高分子材料性能学

合集下载

高分子材料的结构和性能研究

高分子材料的结构和性能研究

高分子材料的结构和性能研究高分子是由大量分子单元化合而成的材料,是众多材料之中使用最为广泛的一类材料,其中塑料是高分子材料中最常见和应用最广泛的一种。

随着科技的不断发展,人们对高分子材料的研究和应用也越来越深入,对高分子材料的结构和性能进行探究已成为重要的研究方向之一。

一、高分子材料的基本结构和组成高分子材料的基本结构是由大量简单分子单元通过共价键或离子键连接而成的长链分子。

这些长链分子可能包含数千上万个单元,其分子量也可达数百万至数千万不等。

除了长链分子,高分子材料中还可能存在支链分子、交错分子、网状分子等不同的形态。

高分子材料的组成不仅有单一的高分子,还可能由多种高分子组成的共混物或复合材料。

共混物由两种或以上的高分子混合而成,其组分可以均为同质高分子,也可以为不同种类的高分子。

而复合材料则是将高分子与其它材料混合而成,这些材料可以是同种的或不同种的。

复合材料的成分可以按照功能需求进行配比,形成满足不同使用需求的高性能材料。

二、高分子材料的性能及其研究方法高分子材料因其结构特点,在力学、光学、电学、化学、热学等方面表现出一系列独特的性能。

高分子材料的性能取决于分子结构、分子量、结晶度、形态结构、分子力学运动状态等因素。

其中,热性能、机械性能和流变性能等是高分子材料中最为重要和常见的性能。

研究高分子材料的性能需要运用多种方法和技术。

其中,常用的方法包括热分析、质谱分析、核磁共振、傅里叶变换红外光谱、拉伸测试、动态力学分析、热重分析等。

这些方法可以实现对高分子材料的性能进行定量描述,并能够揭示高分子材料的制备过程中的关键因素和作用机理。

三、高分子材料的应用及其发展趋势高分子材料由于其独特的性能和广泛的应用领域,成为了现代工业中不可或缺的材料之一。

塑料制品、纤维、色素、润滑剂、胶粘剂、电线电缆、医疗器械等领域均有广泛应用。

而在新能源、新兴材料、高效催化剂、生物医学领域等新兴领域,高分子材料也取得了许多创新和突破性的进展。

高分子材料性能测试力学性能

高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。

高分子材料性能研究与应用

高分子材料性能研究与应用

高分子材料性能研究与应用高分子材料是一种重要的工程材料,广泛应用于机械、汽车、电子、建筑、医疗等领域。

高分子材料具有轻质、高强、高韧、耐腐蚀、绝缘等特点,成为各种工业领域不可或缺的材料。

本文将着重介绍高分子材料的性能研究和应用。

一、高分子材料的物理性质高分子材料是由许多分子聚合而成的,具有非晶态或半晶态的结构。

主要有以下几种物理性质:1.力学性能:高分子材料具有轻质、高强的特点,可以实现高效的能量转换和储存。

2.电学性能:高分子材料的电学性能可以通过改变分子结构和加工工艺来调节。

3.热学性能:高分子材料可进行热塑性加工,易于成型。

同时,高分子材料也具有较高的绝缘性和热稳定性。

4.光学性能:高分子材料具有光学吸收、透明度、颜色等特性。

通常用于制造光学器件和光学材料。

二、高分子材料的化学性质高分子材料的化学性质主要包括以下几个方面:1.物理状态:高分子材料通常以固体状态出现,但也可在适当的温度和溶剂下形成流体。

2.水解性:部分高分子材料的酯基与水反应后会发生水解,导致其结构的变化和物理性质的改变。

3.氧化降解:高分子材料会受到氧化物、酸、硷等因素的影响,导致其分子结构的破坏和硬度的降低。

4.耐化学品性:高分子材料具有耐酸、耐碱、抗溶解性等特性,在化学工业上被广泛使用。

三、高分子材料的应用高分子材料广泛应用于农业、建筑、医疗、能源、物流等众多领域。

主要包括以下几个方面:1.工程领域:高分子材料在机械加工、建筑材料、汽车工业、电子器材等领域得到广泛应用。

2.医疗领域:高分子材料作为医用材料和功能性医用材料,广泛用于外科、整形、骨科等医疗领域。

3.环保领域:高分子材料作为环保材料得到广泛应用,例如油泄漏清理材料、环保装饰材料等。

4.能源领域:高分子材料的应用在能源领域的广泛,如太阳能电池、锂离子电池、超级电容器等。

四、高分子材料的未来发展高分子材料的未来发展趋势是制备高性能材料、发展低成本加工技术和提高生物可降解性等方面。

高分子材料的结构及其性能

高分子材料的结构及其性能

高分子材料的结构及其性能1. 引言高分子材料是由大量重复单元构成的大分子化合物,具有重要的工程应用价值。

其结构和性能之间的关系对于材料科学和工程领域的研究至关重要。

本文将介绍高分子材料的结构特点,并探讨其与性能之间的关系。

2. 高分子材料的结构高分子材料的结构可以分为线性结构、支化结构、交联结构以及共聚物结构等。

不同结构的高分子材料具有不同的特点和应用领域。

线性结构是最简单的高分子材料结构,由一条长链构成,链上的重复单元按照一定的顺序排列。

线性结构的高分子材料具有较高的可拉伸性和延展性。

2.2 支化结构支化结构在线性结构的基础上引入了支链,可以增加高分子材料的分子间距离,提高其熔融性和热稳定性。

支化结构的高分子材料常用于塑料制品的生产。

2.3 交联结构交联结构是指高分子材料中分子之间通过共价键形成网络结构。

交联结构的高分子材料具有较高的强度和硬度,常用于橡胶制品的生产。

共聚物是指由两种或两种以上不同单体按照一定比例聚合而成的高分子化合物。

共聚物结构的高分子材料具有多种物化性质的综合优点,广泛应用于各个领域。

3. 高分子材料的性能高分子材料的性能与其分子结构密切相关,主要包括力学性能、热学性能、电学性能和光学性能等。

3.1 力学性能高分子材料的力学性能包括强度、韧性、硬度等指标。

线性结构的高分子材料通常具有较高的延展性和可拉伸性,而交联结构的高分子材料则具有较高的强度和硬度。

3.2 热学性能高分子材料的热学性能包括熔点、热膨胀系数、导热系数等指标。

分子结构的不同会对高分子材料的热学性能产生显著影响,如支化结构的高分子材料通常具有较低的熔点和较高的热膨胀系数。

3.3 电学性能高分子材料的电学性能主要包括导电性和介电性能。

共聚物结构的高分子材料常具有较高的导电性,而线性结构的高分子材料则通常具有较好的介电性能。

3.4 光学性能高分子材料的光学性能指材料对光的吸收、透过性和反射性等特性。

不同结构的高分子材料在光学性能上也会有所差异,如支化结构的高分子材料通常具有较高的透光性。

高分子材料的结构与性能关系研究

高分子材料的结构与性能关系研究

高分子材料的结构与性能关系研究概述:高分子材料是一种由大量分子重复单元构成的化合物,具有广泛的应用领域,如塑料、橡胶、纺织品等。

高分子材料的性能取决于其分子结构,在不同的结构下,材料会表现出不同的性能特点。

因此,研究高分子材料的结构与性能关系对于优化材料性能和开发新材料具有重要意义。

1. 结构与力学性能关系:高分子材料的力学性能是评价其结构性能的重要指标之一。

首先,聚合度是影响高分子材料力学性能的关键因素之一。

聚合度越高,分子量越大,材料的强度和韧性越高。

此外,分子排列的有序程度也会影响力学性能。

例如,在晶体结构较好的材料中,分子平均排列有序,具有较高的强度和硬度。

2. 结构与热学性能关系:高分子材料的热学性能对于其在高温环境下的应用具有重要意义。

分子间键的类型和键强度对热学性能产生影响。

比如,共价键相比于非共价键,更加稳定,在高温环境下表现出较好的稳定性。

此外,分子链的支化程度也会影响材料的热学性能。

支化链的存在会导致分子间的排列松散,使得材料的热传导性能下降。

3. 结构与光学性能关系:高分子材料的光学性能是其在光电子领域应用的关键考虑因素之一。

结构和分子排列对光学性能产生显著影响。

例如,高度有序排列的聚合物材料具有较高的折射率和透明度。

此外,染料分子在高分子材料中的添加也会影响光学性能。

不同种类的染料分子可以通过吸收、散射和发光等过程来调控材料的光学性能。

4. 结构与电学性能关系:高分子材料的电学性能对于其在电子器件领域的应用具有重要意义。

分子链的导电性是影响高分子材料电学性能的关键因素之一。

共轭的分子结构通常具有较好的导电性能,可用于制备导电高分子材料。

此外,材料中的杂质或添加剂也会对电学性能产生影响。

例如,掺杂导电高分子材料可以通过添加导电填料或进行化学掺杂来增强导电性能。

结论:高分子材料的结构与性能之间存在着紧密的关联。

优化高分子材料的结构可以显著改善其力学性能、热学性能、光学性能和电学性能。

高分子材料性能学

高分子材料性能学

第一章------第五章1.力学性能:指高聚物受外力作用时的形变行为及其抗破损的性能,它包括弹性、塑性、强度、蠕变、松弛和硬度等。

2.应变(形变):当材料受到外力作用时,它所处的条件又不能产生惯性移动时,其几何形状会发生变化,这种变化就称为应变。

3.应力:定义单位面积上的附加内力为应力,其数值与单位面积上所受的外力相等。

Pa在切应力作用下发生切应变,在正应力作用下材料发生拉伸或压缩形变。

4.对各向同性的材料有三种基本类型的形变:简单切变、均匀压缩、简单拉伸。

5.弹性模量:常简称为模量,是单位应变所需应力的大小,是材料刚性的表征。

杨氏模量的倒数称为拉伸柔量,切变模量的倒数称为切变柔量,本体模量的倒数称为可压缩度。

6.泊松比:υ=横向应变/轴向应变7.高分子材料分子热运动的特点:(1)运动单元和模式的多重性:从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。

从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

(2)大分子运动的时间依赖性:高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。

(3)分子运动的温度依赖性:一般规律是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。

8.A-玻璃态B-过渡区(玻璃化转变温度)C-高弹态D-过渡区(粘流转变区)E-粘流态Tb-脆化温度Tg-玻璃化温度Tf-粘流温度9.交联聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点是不溶、不熔。

10.在拉伸过程中,高分子链的运动经过以下阶段:(1)弹性形变(2)强迫高弹形变(3)塑性形变(永久形变)(凡是弹性变形都是可逆变形)、11.能弹性:由内能变化为主导致的弹性变形称为能弹性;熵弹性:由熵变化为主导致的弹性称为熵弹性。

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究高分子材料是一类重要的工程材料,主要用于纺织、建筑、电子、医药等领域。

高分子材料具有轻量、高强、高韧性、耐磨损、耐腐蚀等特点,因此广泛应用于各种领域。

在使用高分子材料的过程中,需要了解其力学性能,以便更好地设计、制造和使用。

本文将介绍高分子材料的力学性能测试方法和应用研究。

一、高分子材料的力学性能高分子材料的力学性能包括弹性性能、塑性性能和破坏性能。

其中弹性性能是指材料在受力后恢复原状的能力,主要包括弹性模量和泊松比。

塑性性能是指材料在受力后能够发生变形的能力,主要包括屈服强度和延伸率。

破坏性能是指材料在受到足够大的载荷后会发生破坏的能力,主要包括断裂韧性和破坏模式。

二、高分子材料的力学性能测试方法1、拉伸试验拉伸试验是最常用的高分子材料力学性能测试方法之一。

通过将试样拉伸至断裂点,测量其载荷与变形量的关系,可以得到材料的应力-应变曲线。

从应力-应变曲线中,可以计算出材料的弹性模量、屈服强度、断裂强度和断裂伸长率等重要参数。

拉伸试验可以使用单轴拉伸机、万能试验机等设备进行。

2、压缩试验压缩试验是评估材料抗压能力的一种方法。

该试验通常以轴向载荷进行,压缩试验结果可以用于确定材料的体积模量或多轴应力状态下的应变量。

根据材料应变分布的不同,可以得到不同的应力-应变曲线,从而得到压缩弹性模量和屈服应力等参数。

3、剪切试验剪切试验可以评估材料的剪切性能,通常使用剪切试验机进行。

在剪切试验中,试样被植入两个夹具中,夹具沿着对称面施加力,使试样发生沿切平面的剪切变形。

通过测量必要的载荷和位移,可以获得材料剪切应力和剪切应变,并从中得出剪切模量和剪切强度等重要参数。

4、冲击试验冲击试验是评估材料耐冲击能力的一种方法。

通常在低温下进行,使用冲击试验机施加冲击载荷,在断裂前测量材料的冲击强度和断裂韧性等参数。

这种试验可以评估大多数高分子材料的耐冲击性和脆性,在材料开发和制造中具有重要的应用价值。

高分子材料性能

高分子材料性能

高分子材料性能高分子材料是一类由大量重复单元组成的聚合物材料,具有许多优异的性能,广泛应用于工业、建筑、医疗等领域。

其性能特点主要包括力学性能、热学性能、电学性能、光学性能和耐化学性能等方面。

首先,高分子材料的力学性能表现出较高的强度和韧性。

由于其分子链结构的柔韧性和交联结构的稳定性,使得高分子材料具有较好的抗拉伸、抗压缩和抗弯曲等力学性能。

比如聚乙烯、聚丙烯等塑料材料具有较高的强度和韧性,广泛应用于塑料制品制造领域。

其次,高分子材料的热学性能也备受关注。

高分子材料具有较低的热导率和较高的热膨胀系数,使得其在热绝缘和热膨胀方面表现出良好的性能。

例如聚四氟乙烯具有优异的耐高温性能,被广泛应用于制造高温耐腐蚀的管道、阀门等产品。

另外,高分子材料的电学性能也是其重要特点之一。

许多高分子材料具有较好的绝缘性能和介电性能,被广泛应用于电气绝缘材料和电子器件的制造。

例如聚氯乙烯、聚苯乙烯等塑料材料在电气绝缘领域有着重要的应用。

此外,高分子材料的光学性能也备受关注。

许多高分子材料具有良好的透明性和光学均匀性,被广泛应用于光学器件、光学镜片、光学膜等产品的制造。

例如聚碳酸酯、聚甲基丙烯酸甲酯等材料在光学领域有着重要的应用。

最后,高分子材料的耐化学性能也是其重要特点之一。

许多高分子材料具有良好的耐腐蚀性能和耐化学介质性能,被广泛应用于化工设备、管道、容器等产品的制造。

例如聚丙烯、聚乙烯等塑料材料在化工领域有着重要的应用。

总之,高分子材料具有多种优异的性能,广泛应用于各个领域。

随着科学技术的不断发展,高分子材料的性能将会不断得到提升,为人类社会的发展进步做出更大的贡献。

高分子材料性能及测试

高分子材料性能及测试
正切值定义为切应变γ
A0
F
F
剪切应变:
γ tanθ
F 剪切应力: A0
22
高分子材料性能学
(3)均匀压缩
材料受到的是围压力(流体静压力)P。发生体积形
变,体积由V0缩小至V。
压缩应变:
A0
V 0V V V V0 V0
23
高分子材料性能学
1.1.2 弹性模量 单位应变所需应力的大小,是材料刚性的表征。模量 的倒数称为柔量,是材料容易形变程度的一种表征。 拉伸模量(杨氏模量)E: 剪切模量(刚性模量)G: 压缩模量(本体模量)K:
3).橡胶态的高聚物:应力-应变不呈线性关系,
且变形量较大
39
高分子材料性能学
弹性变形的力学性能指标
(1)弹性模量:是单位应变所需应力的大小,物理意义是 产生100 %弹性变形所需的应力。 (2)比例极限σp:是保持应力与应变成正比关系的最大应力, 即在应力-应变曲线上刚开始偏离直线时的应力
p

e
e
e 1 ae e e 2 2E
2
提高弹性比功的方法: 提高σe 降低E(提高弹性极限应变εe)
o
e

橡胶低E和高弹性应变—高弹性 比功
41
高分子材料性能学
非理想弹性 理想弹性行为:
E
(1).应变-应力线性 (2).应力和应变同相位 (3).应变是应力的单值函数
b
ε
35
高分子材料性能学
拉伸过程高分子链的三种运动情况:
▲弹性形变(开始~e点)
▲强迫高弹形变
▲塑性变形
y(屈服点) e
36
高分子材料性能学
弹性变形与塑性变形

高分子材料的力学性能研究

高分子材料的力学性能研究

高分子材料的力学性能研究高分子材料是一类重要的工程材料,其力学性能的研究对于材料的开发与应用具有重要意义。

在研究中,力学性能包括材料的力学强度、刚度、延展性、韧性等方面。

下面将从不同角度探讨高分子材料的力学性能研究。

一、力学性能的测试为了研究高分子材料的力学性能,我们首先需要进行相应的测试。

常见的测试方法包括拉伸试验、压缩试验、弯曲试验等。

在拉伸试验中,材料被拉伸至断裂,通过测试设备记录载荷和位移等数据,从而得出材料的力学性能参数。

在压缩试验中,材料被加载至最大应变,同样通过测试设备获得相关数据。

弯曲试验则考察材料在承受弯曲荷载时的性能特点。

通过这些测试方法,我们可以获得高分子材料的弹性模量、屈服强度、断裂强度等力学性能参数。

二、高分子材料的力学行为高分子材料的力学行为与其分子结构密切相关。

传统的高分子材料通常呈现出线性弹性行为,即应变与应力成正比。

然而,随着研究的深入,我们发现了一些非线性行为的高分子材料。

例如,聚乙烯等高聚物在一定应力范围内表现出非线性弹性行为,即应力与应变并非呈线性关系。

这种行为可以通过流变学测试进行研究,并用相关的力学模型进行描述。

三、增强高分子材料的力学性能为了提高高分子材料的力学性能,我们可以采用多种方法。

一种常见的方法是添加填料,如纤维、颗粒等。

这些填料的加入可以提高材料的刚度和强度,并改善材料的热稳定性。

此外,涂层技术也可以用于增强高分子材料的力学性能。

通过在材料表面加上一层涂层,可以增加材料的硬度和耐磨性。

此外,改变高分子材料的分子结构、聚合度以及交联程度等也是提高力学性能的重要手段。

四、高分子材料力学性能研究的应用高分子材料的力学性能研究不仅对于简单的材料评估有帮助,也对于开发新型高分子材料及其应用具有重要意义。

在航空航天领域中,高分子材料的力学性能研究可以用于评估材料在高温和高压环境下的性能。

在汽车工业中,研究材料的刚度和韧性对于开发轻质高强度材料具有重要意义。

高分子材料的表征和性能分析

高分子材料的表征和性能分析

高分子材料的表征和性能分析高分子材料是一种复合材料,它具有很高的强度和可塑性。

它们被广泛应用于各种领域,如医疗、汽车和航空航天等。

因此,对高分子材料的表征和性能分析非常重要。

一、高分子材料的表征高分子材料的表征是指对高分子材料进行物理、化学和结构等性质的分析。

这些性质可以通过一系列的技术手段进行分析和测试。

以下是几种常用的高分子材料表征技术。

1. X射线衍射技术X射线衍射技术可以用来分析高分子材料的晶体结构和分子排列。

在X射线衍射技术中,X射线通过材料,并与材料中的原子和电子相互作用。

这些相互作用导致了衍射模式的产生。

该技术可以确定高分子材料的晶体结构和分子排列方式,以及材料的结晶度、晶体大小和形态等重要信息。

2. 热分析技术热分析技术可以用来确定高分子材料的热性质,如玻璃化转变温度、热稳定性和热分解温度等。

这些性质对于高分子材料的应用十分重要。

热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)和动态机械热分析法(DMA)等。

3. 光谱学技术光谱学技术可以用来分析高分子材料的结构和组成。

其中最常用的技术是傅里叶变换红外光谱技术(FTIR)和拉曼光谱技术。

这些技术可以提供高分子材料的分子结构、官能团和原子组成等信息。

4. 光学显微镜技术光学显微镜技术可以用来观察高分子材料的表面形态和微观结构。

这些技术包括普通光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。

这些技术可以提供高分子材料的表面形貌、尺寸和形态等信息。

二、高分子材料的性能分析高分子材料的性能分析主要包括力学性能、热性能和电性能等。

这些性能可以通过一系列测试和分析方法来进行评估。

1. 力学性能分析力学性能分析是对高分子材料的强度、刚度、延伸能力和韧性等性能的评估。

其中最常用的技术是拉伸试验、压缩试验、弯曲试验和冲击试验等。

通过这些试验可以确定高分子材料的拉伸模量、弹性模量、断裂强度、断裂伸长和吸收能力等性能。

高分子材料性能检测及分析方法研究

高分子材料性能检测及分析方法研究

高分子材料性能检测及分析方法研究高分子材料是指由大分子聚合而成的材料,具有重量轻、韧性好、绝缘性好、抗腐蚀等优点,广泛应用于各行各业,如化工、医疗、建筑、电子、航空等领域。

但是,由于高分子材料的组成复杂、聚合度高、分子链结构多样等特点,其性能检测及分析方法也具有一定的难度和复杂性。

一、高分子材料性能检测方法1. 引入动态力学分析法(DMA)动态力学分析法是一种广泛应用于材料力学测试中的方法,通过施加受控变形来研究材料的动态力学特性,如弹性模量、刚度、阻尼比等。

在高分子材料中,动态力学分析法可以用来研究其弹性、亚弹性、塑性和粘弹性等特性。

2. 使用红外光谱(FTIR)法红外光谱法是一种常用的材料成分分析方法,它可确定高分子材料的化学组成和原子构成等参数。

FTIR技术是目前使用最广泛的红外光谱测试技术,可用于描述特定分子和突出其结构带来的振动信息。

3. 应用差示扫描量热法(DSC)差示扫描量热法是一种重要的高分子材料测试方法,其通过测量体系在恒定温度或恒定加热/降温速率下的热流和热容变化,研究高分子材料的物理和化学特性。

核心原理是,通过观察物质的热响应,了解其热行为。

4. 应用雷霆反射法 (TR) 试验雷霆反射法 (TR) 是一种新兴的材料测试方法,其使用高强度的紫外激光,在材料局部表面产生瞬间高温和高压,观测材料反射激光的特性,研究材料的结构和性能特征。

二、高分子材料性能分析方法1. 引入偏光显微镜 (POM) 分析偏光显微镜技术是一种高分辨量、高灵敏度的试验分析方法,它通过显微成像观察样品中的多种相态结构和形态,并对材料的组成和结构特性进行分析和评估。

2. 使用扫描电子显微镜(SEM)技术扫描电子显微镜技术是利用电子束在样品表面扫描照射发射的光子、离子和电子进行成像和分析的技术。

它可用于表征材料的微观结构和细节特征,从而评估其性能和可靠性等方面的特点。

3. 应用光学试验分析方法光学试验分析方法包括折光率、透明度、吸光度和荧光固有属性等分析法。

高分子材料的结构与性能

高分子材料的结构与性能

拉伸强度
表示高分子材料抵抗拉伸应力的能力, 与分子链的取向和结晶度有关。
疲劳性能
描述高分子材料在循环应力作用下的 耐久性,与材料的交联密度和分子链 的柔性有关。
热性能
热稳定性
指高分子材料在高温下的稳定性,与其耐热性和热分解温度有关。
热膨胀系数
描述高分子材料受热膨胀的程度,与分子链的刚性和结晶度有关。
详细描述
高分子材料最显著的特点是其高分子量和长 链结构,这使得它们具有较高的弹性和可塑 性。此外,高分子链的柔性和多分散性也赋 予了高分子材料多种性能,如耐高温、耐腐 蚀、绝缘、光学透明等。这些特性使得高分 子材料在许多领域都有广泛的应用,如塑料
、橡胶、纤维、涂料和粘合剂等。
02
高分子材料的结构
分子链结构
填充改性可以降低聚合物的成本、提高力学性能、增强阻隔性能等。填充改性常 用的方法有直接填充、表面处理填充和共混填充等。填充改性后的高分子材料在 汽车、航空航天、建筑等领域得到广泛应用。
增强改性
增强改性是指通过加入增强剂或增强材料,提高聚合物的 力学性能和耐热性能。常用的增强剂或增强材料包括玻璃 纤维、碳纤维、有机纤维等。
高分子材料的分类
总结词
高分子材料可以根据其来源、结构、性能和应用进行分类。
详细描述
根据来源,高分子材料可以分为天然高分子和合成高分子。天然高分子来源于自然界,如纤维素、蛋 白质和天然橡胶等;合成高分子则是通过化学反应人工合成的,如聚乙烯、聚丙烯和合成橡胶等。
高分子材料的特性
总结词
高分子材料具有许多独特的物理和化学性质 ,如高分子量、链柔性和多分散性等。
增强改性的方法包括内嵌增强、纤维增强和交织增强等。 增强改性后的高分子材料具有优异的力学性能和耐热性能 ,广泛应用于航空航天、汽车、体育器材或化学方法改 变高分子材料表面的性质,以提高其 附着力、抗老化性能和抗腐蚀性能等 。

高分子材料的力学性能

高分子材料的力学性能
力,增加高分子的极性或产生氢键可以提高材料的强度;
(4)交联:适度的交联可以有效地增加分子链之间的联系,限
制分子链间的相对滑移及分子链的活动性,有利于强度的提高;
(交联反应:2个或者更多的分子相互键合交联成网络结构的较稳定分 子的反应。)
高分子材料的力学性能
(5)结晶和取向:结晶和取向可使分子链规整排列,分子间
影响抗拉强度的因素:
凡是有利于提高材料的弹性模量、有利于增 加断裂过程的表面功和增加分子稳定性的因素, 都使材料的强度提高;
凡是使材料应力分布的不均匀性增加的因素, 都使材料的强度下降。
总的来说可以分为两类:一类是与材料本 身结构有关的内因,一类是与材料受力环境有 关的外因。
高分子材料的力学性能
一、内因的影响
4、共聚和共混:
➢通过共聚将两种性质不同的单体经化学键结合, 形成综合两种以上均聚物性能的新材料,提高材料 的抗拉强度。 ➢共混是通过物理方法使两种及以上材料均匀混合 的改性手段,从而提升高聚物的强度。
5、填料:
高分子材料的力学性能
在高聚物中加入固体填料可得到多相复合材料
根据其在复合材料中的使用目的分类: 惰性填料:起填充稀释以降低制品的成本的作用, 材料的强度随之降低
67
聚甲醛
增强
82
未增强
67
尼龙
增强
210
高分子材料的力学性能
二、受力环境的影响:
施力强度的大小 施力速度的快慢 施力时的温度高低
高分子材料的力学性能
长期强度:
在工程地质学上是指使蠕变类型由趋稳蠕变类型转变 为典型蠕变类型的临界应力。(趋稳蠕变又称稳定型蠕变。 岩体在恒定荷载作用下,岩土的变形随时间而增长,但增 长的速率随时间而递减,最后使变形趋于某一稳定值的蠕 变类型。)

高分子材料有哪些性能

高分子材料有哪些性能

号;3.合成纤维:广泛应用于防弹背心、导弹壳体、直升 飞机吊绳、人造卫星电子部件等。
全文完!谢谢欣赏 再见!
爱看小说网 /
高分子材料具有耐磨,坚硬,装饰性强。通过聚合反应 重复连接而成的,也称聚合物,因此高分子材料也叫聚 合物材料。下面跟大家讲解一下高分子材料有哪些
性能。高分子材料1什么是高分子材料一、什么是高分子 高分子材料顾名思义就是以高分子化合物为基体的材料。 什么是高分子?高分子是一种链状化合物,有
结构单元通过共价键的形式,通过聚合反应重复连接而 成,也称聚合物,因此高分子材料也叫聚合物材料。二、 高分子材料特点1.分子量多分散性;2.没有
一定的耐热性,一定的染色性;3.优点:耐霉、耐虫蛀、 强度高、光泽好;4.缺点:易起球、吸湿性差、耐热性差。 4高分子材料的应用1.聚乙烯:在各
种聚乙烯中,低密度聚乙烯产量最大,主要用于制造食 品袋、垃圾袋和大棚膜等,少量(10%左右)用于生产注 塑用品;有一种更薄于低密度聚乙烯的是线型
低密度聚乙烯,主要用于生产扁丝、编织袋等;2.聚四氟 乙烯:一种高结晶度聚合物,主要应用于化工机械防腐、 容器防腐、电绝缘等,素有“塑料王”的称
烯腈、聚丙烯等)。3高分子材料的性能一、塑料1.性能: 耐磨、坚硬、加工时尺寸稳定性好、化学稳定性好;2.优 点:可塑性强、装饰性强、功能多元、
经济实惠;3.缺点:耐热性差、易燃易老化。高分子材料 二、合成纤维合成纤维是以煤、是有、天然气、水、等 简单化合物为原料,经过加聚或缩聚的化学处
理制成、再经纺丝和后期处理加工制成的人工纤维。1.主 要品种:腈纶、涤纶、棉纶、丙纶、维纶以及氯纶;2.特 性:一定的机械物理性能和化学稳定性,
沸点和固定熔点,若加热到200-300℃性。2高分 子材料有哪些1.天然高分子材料:

高分子材料

高分子材料

高分子材料高分子材料是由相对分子质量较高的化合物构成的材料。

我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。

人工合成的化学纤维、塑料和橡胶等也是如此。

一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。

树枝,兽皮,稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。

在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。

从十九世纪开始,人类开始使用改造过的天然高分子材料。

硫化橡胶和硝化纤维塑料(赛璐珞)是两个典型的例子。

航空非金属材料主要包括塑料、橡胶与密封剂、胶粘剂、纺织品、绝缘材料、航空油料与润滑剂、涂料等,期中塑料又可分为工程塑料、透明塑料、玻璃纤维增强塑料和树脂复合材料等。

这些材料是航空工业发展历史中随着高分子材料工业的发展而形成的新体系。

合成高分子材料主要分为塑料、橡胶或弹性体及纤维三大类。

高分子材料的物理性能:●兼有固态和液态物质的性质;●溶解成溶液后粘度特别大;●在溶剂中会溶胀;●能形成纤维或薄膜。

高分子材料的力学性能:●像胶的弹性✓在受到拉伸时可以产生很大变化,在拉伸时放热,热量很小。

✓在完全拉伸时具有较高的拉伸强度,而拉伸弹性模量较小。

✓当外力释去时拉伸的橡胶会很快收缩到原来的形状,永久变形小。

●高分子材料的粘弹性。

(高分子物在受交变力作用时,其作出的形变速度跟不上应力变化速度,则产生滞后的现象) 固态高分子材料最特殊的是其力学性能随着时间而有显著变化。

●高分子材料的断裂与疲劳破坏虽然一般认为高分子材料具有韧性、可变形性,可是在一定的温度、应变速率和应力条件下,也常常产生脆性断裂,有时也会在没有显著的塑性变形或尺寸变化时,发生局部的断裂现象。

这种断裂的产生多半是由于温度低,受高的载荷速率(如冲击) 或是长期受加载而产生的疲劳破坏。

高分子材料的热学性能:●耐热性材料的耐热性常常是在高温下测定变形—热变形或在高温下测定力学性能来表示之。

高分子材料的力学性能分析

高分子材料的力学性能分析

高分子材料的力学性能分析高分子材料是一类广泛应用于各个行业的材料,具有重要的地位和作用。

高分子材料的力学性能对于其应用的稳定性和可靠性具有至关重要的影响。

因此,对高分子材料的力学性能进行分析和评估是非常重要的工作。

首先,我们来了解高分子材料的力学性能包括哪些方面。

高分子材料的力学性能主要包括强度、韧性和刚性等方面。

强度是指高分子材料在受力作用下抵抗断裂的能力,通常用抗拉强度来表示。

韧性是指高分子材料能够在受力作用下发生可逆性变形的能力,通常用断裂伸长率和冲击韧性来表示。

刚性是指高分子材料在受力作用下不发生可逆性变形的能力,通常用弹性模量来表示。

这些力学性能指标可以通过一系列测试方法得到。

其次,我们来探讨高分子材料力学性能分析的方法和工具。

力学性能分析需要使用一些专业的测试设备和仪器,例如拉伸试验机、冲击试验机、扭转试验机等。

这些设备可以通过施加不同方向和大小的外力来评估高分子材料的不同力学性能。

通过这些测试方法,我们可以得到高分子材料的力学性能曲线,从而分析和评估其力学性能特点。

在力学性能分析中,我们还需要考虑高分子材料的成分和结构对力学性能的影响。

高分子材料通常是由分子链组成的,分子链的结构和排列方式对力学性能具有重要影响。

例如,聚合度高的高分子材料有较高的强度,分子链的交联程度高的高分子材料有较高的韧性。

此外,添加剂和填充物的使用也可以改善高分子材料的力学性能。

例如,加入增强纤维可以提高高分子材料的强度和刚性。

在实际应用中,高分子材料的力学性能要符合特定的要求。

不同行业和领域对于高分子材料的力学性能要求各不相同。

例如,在汽车工业中,要求高分子材料具有较高的刚性和耐热性,以保证车身的稳定性和安全性。

在医疗行业中,要求高分子材料具有较高的耐腐蚀性和生物相容性,以确保医疗器械的安全和有效性。

因此,在力学性能分析中,我们需要将高分子材料的特定要求考虑进去,以便更好地满足实际应用的需求。

最后,力学性能分析的结果对于改进高分子材料的性能和设计优化具有重要意义。

高分子材料性能

高分子材料性能

高分子材料性能高分子材料是由长链聚合物分子组成的一类材料。

它们具有很多出色的性能,使其成为现代工业中广泛应用的材料之一。

首先,高分子材料具有卓越的力学性能。

由于高分子材料的长链结构,其分子可以互相连接形成三维网络结构,在外力作用下,分子可以发生移动和变形,从而使材料具有较高的韧性。

此外,高分子材料还具有较低的密度,可以在轻负荷下承受较大的拉伸和压缩力,使其成为制造轻量化产品的理想选择。

其次,高分子材料具有良好的化学稳定性。

由于高分子材料中的分子间键强度较低,不易受到化学物质的侵蚀,因此具有较高的化学稳定性。

这使得高分子材料可以在各种恶劣的环境中使用,不易被腐蚀和氧化,从而提高材料的使用寿命。

此外,高分子材料还具有良好的电绝缘性能。

高分子材料中的聚合物分子通常是非极性物质,其分子间没有明显的电荷分布差异。

这使得高分子材料具有较高的介电常数和较低的电导率,从而使其成为制造电缆绝缘层、电子元件外壳等电器材料的好选择。

另外,高分子材料还具有良好的耐热性和耐低温性。

高分子材料的分子链结构较长,分子间的键强度较高,因此能够承受较高的温度。

一些特殊的高分子材料甚至可以在几百摄氏度的高温下仍然保持稳定。

同时,高分子材料的分子间距离较大,分子之间的运动相对较为自由,使其在低温下仍然能够保持较高的柔韧性和可塑性,不易产生脆性断裂。

最后,高分子材料还具有较好的加工性能。

由于高分子材料通常是可熔融的,可以通过注塑、挤出和压缩等加工方法进行成型。

此外,高分子材料具有较高的可溶性,可以与其他物质进行混合加工,从而改善材料的性能。

这使得高分子材料在工业生产中能够实现大规模、高效率的生产。

综上所述,高分子材料具有卓越的力学性能、良好的化学稳定性、优良的电绝缘性能、出色的耐热耐低温性和良好的加工性能等优势。

这些性能使得高分子材料在各个领域有着广泛的应用,如汽车工业、电子工业、航天航空工业等。

随着科学技术的进步,高分子材料在材料领域的应用前景将会更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章------第五章1.力学性能:指高聚物受外力作用时的形变行为及其抗破损的性能,它包括弹性、塑性、强度、蠕变、松弛和硬度等。

2.应变(形变):当材料受到外力作用时,它所处的条件又不能产生惯性移动时,其几何形状会发生变化,这种变化就称为应变。

3.应力:定义单位面积上的附加内力为应力,其数值与单位面积上所受的外力相等。

Pa在切应力作用下发生切应变,在正应力作用下材料发生拉伸或压缩形变。

4.对各向同性的材料有三种基本类型的形变:简单切变、均匀压缩、简单拉伸。

5.弹性模量:常简称为模量,是单位应变所需应力的大小,是材料刚性的表征。

杨氏模量的倒数称为拉伸柔量,切变模量的倒数称为切变柔量,本体模量的倒数称为可压缩度。

6.泊松比:υ=横向应变/轴向应变7.高分子材料分子热运动的特点:(1)运动单元和模式的多重性:从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。

从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

(2)大分子运动的时间依赖性:高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。

(3)分子运动的温度依赖性:一般规律是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。

8.A-玻璃态B-过渡区(玻璃化转变温度)C-高弹态D-过渡区(粘流转变区)E-粘流态Tb-脆化温度Tg-玻璃化温度Tf-粘流温度9.交联聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点是不溶、不熔。

10.在拉伸过程中,高分子链的运动经过以下阶段:(1)弹性形变(2)强迫高弹形变(3)塑性形变(永久形变)(凡是弹性变形都是可逆变形)、11.能弹性:由内能变化为主导致的弹性变形称为能弹性;熵弹性:由熵变化为主导致的弹性称为熵弹性。

12.弹性变形的力学性能指标主要有:(1)弹性模量:是单位应变所需应力的大小(2)比例极限:(3)弹性极限:材料发生可逆的弹性变形的上限应力值,应力超过此值,材料发生塑性变形。

(4)弹性比功:是材料开始塑性变形前单位体积所能吸收的弹性变形功,又称弹性比能或应变比能。

13.刚度和弹性的区别:刚度表征材料对弹性变形的抗力,弹性模量愈高,刚度也愈高,弹性变形愈困难;弹性则是表征材料弹性变形能力,通常以弹性比功的高低来区分材料弹性的好坏。

14.非理想弹性变形:(1)滞弹性(弹性后效):是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

这种加载时应变落后于应力而与时间有关的滞弹性也称为正弹性后效或弹性蠕变。

卸载时,如果速度比较大,应变落后于应力的现象称为反弹性后效。

(2)粘弹性:粘弹性是指材料在外力作用下,弹性和粘性两种变形机理都同时存在的力学行为,其特征是应变对应力的响应不是瞬间完成的,需要一个弛豫过程,但卸载后,应变可恢复到初始值,不留下参与变形。

(3)内耗:加载时吸收的变形功大于卸载时释放的变形功,因而有一部分变形功被材料所吸收,称为内耗。

15.银纹:银纹是高分子材料在变形过程中产生的一种缺陷,由于它的密度低,对光线的反射能力高,看起来呈银色,因而得名。

银纹产生于高分子高分子材料的弱结构或缺陷部位。

在拉应力作用下,材料的弱结构或缺陷部位往往被先拉开,形成亚微裂纹或空洞。

这些空洞继续发展便形成肉眼可见的银纹。

银纹化亦可视为一种特殊的屈服行为。

屈服和银纹化与材料的破坏密切相关,是材料最终破坏的前奏。

一些高聚物在较低的应力(一般低于屈服应力)或环境因素下,其表面或内部出现的许多肉眼可见的有序或无序的微裂纹,当光线以某一角度入射到材料上时,这种微裂纹能反射可见光,是微裂纹所处的材料表面呈银白色闪光,故这种微裂纹称为银纹。

银纹不同于裂纹,裂纹的两个张开面之间是完全空的,而银纹面之间是由维系两银纹面的银纹质—高度取向的微纤束和空穴组成。

银纹的形成机理如下:材料在拉应力作用下,局部薄弱处首先发生屈服与冷拉,使局部本体材料高度拉伸取向,但由于其周围的本体材料并未屈服,局部冷拉中材料的横向收缩受限制,结果在取向微纤间留下大量的空穴。

银纹区域首先出现在裂纹前端处,但在裂纹尖端应力作用下,易被劈开,使裂纹得到扩展,因此银纹的生成也是玻璃态高分子材料断裂的先兆。

16.塑性变形过程中重要力学性能指标:(1)屈服极限(2)抗拉强度(3)伸长率和断面收缩率17.影响拉伸行为的外部因素:(1)温度的影响:温度升高,分子链段热运动加剧,松弛过程加快,表现出材料模量和强度下降,伸长率变大,应力-应变曲线形状发生很大变化。

(2)拉伸速率的影响:减慢拉伸速率,一种原来脆断的材料也可能出现韧性拉伸的特点。

减慢拉伸速率与升高环境温度对材料拉伸行为有相似的影响。

18.高聚物的屈服行为:高分子材料发生脆性断裂时,试样没有明显的变化,断裂面一般与拉伸方向垂直,断裂面很光洁;而韧性破坏过程中,当拉伸至屈服点时,试样常出现与拉伸方向呈约45度角倾斜的剪切滑移变形带。

19.高聚物的屈服点具有下列特征:(1)屈服应变大(2)屈服后出现应变软化(3)由于高聚物的粘弹性本质,高分子材料的屈服应力有很大的应变速率依赖性,屈服应力随应变速率的增大而增大。

(4)屈服应力的温度依赖性强(5)与金属材料不同,高聚物的屈服强度对流体静压力非常敏感,屈服应力随流体静压力的增大而迅速提高。

(6)屈服应力对高聚物材料的淬火处理很敏感(7)高聚物屈服时体积略有缩小,实验表明非晶态高聚物的屈服无论在拉伸或压缩试验时,都是材料的密度增加约0.25%。

(8)压缩屈服应力比拉伸屈服应力大,这种现象叫鲍辛格效应。

20.高聚物的继续屈服将包括以下五种可能的现象:(1)屈服后应变增加,应力反而不大的下跌,出现应变软化现象(2)呈现各种不同类型的塑性不稳定性,其中最为熟知的是细颈现象(3)塑性变形产生热量,如不马上除去,试样温度增加,试样变软,加速塑性不稳定性,特别是在高应变速率时(4)当形变继续增大时,发生“取向硬化”现象,应力急剧增加(5)试样断裂21.冷拉伸:结晶聚合物也能产生强迫高弹形变,这种在较低温度下出现细颈的不均匀拉伸形变称为“冷拉伸”。

22.实现强迫高弹形变和冷拉伸的条件:(1)材料屈服后应表现出软化效应(2)扩大应变时应表现出材料硬化效应23.当高的应力作用于高聚物使之产生大形变时,除了通常的焦耳效应外,施加于试样的能量将以几种方式被吸收:(1)由于反抗粘性而做功,生成不可回复的摩擦热(2)由于反抗分子链构象的改变二而释放的熵热(3)用于改变材料内能的储存和释放(4)由于分子链断裂生成自由基(5)由于生成裂纹或空洞而增加的新表面24.典型高弹形变特点:(1)小应力作用下弹性形变很大(2)升温时,高弹形变的弹性模量与温度成正比,即温度升高,弹性应力也随之升高,而普通弹性体的弹性模量随温度升高而下降(3)绝热拉伸(快速拉伸)时,材料会放热而使自身温度升高,金属材料则相反(4)高弹形变有力学松弛现象,而金属弹性体几乎无松弛现象(高弹性的本质是熵弹性,即高弹形变主要引起体系的熵变;而普弹性的本质是能弹性,即普弹形变主要引起体系的内能变化。

)25.高弹性与分子结构的关系:(1)高弹性与柔性:只有在室温下不易结晶的柔性高聚物,才有可能成为具有高弹性的橡胶(2)分子量对高弹性的影响:分子链愈长,链段数愈多,分子链愈柔顺,链段热运动愈容易;而且分子量愈大,其分子链间的物理缠结点愈多,链与链之间就不容易滑动,故有利于提高弹性(3)交联与高弹性的关系:常用的化学交联剂是硫。

所谓的物理交联是指通过分子间或链段间的次价力来实现交联26. 提高橡胶耐热性:(1)改变橡胶的主链结构,(2)改变取代基的结构,(3)改变交联链的结构改善橡胶耐寒性:耐寒性不足的原因是由于在低温下橡胶会发生玻璃化转变或发生结晶,从而导致橡胶变硬、变脆或丧失弹性。

通过破坏链的规整性来降低聚合物的结晶能力,提高耐寒性,改善弹性,虽是一个有效而常用的办法,但是对于任何硫化橡胶来说,除了弹性要求外,还必须有较高的强度。

可是聚合物的结晶能力降低显然有损与强度,因此用降低结晶能力来改善橡胶的耐寒性时,必须兼顾其强度。

27.蠕变:在较小的恒定应力作用下,物体的形变随时间逐渐发展,最后达到平衡的现象。

如果在一定时间后,将应力除去,形变随时间而变化,叫做蠕变回复。

(蠕变反映制品的尺寸稳定性)28.普弹形变:当高分子材料受外力作用时,分子链的内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变。

29.应力松弛:使一高弹体迅速产生一形变,物体内产生一定的应力,在保持形变不变的情况下,此应力则随时间而逐渐衰减。

这种在固定形变下,应力随时间衰减的现象叫做应力松弛。

(应力松弛对密封件来说,决定它们的使用寿命)30.影响蠕变和应力松弛的因素:(1)温度的影响:温度愈高,高聚物的蠕变柔量随时间发展愈快。

因为在玻璃态高聚物中,链段运动比较困难,蠕变柔量以普弹柔量为主,随时间的变化小;在高弹态时,链段容易运动,以高弹柔量为主的蠕变柔量很快接近于平衡值,因此在观察时间范围内,蠕变速率很低;而在玻璃化转变区,链段运动的松弛时间与观察时间处于相同的数量级,随链段运动对外力逐渐作出响应,蠕变柔量变化很大,因而蠕变速率极大。

同理,温度愈高,高聚物的应力松弛模量随时间衰减愈快,观察时间范围相同时,应力松弛速率也在玻璃化温度达到极大值。

(2)应力或应变的影响:当高聚物所受的恒定应力低于其断裂强度时,它在任一时刻的蠕变柔量与作用力的大小应该无关。

但是,实际上当作用力足够大时,蠕变柔量随作用力的增加而极具增加,甚至发生蠕变断裂。

同理在应力松弛中,恒定应变较小时,高聚物在一定观察时间内应力松弛模量与应变的大小无关,但当恒定应变超过某一临界值时,应力松弛模量将随应变值的增大而明显下降。

(3)流体静压力影响(4)热处理的影响(5)分子量的影响(6)分子链刚性和交联的影响(7)结晶的影响(8)取向(9)增塑、共聚、共混及填料的影响31.动态粘弹性:(1)滞后现象:即应变随时间的变化一直跟不上应力随时间的变化。

(高聚物的滞后现象与其本身的化学结构有关,一般刚性分子的滞后现象小,柔性分子的滞后现象严重。

同时,滞后现象还受外界条件的影响,如果外力作用的频率低,链段来得及运动,滞后现象很小;若外力作用频率很高,链段根本来不及运动,聚合物好像一块刚硬的材料,滞后现象也很小,只有外力作用的频率不太高时,链段可以运动,但又跟不上作用力的变化,才出现较明显的滞后现象。

相关文档
最新文档