 PAM 信号用“四舍五入”办法量化为有限个 幅度取值的信号,再经编码,转换成二进制码。对于电话,CCITT(国际电话与电报顾 问委员会 International Telephone and Telegraph Consultative Committee)规定 8 抽样率为 8kHz,每抽样值编 8 位码,即共有 2 =256 个量化值,因而每话路 PCM 编码后 的标准数码率是 64kb/s。

实验六、信号的抽样与恢复实验实验报告(报告人 09光信2)

实验六、信号的抽样与恢复实验实验报告(报告人  09光信2)

实验六 信号的抽样与恢复实验报告一、 实验目的(1)了解电信号的采样方法与过程以及信号恢复的方法。

(2)验证抽样定理。

二、 实验原理(1)离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f ()s t 可以看成连续信号()f t 和一组开关函数()s t 是一组周期形窄脉冲,见图2-9-1,s T 称为抽样周期,其倒数1s sf T 称抽样频率。

对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f ()s t 及其谐波频率2s f 、3s f ….。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sin )x x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

(2)正如测得了足够的实验数据以后,我们 可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包括了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

(3)还原信号得以恢复的条件是2s m f f ≥,其中s f 为抽样频率,m f 为原信号的最高频率。

而min 2m f f =为最低抽样频率,又称“奈斯特抽样率”。

当2s m f f <时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使min 2m f f =,回复后的信号失真还是难免的。

图2-9-2画出了当抽样频率2s m f f ≥(不混叠时)及当抽样频率2s m f f <(混叠时)两种情况下冲激抽样信号的频谱。

实验中选用2s m f f <,min 2m f f =,2s m f f ≥三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率s f 必须大于信号频率中最高频率的两倍。

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。

中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。

该定理法则约定如下:1、信号必须以完整的范式采样。

信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。

2、采样间隔为信号范式宽度的2倍。

中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。

若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。

3、采样频率不能低于信号本身的频率。

在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。

中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。

实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。

中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。

它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。

实验五1实验五 信号的抽样与恢复

实验五1实验五  信号的抽样与恢复

实验五1实验五信号的抽样与恢复————————————————————————————————作者:————————————————————————————————日期:实验五 信号的抽样与恢复一、实验目的(1) 验证抽样定理;(2) 熟悉信号的抽样与恢复过程;(3) 通过实验观察欠采样时信号频谱的混迭现象;(4) 掌握采样前后信号频谱的变化,加深对采样定理的理解; (5) 掌握采样频率的确定方法.二、 实验内容和原理信号的抽样与恢复示意图如图4.1所示。

图5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率.当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

)(t f 的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF .如图4。

1所示。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图4。

2所示。

图 5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t f 。

信号与系统 实验五 连续信号的抽样和恢复

信号与系统 实验五 连续信号的抽样和恢复

实验五连续信号的抽样和恢复一、实验目的理解模拟信号的抽样与重构过程,理解信号时域抽样对频域的影响,理解抽样定理。

二、实验内容设信号f(t)=Sa(t)=sin(t)/t,在抽样间隔分别为(1) T s=0.7π(令ωm=1,ωc=1.1ωm)(2)T s=1.5π(令ωm=1,ωc=1.1ωm)的两种情况下,对信号f(t)进行采样,试编写MATLAB程序代码,并绘制出抽样信号波形、由抽样信号得到的恢复信号波形。

(提示:利用教材P174公式(5-10)和所附样例)(1)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=0.7*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');(2)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=1.5*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');样例:选取信号f (t)=Sa (t )=sin(t )/t 作为被抽样的信号,显然,信号的带宽ωm =1。

信号的抽样与恢复

信号的抽样与恢复

2 Fs j以s为周期的连续谱, 有 新的频率成份,即对F j进行周期
s
om s
性延拓。每个独立频谱均保持原信号频谱
为Ts 截止频率m c s m
滤除高频成分,即可重现原信号。
s m
s m m
频谱不重叠
(4)要恢复原信号,要求f(t)为频带有限信号,且ωS≥2 ωm
1 2 fm

Ts
1 2 fm
最大抽样间隔“奈奎斯特抽样间隔”。
fs
2
f

m
低允许的抽
样频率“奈奎斯特抽样频率

X
三.由抽样信号恢复原信号
第 10

从频域分析信号的复原
S 2m 1 F S
TS
理想低通滤波器
H j T0s
c c
S
om S
S m
H
TS
要求 : m c s m
抽样原理图:
数字信号
f (t)
fs(t) A/D
f (k)
g(k) 数字
量化编码
滤波器
D/A
g(t) f (t)
p(t )
周期信号:
需解决的问题: 采样脉冲序列
f f
s s
(t
t
) Fs 是否保
j抽样后频谱的变化?与F j的关 留原信号的信息?由fs t能否恢复f t
系? ?
X
1.理想抽样信号 (抽样脉冲是周期性冲激序列)
第 4

连续信号 f t
抽样信号
fs t
f t F j (m m )
fs t Fs j
抽样脉冲
T S t
pt Ts (t) P j

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告

(a) 三角波频谱fE/2F(f)13f -1f -1f 13ffFs(f)fs 2fs(b) 抽样信号频谙1f图5-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。

3. 抽样信号在一定条件下可以恢复出原信号,其条件是fs ≥2B f ,其中fs 为抽样频率,B f 为原信号占有频带宽度。

由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc (fm ≤fc ≤fs-fm ,fm 是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。

如果fs <2B f ,则抽样信号的频谱将出现混迭,此时将无法通过低通滤波器获得原信号。

在实际信号中,仅含有有限频率成分的信号是极少的,大多数信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图4-4所示),若使fs=2Bf ,fc=fm=Bf ,恢复出的信号难免有失真。

为了减小失真,应将抽样频率fs 取高(fs >2Bf ),低通滤波器满足fm <fc <fs-fm 。

为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图5-5所示。

若实验中选用原信号频带较窄,则不必设置前置低通滤波器。

本实验采用有源低通滤波器,如图4-6所示。

若给定截止频率fc ,并取Q=12(为避免幅频特性出现峰值),R1=R2=R ,则:C1=Rf Qc π (4-1) C2=QRf 41c π (4-2)图5-5 信号抽样流程图前置低通滤波器抽样 频率低 通 滤波器抽样器F(t)F S (t)F ’(t)S(t) 图5-4 实际低通滤波器在截止频率附近频率特性曲线+-C 1+15VF ’(t)R 1R 2C 2F S (t)12367TP603TP604三、实验内容1. 观察抽样信号波形。

① 调整信号源,使DDS1输出1KHZ 的三角波,调节电位器1W1,使输出信号幅度为1V ; ② 连接DDS1与1P01,输入抽样原始信号;③ 改变抽样脉冲的频率,用示波器观察1TP03(Fs (t ))的波形,此时需把拨动开关1K1拨到“空”位置进行观察;④ 使用不同的抽样脉冲频率,观察信号的变化。

信号与系统课程设计信号的抽样与恢复-.

信号与系统课程设计信号的抽样与恢复-.

信号与系统课程设计题目:信号的抽样与恢复学生姓名:院(系、部):机电工程学院指导教师:2012年12月24日至2012年12月28日摘 要本设计是运用MATLAB 编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。

目的在于能够熟练的应用MATLAB 软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。

本设计通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对抽样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。

信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。

通过MATLAB 软件中的信号分析的方法来验证抽样定理的正确性。

关键词:抽样与恢复;滤波器 ;MATLAB1 设计任务与要求(1)用MATLAB 实现常用连续信号 (2)用MATLAB 实现常用离散信号(3)根据以下三种情况用MATLAB 实现)(t Sa 的信号及恢复并求出两者误差,分析三种情况下的结果。

由于函数)(t Sa 不是严格的带限信号,其带宽m ω可根据一定的精度要求做一近似。

①)(t Sa 的临界抽样及恢复:,1=m ω,m c ωω=,m i s p T ω/4.2=; ②)(t Sa 的过抽样及恢复: 1=m ω,m c ωω1.1=,m i s p T ω/5.2=③)(t Sa 的欠抽样及恢复: 1=m ω,m c ωω=,m i s p T ω/5.2=。

2 原理分析和设计图1 总框架图2.1连续信号的抽样定理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当抽样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。

在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。

通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。

因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。

实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。

实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。

我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。

在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。

当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。

这是因为重构滤波器的阶数没有达到最优值。

当采样频率降低到8Hz时,出现了更明显的振荡。

这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。

进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。

结论:本实验证明了抽样定理在数字信号处理中的重要性。

对于任何采样频率低于极限的情况,都可能导致信号发生失真。

因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。

信号的抽样与恢复

信号的抽样与恢复

信号的抽样与恢复信号的抽样与恢复(PAM)(PAM)一、 实验目的1、 验证抽样定理2、 观察了解PAM 信号形成的过程;二、 预备知识1、 学习“从抽样信号恢复连续时间信号”;2、 理想低通滤波器的冲击响应形式;3、 冲击函数的性质;三、 实验仪器1、 J H5004“信号与系统”实验箱一台; 2、 20MHz 示波器 一台;四、 实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM )信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真地恢复出原始信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h ,则可以唯一地由频率等于或大于2f h 的样值序列所决定。

抽样信号的时域与频域变化过程如下图所示。

五、 实验模块说明在JH5004“信号与系统”实验箱的中有一“PAM 抽样定理”模块,该模块主要由一个抽样器与保持电容组成。

一个完整的PAM电路组成如下图所示。

图4.1.5 抽样定理实验原理框图即在输入、输出端需加一低通滤波器。

前一个低通滤波器是为了滤除高于f s /2的输入信号,防止出现频谱混迭现象,产生混迭噪声,影响恢复出的信号质量。

后面一低通滤波器是为了从抽样序列中恢复出信号,滤除抽样信号中的高次谐波分量。

六、实验步骤按1.3节的方法设置JH5004信号产生模块为模式1,在该模式下在正弦信号16KHz、32KHZ输出端产生相应的信号输出,同时在信号A组产生1KHz信号,在信号B组产生125KHZ信号输出,以及PAM所需的抽样时钟。

1、采样冲击串的测量:在JH5004的“PAM抽样定理”模块的D(t)输入端测量采样冲击串,测量采样信号的频率。

实验-信号的采样与恢复

实验-信号的采样与恢复

实验三 信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

3、理解信号的抽样及抽样定理以及抽样信号的频谱分析;掌握和理解信号抽样以及信号重建的原理,验证抽样定理。

二、实验设备1、信号与系统实验箱(参考型号:TKSS —B 型)2、双踪示波器三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号)(t f s 可以看成连续信号)(t f 和一组开关函数)(t s 的乘积。

)(t s 是一组周期性的窄脉冲,如下图所示。

s T 为抽样周期,其倒数s s T f /1=称抽样频率。

图1 矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3┅┅。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按x x /sin 规律衰减。

抽样信号的频谱是原信号频谱的周期延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号的频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。

而B f 2min =为最低抽样频率又称“奈奎斯特抽样频率”。

当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使B f s 2=,恢复后的信号失真还中难免的。

下图画出了当抽样频率B f s 2>(不混叠时)及B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。

1,抽样与恢复

1,抽样与恢复

1.信号的抽样和恢复(1)用本课题使用的硬件系统模块,实现给定信号的抽样和恢复1)熟悉信号的抽样与恢复的工作原理。

接好电源线,将信号的抽样与恢复模块和同步信号源模块插入信号系统实验平台插槽中,打开实验箱电源开关,通电检查模块灯亮,实验箱开始正常工作。

2)将同步信号源模块产生的V PP=1V、f0=1KH的正弦波和f0=2KHz的方波分别送入待抽样信号输入点S_IN和抽样脉冲信号输入点SQU_IN,用示波器分别观察抽样信号输出点PAM_OUT和恢复后的信号输出点S_OUT的波形并将实验数据记录下来(实验中低通滤波器的截止频率f C=1kHz)。

(1)V PP=1V、f0=1KH的正弦波上边为原信号上边为原信号抽样下边为抽样波形下边为恢复波形(2)V PP=1V、f0=2KHz的方波上边为原信号上边为原信号下边为抽样下边为恢复3)改变抽样脉冲信号的频率,分别将f0=2kHz、4kHZ、8kHz、16KHz的方波送入抽样脉冲信号输入点SQU_IN,重复实验步骤2,比较在不同的抽样频率下恢复后的信号波形之间的差别并得出结论。

(2)当f0=4kHz时(3)当f0=8kHz时4)将同步信号源模块产生的V PP=1V、f0=1KHz的三角波作为待抽样信号送入S_IN,重复上述实验步骤。

(1)当f0=2kHz时(3)当f0=8kHz时(4)当f0=16kHz时5)注:使用2k正弦波作被抽样信号时效果较好,可以自行比较。

(2)用软件实现指导给定信号的抽样和恢复(给定的信号频率及抽样频率太小) 对连续信号)5.0c o s ()(t t x π=以抽样频率f s =2Hz 抽样得到)()(nT x n x =,编程完成下列任务:画出信号)(t x ,40≤≤t 及其在相应范围内的抽样序列;利用抽样内插函数)1(),()(sr f T TtSa t h ==π恢复连续时间信号。

画出信号x(t)和重建信号)(t x r 的波形,比较这两个信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 信号抽样与恢复
一、实验目的
学会用MA TLAB 实现连续信号的采样和重建 二、实验原理 1.抽样定理
若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱
)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。

因此,当s ω≥m ω时,不会发生频
率混叠;而当 s ω<m ω 时将发生频率混叠。

2.信号重建
经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:
)(t f =)(t f s *)(t h
其中:)(t f s =)
(t f ∑∞∞--)(s
nT t δ=∑∞

--)()(s
s
nT t nT f δ
)()(t Sa T t h c c
s ωπ
ω=
所以:
)(t f =)(t f s *)(t h =∑∞

--)()(s s nT t nT f δ*)(t Sa T c c
s
ωπ
ω =π
ω
c
s T ∑∞

--)]([)(s c
s
nT t Sa nT f ω
上式表明,连续信号可以展开成抽样函数的无穷级数。

利用MA TLAB 中的t t t c ππ)
sin()(sin =
来表示)(t Sa ,有 )(sin )(π
t c t Sa =,所以可以得到在MA TLAB 中信号由)(s nT f 重建)(t f 的表达式如下:
)(t f =π
ω
c
s T ∑


--)]([
sin )(s c
s nT t c nT f π
ω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。

我们取理想低通的截止频率c ω=m ω。

下面程序实现对信号)(t f =)(t Sa 的采样及由该采样
信号恢复重建)(t Sa :
例5-1 Sa(t)的临界采样及信号重构;
wm=1; %信号带宽
wc=wm; %滤波器截止频率 Ts=pi/wm; %采样间隔
ws=2*pi/Ts; %采样角频率 n=-100:100; %时域采样电数 nTs=n*Ts %时域采样点 f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(211); stem(t1,f1); xlabel('kTs'); ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的临界采样信号'); subplot(212); plot(t,fa) xlabel('t'); ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)'); grid;
例5-2 Sa(t)的过采样及信号重构和绝对误差分析
程序和例4-1类似,将采样间隔改成Ts=0.7*pi/wm , 滤波器截止频率该成wc=1.1*wm , 添加一个误差函数 wm=1;
wc=1.1*wm; Ts=0.7*pi/wm; ws=2*pi/Ts; n=-100:100; nTs=n*Ts
f=sinc(nTs/pi);
Dt=0.005;t=-15:Dt:15;
fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); error=abs(fa-sinc(t/pi)); %重构信号与原信号误差 t1=-15:0.5:15; f1=sinc(t1/pi); subplot(311); stem(t1,f1); xlabel('kTs');
ylabel('f(kTs)');
title('sa(t)=sinc(t/pi)的采样信号'); subplot(312); plot(t,fa) xlabel('t'); ylabel('fa(t)');
title('由sa(t)=sinc(t/pi)的过采样信号重构sa(t)'); grid;
subplot(313); plot(t,error); xlabel('t');
ylabel('error(t)');
title('过采样信号与原信号的误差error(t)');
例5-3 Sa(t)的欠采样及信号重构和绝对误差分析
程序和例4-2类似,将采样间隔改成Ts=1.5*pi/wm , 滤波器截止频率该成wc=wm=1
三、上机实验内容
1.验证实验原理中所述的相关程序;
-15
-10
-5051015
kTs
f (k T s )
-15
-10-5
051015
-0.500.51t
f a (t )
由sa(t)=sinc(t/pi)的临界采样信号重构sa(t)
-15
-10
-5
051015
kTs
f (k T s )
-15-10
-5
051015
-202t
f a (t )
由sa(t)=sinc(t/pi)的过采样信号重构sa(t)
-15
-10
-5
05
10
15
00.51-5
t
e r r o r (t )
过采样信号与原信号的误差error(t)
-15
-10
-5
051015
kTs
f (k T s )
-15
-10
-5
0510
15
-202t
f a (t )
由sa(t)=sinc(t/pi)的过采样信号重构sa(t)
-15
-10
-5
05
10
15
00.51t
e r r o r (t )
过采样信号与原信号的误差error(t)
2.设f(t)=0.5*(1+cost)*(u(t+pi)-u(t-pi)) ,由于不是严格的频带有限信号,但其频谱大部分集中在[0,2]之间,带宽wm 可根据一定的精度要求做一些近似。

试根据以下两种情况用 MATLAB 实现由f(t)的抽样信号fs(t)重建f(t) 并求两者误差,分析两种情况下的结果。

(1) wm=2 , wc=1.2wm , Ts=1; (2) wm=2 , wc=2 , Ts=2.5
kTs
f (k T s )
0.5*(1+cost)*(u(t+pi)-u(t-pi))的采样信

-15-10
-5051015
-101t
f a (t )
由0.5*(1+cost)*(u(t+pi)-u(t-pi))的过采样信号重构sa(t)-15
-10
-5
05
10
15
012-3
t
e r r o r (t )
过采样信号与原信号的误差error(t)
kTs
f (k T s )
0.5*(1+cost)*(u(t+pi)-u(t-pi))的采样信

-15
-10
-5
0510
15
-505t
f a (t )
由0.5*(1+cost)*(u(t+pi)-u(t-pi))的欠采样信号重构sa(t)-15
-10
-5
05
10
15
024t
e r r o r (t )
欠采样信号与原信号的误差error(t)。

相关文档
最新文档