3.3用图像表示的变量间关系(1)
七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版
例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.
用图像表示变量之间的关系
图像可能无法准确地表示所有的数据细节,特别是当数据集非常大或非常复杂时 ;对于某些类型的数据或分析目的,图像可能不是最佳的表示方式,例如对于需 要精确计算或复杂统计分析的情况,图像可能无法提供足够的信息。
02
散点图与变量关系
散点图基本原理与绘制方法
散点图定义
用点的分布来表示两个变量之间 关系的图形,通常用于展示两个 连续变量之间的关系。
绘制方法
确定数据类别和数值范围;为每个类别分配一个矩形条,条 的长度与数据值成比例;在图表中添加坐标轴、标题和图例 等辅助元素。
分类数据的条形图表达
分类数据特点
分类数据是按照某种标准或属性将数 据分成不同类别的数据,如性别、职 业等。
条形图表达方法
对于分类数据,可以使用条形图来表 示各类别的频数或频率。在条形图中 ,每个矩形条代表一个类别,条的高 度或长度表示该类别的频数或频率。
气候变化趋势分析
通过折线图展示长时间序列的气候数据,分析气候变化趋势及可 能的影响因素。
销售业绩跟踪与预测
将销售业绩数据绘制成折线图,跟踪销售业绩的变化趋势,为制 定销售策略提供依据。
04
条形图与变量关系
条形图基本原理与绘制方法
条形图基本原理
条形图是一种用矩形条的长度来表示数据大小的图形,通过 不同长度的矩形条来直观展示不同类别数据的数量或比例关 系。
绘制方法
在坐标系中,以横轴表示一个变 量,纵轴表示另一个变量,将每 对数据对应的点画在坐标系中。
线性关系的散点图表达
线性关系定义
两个变量之间的关系可以近似地用一 条直线来表示。
散点图表达
在散点图中,如果点大致分布在一条 直线附近,则表明两个变量之间存在 线性关系。
北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-能力培养》
用图像表示的变量间关系1.(2019春•罗湖区期中)小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对2.(2019春•罗湖区期中)小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.43.(2019春•定安县期中)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.4.(2019春•成都期中)下列各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.①②B.②C.①③D.无法确定5.(2019春•建宁县期中)如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.6.(2019春•灵石县期中)小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.7.(2019春•中山市校级期中)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮8.(2019春•叙州区期中)周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有()A.1个B.2个C.3个D.4个9.(2019秋•岑溪市期中)一辆客车从霍山开往合肥,设客车出发t(h)后与合肥的距离为S(km),则下列图象中能大致反映S与t之间的函数关系是()A.B.C.D.10.(2019春•璧山区期中)小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.下图中的哪一个图象能大致描述她去书店过程中离书店的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.11.(2019春•郫都区期中)小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?12.(2019春•靖远县期中)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)在这个变化过程中,自变量、因变量分别是、.(2)体育场离张阳家千米.(3)体育场离文具店千米.(4)张阳在文具店逗留了时间.(5)张阳从文具店到家的速度是.13.(2019春•槐荫区期中)已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E ﹣F﹣A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=cm,CD=cm,DE=cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.14.(2019秋•高州市期中)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?15.(2019春•长春期中)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?16.(2019春•济南期中)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,小明在书店停留了分钟;(2)本次上学途中,小明一共行驶了米,一共用了分钟;(3)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分;(4)小明出发多长时间离家1200米?17.(2019春•锦江区校级期中)如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与y(秒)的函数关系图象:(1)根据图②中提供的信息,a=,b=,c=.(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?18.(2019春•邛崃市期中)如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图象回答下列问题:(1)小华在体育场锻炼了分钟;(2)体育场离文具店千米;(3)小华从家跑步到体育场、从文具店散步回家的速度分别是多少千米/分钟?19.(2019春•城关区校级期中)如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?20.(2019春•雨城区校级期中)A、B两地相距50km,甲于某日骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量s(km)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与t的变化关系,请根据图象回答:(1)直接写出:甲出发后小时,乙才开始出发;(2)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?(3)请分别求出甲、乙的行驶速度?。
北师大版七年级下册数学第三章第1---3节同步复习题含答案
3.1用表格表示的变量间关系一、选择题1.如图,表格列出了一项实验的统计数据中变量y与x之间的关系:则下面能表示这种关系的式子是()A. y=x2B. y=2xC. y=x+15D. y=x2 2.下表是摄氏温度和华氏温度之间的对应表,则字母a的值是()A. 45B. 50C. 53D. 683.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系:下列说法不正确的是()A. x与y都是变量,且x是自变量,y是因变量B. 用电量每增加1千瓦时,电费增加0.55元C. 若用电量为8千瓦时,则应交电费4.4元D. 若所交电费为2.75元,则用电量为6千瓦时4.某烤鹅店在确定烤鹅的烤制时,主要依据的是下表中的数据:估计当鹅的质量为6.2kg时,烤制时间是()A. 130minB. 134minC. 144minD. 173min5.某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这一天的水位记录,观察表中数据,水位上升最快的时间段是()A. 8时到12时B. 12时到16时C. 16时到20时D. 20时到24时6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A. 弹簧不挂重物时的长度为0cmB. x与y都是变量,且x是自变量,y是因变量C. 物体质量每增加1 kg,弹簧长度y增加0.5cmD. 所挂物体质量为7 kg时,弹簧长度为23.5cm7.将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中.每隔5s后读一次温度计上显示的度数,将记录下的数据制成下表.下述说法不正确的是()A. 自变量是时间,因变量是温度计的读数B. 当t=10s时,温度计上的读数是31.0℃C. 温度计的读数随着时间推移逐渐减小,最后保持不变D. 依据表格中反映出的规律,t=35s时,温度计上的读数是13.0℃8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中x介于0∼20之间):下列说法错误的是()A. 在这个变化中,自变量是提出概念所用的时间,因变量是对概念的接受能力B. 学生对概念的接受能力是59.8时,提出概念所用的时间是12分钟C. 根据表格中的数据,提出概念所用的时间是13分钟时,学生对概念的接受能力最强D. 根据表格中数据可知:当x介于2∼13之间时,y值逐渐增大,学生对概念的接受能力逐步增强9.某种蔬菜的价格随季节变化如表:根据表中信息,下列结论错误的是()A. x是自变量,y是因变量B. 2月份这种蔬菜价格最高,为5.50元/千克C. 2~8月份这种蔬菜价格一直在下降D. 8~12月份这种蔬菜价格一直在上升10.一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示:下列关于这一变化过程的说法正确的是()A. 飞行时间t每增加0.5秒,飞行高度h就增加5.5米B. 飞行时间t每增加0.5秒,飞行高度h就减少5.5米C. 估计飞行时间t为5秒时,飞行高度h为11.8米D. 只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格二、填空题11.一支原长为20cm的蜡烛,点燃后,其剩余长度与燃烧时间之间的关系可从下表看出:则剩余长度y/cm与燃烧时间x/分的关系式为______,你能估计这支蜡烛最多可燃烧______分钟.12.米店买米,数量x(千克)与售价y(元)之间的关系如下表:则售价y与数量x之间的关系式是____13.某人购进−批苹果到集贸市场零售,已知卖出苹果数量x与售价的关系如下表:则售价y与数量x之间的关系式是______.14.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为______km.15.下面的表格列出了一个实验室的部分统计数据,表示将皮球从高处落下时,弹跳高度x与下降高度y的关系,能表示这种关系的式子是______.16.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法正确的是______.①x与y都是变量;②弹簧不挂重物时的长度为0cm;③物体质量每增加1kg,弹簧长度增加0.5cm;④所挂物体质量为7kg时,弹簧长度为13.5cm.17.一辆汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.(1)请根据题意填写下表:(2)用含t的式子表示s为________;(3)这一变化过程中,________是常量,________是变量.18.某校组织学生到距离学校6km的某科技馆参观,准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3km以下(含3km) 6.003km以上,每增加1km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为______19.收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻,下面是它们的一些对应的数值:根据表中波长(m)和频率(kHz)的对应关系,当波长为800m时,频率为_______kHz.20.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下.一辆汽车停在路边,其正前方有一座山崖,驾驶员按响喇叭,4s后听到回声,若当时的气温为25℃,则由此可知,汽车距山崖______米.气温x(℃)0510152025音速y(米/秒)331334337340343346三、解答题21.表格是暑假旅游期间萌萌往家打长途电话的几次收费记录:通话时间/1234567分电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出y与x的关系式,随着x的变化,y的变化趋势是什么?22.某剧院的观众席的座位为扇形,且按下列分式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【答案】1. D2. B3. D4. C5. D6. A7. D8. B9. D 10. C11. y=20−x2001012. y=2.6x+0.113. y=2.1x14. 615. y=2x16. ①③④17. 解:(1)填表如下:(2)s=60t;(3)t;s.18. y=1.8x+0.619. 37520. 69221. (1)上表反映了时间与电话费之间的关系;时间是自变量,电话费是因变量;(2)y=0.6x,y随着x的增大而增大.22. 解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x−1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,.解得:x=433故x不是整数,则某一排不可能有90个座位.3.2用关式表示的变量关系一、选择题1.y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤42.当x=2时,y=的值是()A.3 B.2 C.1 D.03.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.4.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对5.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的的关系式是()A.y=10x﹣x2B.y=10x C.y=﹣x D.y=x(10﹣x)6.一定质量的干木,当它的体积V=4m3时,它的密度ρ=0.25×103kg/m3,则ρ与V的关系式是()A.ρ=1000V B.ρ=V+1 000 C.ρ=D.ρ=7.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A.s=10+60t B.s=60t C.s=60t﹣10 D.s=10﹣60t 8.小张为自己已经用光话费的手机充值100元,他购买的服务是:20元/月包接听,主叫0.2元/分钟.这个月内,他手机所剩话费y(元)与主叫时间t(分钟)之间的关系是()A.y=100﹣0.2t B.y=80﹣0.2t C.y=100+0.2t D.y=80+0.2t 二、填空题9.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y 元,那么y(元)与x(件)的关系式是.10.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.11.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的关系式为.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的解析式是.13.如图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的关系式为.三、解答题14.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如表所挂物体的质量x(kg)0 1 2 3 4 5 6弹簧的长度y(cm)15 15.6 16.2 16.8 17.4 18 18.6(1)如表反映了哪两个变量之间的关系?哪个是自变量?(2)写出x与y之间的关系式;(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5kg时,求弹簧的长度.15.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.x/kg0 1 2 3 4 5 …y/cm18 20 22 24 26 28 …(1)表中反映了两个变量之间的关系,是自变量,是因变量.(2)当所挂砝码质量为3g时,弹簧的长度是cm,不挂重物时弹簧长是cm.(3)弹簧长度y与所挂物体质量x之间的关系可以用式子表示为:.(在弹簧所承受的范围内)16.一支原长为20cm的蜡烛,点燃后,其剩余长度y(cm)与燃烧时间x(min)之前的关系如表:10 20 30 40 50 …燃烧时间x(min)19 18 17 16 15 …剩余长度y(cm)(1)表中反映的自变量是什么?因变量是什么?(2)求出剩余长度y(cm)与燃烧时间x(min)之间的关系式;(3)估计这支蜡烛最多可燃烧多少分钟?3.3用图像表示的变量间关系一、选择题23.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的关系如图所示,则小明出发4小时后距A地()A. 100千米B. 120千米C. 180千米D. 200千米24.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米25.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A. 5LB. 3.75LC. 2.5LD. 1.25L26.水池中原有3升水,现每分钟向池内注1升,则水池内水量Q(升)与注水时间t(分)之间关系的图象大致为()A. B.C. D.27.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. 36x =9x−0.54B. 36x−0.54=9xC. 36x+0.54=9xD. 36x=9x+0.5428.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(单位m)和放学后的时间t(单位min)之间的关系如图所示,那么下列说法错误的是()A. 小刚边走边聊阶段的行走速度是125m/minB. 小刚家离学校的距离是1000mC. 小刚回到家时已放学10minD. 小刚从学校回到家的平均速度是100m/min29.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据图象,下列选项中白昼时长低于11小时的节气是()A. 惊蛰B. 小满C. 立秋D. 大寒30.某厂前5个月生产的总产量y(件)与时间x(月)的关系如图所示,则下列说法正确的是A. 1−3月的月产量逐月增加,4、5两月产量逐月减少B. 1−3月的月产量逐月增加,4、5两月产量与3月持平C. 1−3月的月产量逐月增加,4、5两月停产D. 1−3月的月产量逐月持平,4、5两月停产31.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是A. ①②B. ③④C. ②③D. ①④32.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A. A城和B城相距300kmB. 甲先出发,乙先到达C. 甲车的速度为60km/h,乙车的速度为100km/hD. 6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前二、填空题(本大题共10小题,共30.0分)33.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需______分钟到达终点B.34.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家______米.35.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是______.36.图所示的是一根蜡烛燃烧时剩余的长度h(cm)与燃烧时间t(h)之间的关系图象,则蜡烛点燃后每小时燃烧__________cm.37.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是______min.38.如图所示,一边靠校园院墙,另外三边用50m长的篱笆,围起一个长方形场地,设垂直墙的边长为x(m),则长方形场地面积y(m2)与x的关系式为______.39.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为______小时.40.如图表示“龟兔赛跑”中路程与时间的关系,已知龟、兔同时从同一地点出发,由图中给出的信息,可知乌龟经过_________h追上兔子.41.如图二,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,图一表示的是小明从D点走到E点路程与时间的关系,已知小明从D点到E点走了3分钟,则AB=______米.42.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是______.三、解答题43.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车起步价是______元;(2)当x>2时,求y与x之间的关系式;(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题.(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【答案】1. C2. D3. B4. B5. C6. A7. D8. D9. C 10. D11. 7812. 135013. y=6x14. 515. 37.216. y=−2x2+50x17. 12318. 1019. 45020. ①②③21. 解:(1)10;(2)当x>2时,每公里的单价为(14−10)÷(4−2)=2,∴当x>2时,y=10+2(x−2)=2x+6;(3)当x=18时,y=2×18+6=42元,答:这位乘客需付出租车车费42元.22. 解:(1)由图可得农民自带的零钱为50元.(2)(410−50)÷100=360÷100=3.6(元/千克).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530−410)÷(3.6−1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530−160×2.1−50=144(元).答:李大爷一共赚了144元钱.44.。
用图象表示的变量间的关系
选择合适的图表类型
根据数据的性质和目的,选择适合的折线图类型,如单变 量折线图、双变量折线图等。
绘制折线图
使用绘图软件或编程语言(如Python、Excel等)绘制折 线图,将数据点连接成线,并添加必要的图表元素(如标 题、坐标轴标签、图例等)。
04
柱状图
柱状图的定义
柱状图是一种用柱形表示数据的图表 ,通常用于展示不同类别数据的大小 比较。
柱状图的绘制方法
确定数据和分类变量
首先需要确定要展示的数据和分类变量, 例如销售数据按产品类别进行分类。
分析图表
根据柱状图的展示结果,进行数据分析, 得出结论和建议。
数据整理
将数据整理成适合绘制柱状图的形式,通 常为表格形式,包括行和列。
绘制图表
使用图表绘制软件或工具,根据数据表格 绘制柱状图,设置合适的图表标题、坐标 轴标签等元素。
图像可以轻松地解释给其他 人听,并且可以方便地分享 到社交媒体或其他平台,提 高数据的传播和影响力。
尽管图像表示变量具有很多 优点,但也存在一些局限性 ,例如对于大量数据的处理 能力有限,对于非线性关系 的表示不够精确等。因此, 在使用图像表示变量时需要 注意其适用范围和局限性。
02
散点图
散点图的定义
03
同类别的数据。
饼图的用途
01
用于展示不同类别的数据比例,如市场份额、用户分布等。
02
可用于比较不同类别的相对大小,帮助用户快速了解数据的 分布情况。
03
可用于发现异常值或突出显示某个类别的重要地位。
饼图的绘制方法
选择数据
确定要展示的数据类别和数据值。
设计布局
确定饼图的标题、图例和数据标签等元素的位 置。
用图像表示变量间的关系优质课用
直观性
图像能够直观地展示变量间的关 系,使数据更加易于理解和解释。
通过视觉感知,人们可以快速地 识别出变量之间的关系模式,从
而提高决策效率和准确性。
图像可以清晰地显示出变量之间 的趋势、异常值和分布情况,有
助于快速发现问题和异常。
可视化复杂数据
对于复杂的数据集,图像可以简化数据的呈现方式,使其更加易于分析和理解。
周期性规律
分析周期性变化的规律,了解周期的长度、峰值 和谷值等特征。
周期性变化的解释
结合实际情况,解释周期性变化的原因和影响。
06
如何选择合适的图表类型来表示变量间的关 系
CHAPTER
根据数据类型选择图表
分类数据:柱状图、 条形图、饼图等。
时间序列数据:时间 序列图。
定量数据:折线图、 散点图、箱线图等。
用图像表示变量间的关系优质 课
目录
CONTENTS
• 图像表示变量间关系的重要性 • 散点图:展示两个变量之间的关系 • 热力图:展示多个变量之间的关系 • 树状图和网络图:展示变量之间的层次和结构关系 • 时间序列图:展示变量随时间变化的关系 • 如何选择合适的图表类型来表示变量间的关系
01 图像表示变量间关系的重要性
通过将多个变量整合到一个图中,可以更全面地了解数据之间的关系,从而更好地 进行数据挖掘和预测。
图像可以清晰地展示出数据的维度和层次结构,有助于更好地理解数据的内在联系。
揭示潜在模式和关系
图像可以揭示出隐藏在数据中 的潜在模式和关系,这些模式 和关系可能难以通过其他方式 发现。
通过观察图像中的模式和趋势, 可以启发新的思考和发现,推 动科学研究的进步。
解读趋势
七年级(下册)目录
七年级(下册)
第一章整式的乘除
∙ 1.1同底数幂的乘法
∙ 1.2幂的乘方与积的乘方
∙ 1.3同底数幂的除法
∙ 1.4整式的乘法
∙ 1.5平方差公式
∙ 1.6完全平方公式
∙ 1.7整式的除法
第二章相交线与平行线
∙ 2.1两条直线的位置关系
∙ 2.2探索直线平行的条件
∙ 2.3平行线的性质
∙ 2.4用尺规作角
第三章变量之间的关系
∙ 3.1用表格表示的变量间关系∙ 3.2用关系式表示的变量的关系∙ 3.3用图像表示的变量间关系
第四章三角形
∙ 4.1认识三角形
∙ 4.2图形的全等
∙ 4.3探索三角形全等的条件∙ 4.4用尺规作三角形
∙ 4.5利用三角形全等测距离第五章生活中的轴对称
∙ 5.1轴对称现象
∙ 5.2探索轴对称的性质
∙ 5.3简单的轴对称图形
∙ 5.4利用轴对称进行设计第六章概率初步
∙ 6.1感受可能性
∙ 6.2频率的稳定性
∙ 6.3等可能事件的概率。
专题03用图像表示的变量间关系(解析版)-2020-2021学年七年级数学下册常考题专练(北师大版)
专题03用图像表示的变量间关系知识点解析本节的教学重点是使学生能够理解变量与常量,并能与实际结合举出相应的变量关系的例子。
在充分理解常量与变量的意义的基础上再去学习变量之间关系的三种表示方法,能将三种表示方法进行转换,并能进行简单的计算。
学生学习本节时可能会在以下三个方面感到困难:1.变量与常量的意义;2.两个变量之间的关系;3.两个变量之间的三种表示方法。
题型与方法一、选择题1. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.2.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.3.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C【解析】试题分析:A.℃由图象可知,在凌晨4点函数图象在最低点﹣3,℃凌晨4时气温最低为﹣3℃,故本选项正确;B.℃由图象可知,在14点函数图象在最高点8,℃14时气温最高为8℃,故本选项正确;C.℃由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D.℃由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.二、填空题6.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了___min,其中在路上行走了____min,他走路的平均速度是_____;(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的;(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)【答案】(1)8,6,150米/分;(2)2,2;(3)略【解析】根据图象分析判断。
3.3 用图像表示变量之间的关系
用图像表示变量之间的关系知识点1函数的图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.【典例】1.某天,小颖到校后发现有学习用品遗忘在家中,此时离上课还有15分钟,于是立即步行回家去取.同时小颖的爸爸从家中出发骑自行车给她送学习用品,两人在途中相遇,在这个过程中,小颖和爸爸两人离学校的距离S(米)与所用时间t(分钟〕之间的关系如图所示,若爸爸骑自行车的速度是小颖步行的4倍,根据图中提供的信息,回答下列问题:(1)学校离家的距离是____米,爸爸出发_____分钟后与小颖相遇;(2)请求出小颖步行的速度;〔3)若小颖与爸爸相遇后坐爸爸的自行车赶回学校(假设爸爸骑自行车的速度不变)小颖能在上课前到达学校吗?请说明理由.【方法总结】对于图象问题首先要看清楚图象描述的是什么关系,看清楚自变量指什么,因变量是什么,这两者之间存在怎样的关系,变化趋势是什么样的。
一般会涉及行程问题的时候要知道路程等于速度乘以时间。
【随堂练习】1.如图,现有一个上端开口的容器,其形状由三个长方体组成,每个长方体的高度均相等,三个长方体的底面积比从下至上依次为9:4:1,向该容器中匀速注入水,容器中水面高度为h,注水时间为t,则h与t之间的关系大致为下图中的()A.B.C.D.2.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_______,因变量是_______;(2)无人机在75米高的上空停留的时间是____分钟;(3)在上升或下降过程中,无人机的速度____为米/分;(4)图中a表示的数是_____;b表示的数是____;(5)图中点A表示____________.3.小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是_____米,本次上学途中,小明一共行驶了____米;(2)小明在书店停留了___分钟,本次上学,小明一共用了____分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?4.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是___,因变量是___;(2)朱老师的速度为_____米/秒,小明的速度为____米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?。
2020北师大版七年级数学下册同步精练专题 3.3用图象表示的变量间关系同步训练(含解析)
3.3用图象表示的变量间关系同步训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示,给出以下结论:①小华骑车到县城的速度是15km/h;①小华骑车从县城回家的速度是13km/h;①小h,小华与县城的距离为15km(即华在县城购买学习用品用了1h;①B点表示经过4113小华回到家中),其中正确的结论有()A.1个B.2个C.3个D.4个2.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是( )A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小3.五一小长假的某一天,亮亮全家上午8时自驾小汽车从家里出发,到某旅游景点游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图像提供的有关信息,判断下列说法错误的是()B.亮亮到家的时间为17时C.小汽车返程的速度为60千米/时D.10时至14时,小汽车匀速行驶4.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时花的时间少于回家所花的时间D.小王去时走下坡路,回家时走上坡路5.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是( )A.B.C.D.6.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.7.某市一周平均气温(①)如图所示,下列说法不正确的是()A .星期二的平均气温最高B .星期四到星期日天气逐渐转暖C .这一周最高气温与最低气温相差4 ①D .星期四的平均气温最低8.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( ) A . B . C . D .二、填空题9.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯__________元.10.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)11.甲、乙两个水桶内水面的高度y (cm)与放水(或注水)的时间x (分)之间关系的图象如图所示,当两个水桶内水面的高度相同时,x 约为_______分.(精确到0.1分)12.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .13.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明始姥乘车路程为__________千米.14.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.三、解答题15.如图所示是某港口从上午8 h到下午8 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?16.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?17.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?18.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.参考答案1.D【解析】【分析】根据函数图象中横、纵坐标的含义以及速度、路程和时间的关系解答即可.【详解】解:①由图象知,小华骑车到县城的距离是15km,时间是1h,则速度是15km/h,故正确;①由图象知,小华骑车从县城回家的距离是15km,时间是:4113−2=1513,则速度是:151513=13 km/ℎ,故正确;①由图象知,纵坐标为0的时间段是1−−2,则小华在县城购买学习用品用了1h,故正确;①由图象知,B点表示经过4113ℎ,小华与县城的距离为15km(即小华回到家中),故正确;综上所述,正确的结论有4个.故选:D.【点睛】本题考查了函数图象.需要学生掌握由图象理解对应函数关系及其实际意义.2.D【解析】【分析】首先弄清横轴、纵轴表示的实际含义,然后观察图象即可得出.【详解】解:A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不到4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.3.D【解析】【分析】根据图像提供的信息判断即可.【详解】解:由图像可得,小明8时出发10时到达旅游景点,走过的路程为180千米,所以景点离=60千米/时,亮亮的家180千米,A选项正确;14时开始回家,回家的行驶速度为180−12015−14回家所用时间为180÷60=3时,所以亮亮到家的时间为14+3=17时,B、C选项正确;10时至14时,路程没有发生变化,说明是在景点游玩,小汽车静止不动,D选项错误.故答案为:D【点睛】本题考查了函数图像,此类题要理解每个数据及每段函数图像所表达的含义,正确从函数图像获取信息是解题的关键.4.B【解析】【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【详解】解:小王去时的速度为:2÷20=0.1千米/分,回家的速度为:2÷(40−30)=0.2千米/分,所以A. C均错,小王在朋友家呆的时间为:30−20=10,所以B对.故选B.【点睛】能正确读懂函数图象的相关信息是解答本题的关键.5.A【解析】【分析】根据足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落,进行判断即可.【详解】解:A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.【点睛】此题主要考查函数的图象的知识点,根据函数图象的意义,注意纵横坐标变化得出是解决问题的关键.6.A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.7.C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8①,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.8.C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】①开始生产时产品积压a件,即t=0时,y=a,①B错误;①今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,①销售产品的速度大于生产产品的速度,①产品积压量y随开工时间t的增大而减小,①A错误;①产品积压量每月减少b件,即减小量是均匀的,①y是t的一次函数,①D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.9.2【解析】由图中信息可知,每个茶杯2元.故答案为2.10.①①【解析】①小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,①表示母亲离家的时间与距离之间的关系的图象是①;①父亲看了10分报纸后,用了15分返回家,①表示父亲离家的时间与距离之间的关系的图象是①11.2.7【解析】如图所示,两个函数图象的交点的横坐标约为:2.7,所以当两个水桶内水面的高度相同时,时间x约为2.7分钟.故答案为2.7.点睛:两个函数图象交点的横坐标就是两个水桶中水面高度相同的时间.12.37.2【解析】【分析】根据图表可计算出上坡的速度以及下坡的速度,又已知返回途中的上下坡的路程正好相反,故可计算出共用的时间.【详解】由图可得,去校时,上坡路的距离为2000米,所用时间为18分,①上坡速度=3600÷18=200米/分,下坡路的距离是9600-3600=6000米,所用时间为30-18=12分,①下坡速度=6000÷ 12=500米/分;①去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,①小明从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2分钟.故答案为37.2.【点睛】本题主要考查学生的读图获取信息的能力,解题时需要注意去学校时的上坡,返回家时是下坡,而去学校时的下坡,返回家时是上坡.13.13【解析】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,①直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为:13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为:900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.(1)13 h,约7.5 m;(2)8 h,2 m;(3)8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.【解析】【分析】(1)根据函数图象的最高点的坐标,可得答案;(2)根据函数图象的最低点坐标,可得答案;(3)根据函数图象的上升和下降即可判断水深的变化情况.【详解】解:(1)根据函数图象可得:13时港口的水最深,深度约是7.5m;(2)根据函数图象可得:8时港口的水最浅,深度约是2m;(3)根据函数图象可得:8h~13h,水位不断上升;13h~15h,水位不断下降;15h~20h,水位又开始上升.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质、意义和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义回答问题.16.(1)上午10时;(2)早上7时和晚上18时.【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.17.(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【解析】【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据18.(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,①付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.。
北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-培优拔高》无答案
用图像表示的变量间关系1.(2019春•崇川区校级期中)小潘同学在1000米训练中跑动的路程S(米)与时间t(分钟)的关系如图所示,则他跑步速度大小v(米/分钟)与时间t(分钟)的关系图象为()A.B.C.D.2.(2019春•迎泽区校级期中)自动测温仪仅记录的图象如图所示,它反映了某市的春季某一天气T(℃)如何随时间t(时)的变化而变化的.下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.最高气温是零上8℃D.0点到14点之间气温持续上升3.(2019春•凤翔县期中)小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.4.(2019春•乐清市期中)小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20 D.245.(2019春•高新区校级期中)健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A.B.C.D.6.(2019春•沙坪坝区校级期中)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,便以更快的速度匀速行驶去学校.下面能大致反映小明离家距离s与出发时间t的关系的图象是()A.B.C.D.7.(2019春•南山区校级期中)一支蜡烛长20cm.若点燃后每小时燃烧5cm.则燃烧剩余的长度y(cm)与燃烧时间x(小时)之间的函数关系的图象大致为()A.B.C.D.8.(2019春•南关区校级期中)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示,题中用“……”表示的缺失的条件应补为()A.点C的横坐标B.点C的纵坐标C.△ABC的周长D.△ABC的面积9.(2019春•天河区校级期中)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以上说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km10.(2019春•资中县期中)一天,李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家2000米B.李师傅修车用了15分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅路上耗时20分钟11.(2019春•南山区校级期中)如图1,长方形ABCD中,动点P从B出发,沿B→C→D →A路径匀速运动至点A处停止,设点P运动的路程为x,△P AB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于.12.(2019春•叶县期中)如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时.13.(2018秋•白塔区校级期中)小李从沂南通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是元.14.(2018春•于洪区校级期中)如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,当销售量吨时,公司亏本.15.(2018春•岐山县期中)如图表示一辆汽车从出发到停止的行驶过程中速度v(米/分)随时间t(分)变化的情况,下列判断中正确的是(填写正确答案的序号)①汽车从出发到停止共行驶了14分②汽车保持匀速行驶了8分③出发后4分到12分之间,汽车处于停止状态④汽车从减速行驶到停止用了2分16.(2019春•高新区校级期中)2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?17.(2019春•岐山县期中)如图,是反映一辆出租车从甲地到乙地的速度(千米/时)与时间(分钟)的关系图象;根据图象,回答下列问题:(1)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?(2)汽车在哪段时间保持匀速行驶?时速是多少?(3)出发后25分钟到30分钟之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.18.(2019春•凤翔县期中)周六上午,小亮去图书馆查资料,图书馆离家不远,他步行去图书馆,查完资料后他又边走边转去书店买书,在书店停留了几分钟后骑共享单车回家已知小亮高家的距离s(米)与离开家的时间t(分)之间的关系如图所示.请根据图象回答下列问题:(1)小亮出发几分钟后到达图书馆?(2)小亮查完资料后步行的速度是多少?(3)小亮10:00离开图书馆,几点回到家?19.(2019春•大邑县期中)小李骑摩托车在一条笔直的公路上行驶,摩托车离出发地的距离s(千米)和行驶时间t(小时)之间关系的图象如图所示.根据图象回答下列问题:(1)在上述变化过程中,自变量是什么?因变量是什么?(2)摩托车共行驶了多少千米?(3)摩托车在行驶过程中休息了多久?(4)摩托车在整个行驶过程中的平均速度是多少?(5)用自己的语言描述摩托车的行驶情况.20.(2019春•福田区校级期中)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)。
北师大版七下册数学4.3《用图象表示的变量间关系》知识点精讲
知识点总结一.基本概念1.在某一变化过程中,不断变化的量叫做变量。
如:C=2пr中的r与C,可以取不同的数值,是变化的,所以r、C就是变量。
2.在某一变化当中,如果有两个变量x和y,当其中一个变量x在一定内取一个数值,另一个变量y也有唯一一个数值与其对应,(简单说变量y 随另一个变量x的变化而变化),则把x叫做自变量,y叫做因变量。
(即自变量是先发生变化或主动发生变化的量,而因变量是随着自变量的变化而变化的量。
)如:C=2пr中的r与C,r=1,C=2п;r=2,C=4п…,r取不同数值时,C跟着发生变化,而且当r取某个数值时,C对应变化的值是唯一的,所以r就是自变量,C就是因变量。
3.常量:一个变化过程中数值始终保持不变的量叫做常量.如:C=2пr中的“2”和“п”,在r与C的变化过程中始终保持不变,所以,“2”和“п”就是常量。
二、变量间关系的表示方法:〈一〉列表法。
采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
例1:某剧院的观众席的座位为扇形,且按下列方法设置:(1)按照上表所示的规律,第6排的座位数为______;(2)写出座位数y与排数x之间的关系式为_____;(3)按照上表的规律,某一排可能有90个座位吗?说说你的理由。
思路分析:题中有两个变量:排数、座位数,用表格的形式来描述两个变量间的关系,这就是列表法。
依规律探究题型的解题方法和技巧(①把数字转化成算式;②寻找算式中的数字与序号间的关系规律)即可解答:解题过程:(1)第1排的座位数:50个;第2排的座位数:(50+3×1)个;第3排的座位数:(50+3×2)个;第4排的座位数:(50+3×3)个;∴第6排的座位数:50+3×5=65(个);(2)由(1)中规律可得:座位数y与排数x之间的关系式为:y=50+3×(x-1)=3x+47.(3)某一排是否有90个座位,即y是否可以等于90,假设代入解方程即可,当y=90时,即3x+47=90,解得x不是整数,故某一排不可能有90个座位。
3.3.2用图像表示的变量间的关系第二课时 - (1)
第三章 变量之间的关系
第三节 用图象表示的变量间关系(2)
学习目标
1. 能对实际问题中所蕴涵的变量之间的关系选择 图象表示; 2.能结合具体情境理解图象上点所表示的意义; 3. 能从图像中提取信息,理解信息,能用语言 进行描述,感悟数形结合思想。
我们已经学习了几种表示变量之间关系的方法? 1.列表法 下表所列为一商店薄利多销的情况,某种商品的 原价为450元,随着降价的幅度变化,日销量 (单位:件)随之发生变化:
3.图象法
下图表示了某港口某日从0时到6时水深变化的情况。
水深(米) 水深(米) 8 7 A 6 5 4 3 2 1 0 1 2 3 4 5 6
(1)大约什么时刻港口的 水最深?约是多少? (2)A点表示什么? (3)说说这个港口从0时 到6时的水位是怎样变化的?
时间(小时)
春天来了,小兔子去踏青。下面的图象表示它的速度随时间变化而变化 的情况。请根据图象解答
从左往右若图象上升,表明速度
变大 ________
;若图象下降,表明速度
不变 ________ ;若图象与横轴平行,则表明速度_____________ 。
速度/(米/分)
15
减小
10
5
A
B D
O0
2
4
6
8
C
10
12
14 16
18
20
22
24
时间/分
目标检测1:
1.森林里的动物们也坐着公交车外出游玩。汽车从车 站开出,加速行驶一段后开始匀速行驶。过了一段时间, 汽车到了一个车站,动物上下车后汽车开始加速,一段 时间后又开始匀速行驶。下面哪一幅图可以近似地刻 画出汽车在这段时间内的速度变化情况( )
3.3用图像表示变量间的关系脚本 枣庄市第十九中学赵玉喜
同学,你好之前我们学习了用表格表示变量间的关系,(展示图片),用关系式表示的变量间的关系(图片),今天我们将继续学习用图象表示变量间的关系.温度的变化,是人们经常谈论的话题。
我们来看一下某地某天温度变化的情况。
本图表示了温度随着时间的变化而变化的情况其中时间是自变量,温度是因变量。
在用图象表示变量间的关系时通常用水平方向的数轴上的点表示自变量,竖直方向的数轴上的点表示因变量,其中水平方向的数轴又称横轴(点击出现消失),竖直方向的数轴称为纵轴(点击出现消失)。
下面,我们来进一步认识图象请找出上午9点的温度是多少?12时呢?在图中我们先在横轴找到9点,然后过这个点作横轴的垂线与图像交与A点,再过A点作纵轴的垂线,对应的数值为27摄氏度.读出9点的的温度为27摄氏度同理12时对应B点温度为31摄氏度我们可以找出某个时间的温度,那么给出图像上的一个点此点C,你知道点C表示的是什么呢?我们先找到点C,然后过点C分别作横轴、纵轴的垂线从而得出C点对应时间是21时,对应温度是31摄氏度所以,C点表示的是21时温度是31摄氏度我们认识了图象上点的意义,下面请你找出这一天的最高温度和最低温度,他们是在几时到达的?通过观察图像找到最高点,过这个点分别向横轴、纵轴作垂线得出最高气温37摄氏度在15时到达。
同理得到最低气温为23摄氏度,在3时到达。
这一天的温差是多少?从最低气温到最高气温经过了多少时间?温差为37-23=14摄氏度;时间是从3时到15时,共15-3=12(小时)。
通过刚才的学习,我们知道图象可以表示变量的取值范围,同时图象还可以反映因变量的变化趋势,在什么时间范围内温度在上升?在什么时间范围内温度在下降?在0~3时,温度在下降;3~15时,温度在上升;在15~24时,温度在下降。
所以在3~15时,温度在上升;在0~3时和15~24时,温度在下降.你能预测次日凌晨1点的温度吗?观察图像得出15~24时,温度在下降,到次日凌晨1点,温度估计和昨天凌晨1点差不多在24摄氏度左右。
七年级数学下册 3.3.1 用图象表示的变量间关系教案2 (
课题:3.3.1用图象表示的变量间关系教学目标:1.通过从图像中分析变量间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.会利用图象确定变量的取值范围及其他信息,并对未来的情况作一个预测.教学重点与难点:重点:结合具体情境理解图象上的点所表示的意义.难点:会利用图象确定变量的取值范围及其他信息,并对未来的情况作一个预测.课前准备:多媒体课件.教学过程:一、复习回顾,巩固加深活动内容:(多媒体展示以下问题)1.列表法下表所列为一商店薄利多销的情况,某种商品的原价为450元,随着降价的幅度变化,日销量(单位:件)随之发生变化:在这个表中反映了个变量之间的关系,是自变量,是因变量.2.关系式法某出租车每时耗油5千克,若t小时耗油q千克,则自变量是,因变量是,q与t 的关系式是 .处理方式:先给学生一点时间思考,然后指定两名同学回答,若答错则由其余同学给予纠正.总结表格法和关系式法表示变量间的关系各自的特点:①通过列表格,可以根据表格中已列出的自变量的值,可以直接查到与其对应的因变量的值,使用起来比较方便.②利用关系式,我们可以根据一个自变量的值求出相应的因变量的值.设计意图:通过复习回顾,即让学生加深对表格法和关系式法的理解,尤其是它们各自的特点,同时为本节课学习图像法表示变量间的关系做了铺垫和一个比较的平台.二、探索新知,形成体系活动内容1:(多媒体出示)问题1. 请根据右图,与同学讨论下面的温度变化问题.(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中A 点表示的是什么?B 点呢? (6)你能预测次日凌晨1时的温度吗?说说你的理由.处理方式:以小组为单位交流课前预习时的各题答案,你是通过图象怎样找的?你的操作步骤是什么?小组内讨论操作方法.三分钟后找三名小组代表分别展示(1)至(2)答案、(3)至(4)答案、(5)至(6)答案.预设学生答案:解答1:(实物投影展示(1)至(2)答案.)这两题都是由图象上的点确定自变量和因变量的值,通过自变量的值找对应因变量的值方法是:先找到对应的横轴上的点,再作横轴的垂线,找到与图象的交点,再向纵轴作垂线,交与纵轴上的点对应的值就是因变量的值.解答2:(实物投影展示(3)至(4)答案.)这两题是由图象确定自变量和因变量的取值范围,以及图象上升下降的趋势.解答3:(实物投影展示(5)至(6)答案.)明确图象上的点对应着一对相应的自变量和因变量的值,表示图象上的点的意义时要都说出来.设计意图:通过学生的课前预习与课上合作交流相结合的方式,即培养了学生课前预习的习惯,又能让学生通过自主探究与合作交流从图像中分析变量间的关系的过程,并能理解22232425262728293031323334353637383691215182124时间/时温度/摄氏度图像中点表示的意义.活动内容2:小组交流,合作探究 (多媒体出示问题)处理方式:上述问题由学生结合具体问题小组交流,合作探究的方式进行,然后派两名小组代表回答.在回答时只要学生回答的意思到位都应给与鼓励,不必追求语言的精确.在学生回答完之后再由师生一起归纳总结图像法的特点,同时多媒体展示特点:(1)在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.(2)由自变量确定因变量的值,由因变量确定自变量的值,图像上点的意义,确定自变量和因变量的范围,图像的上升和下降,预测图像的变化趋势.(3)图象法表示变量间关系的优点:直观﹑和生动,能从整体表示变量间的关系.不足:所画的图象是局部的﹑近似的,由图象确定的自变量和因变量的值往往不够准确. 设计意图:通过小组交流合作探究从引例图象中找到变量并发现变量之间的关系,会利用图象解决实际问题,并清楚图象上的点所表示的内容,对图象表示变量间的关系进行深入的学习.三、例题分析 巩固应用 活动内容1:(多媒体出示)议一议:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.(1)一天中,骆驼的体温的变化范围是_______,它的体温从最低上升到最高需要______时.(2)从16时到24时,骆驼的体温下降了______.(3)在_______________时间范围内骆驼的体温在上升; 在___________________时间范围内骆驼的体温在下降.(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?时间/0123456780123456789101112(5)A 点表示的是______还有几时的温度与A 点所表示的温度相同? (6)你还知道哪些关于骆驼的趣事?处理方式:学生先独立完成,有困难的同学可以小组交流讨论,最后指定一名学生回答,其余学生给以纠正错误. 最后老师强调(课件演示)过A 点平行横轴的水平线与图象的交点温度都相同.活动内容2:(多媒体出示骆驼趣事)骆驼为什么能适应沙漠生活?骆驼的鼻孔能自如地开、关,眼睛有双垂眼睑,睫毛很长,耳朵能转动,所以不怕风沙.骆驼的蹄子宽而扁平,有肉垫,适于在沙地行走而不陷下去. 骆驼一次吃足饲料和水,把营养贮藏在驼峰里,慢慢地消化,直到骆峰下凹,所以骆驼在沙漠里可以几天不喝水,不吃东西.骆驼的厚皮可以抵挡烈日,它的体温在白天、黑夜也有变化,不易出汗,可节约水分.骆驼的睫毛很长,可以挡住风沙.它的皮很厚,夜里可以保暖,白天则隔热.生活在沙漠里的人们将单峰驼用作坐骑.图片显示的是双峰驼,比单峰驼强壮,更适于运输货物.几千年来,骆驼对于住在亚非沙漠地带人们的生活至关重要.它们不仅运送人和货物,而且还被用作结婚的馈赠礼物,或是杀伤人后的罚金.骆驼也被进口到澳大利亚,其中一些逃到中部沙漠地带,成为野生群落.处理方式:学生认真阅读,相互交流对骆驼的认识,丰富课外知识.设计意图:活动1进一步巩固图象表示变量间的关系,同时让学生体会数学就在我们的身边,生活处处有数学,进一步培养学生学习数学的兴趣.活动2主要是让学生通过数学了解一些平时不知道的关于骆驼的知识,活跃课堂气氛,同时唤起学生对骆驼的热爱和保护. 四、学以致用 形成技能 活动内容一:(多媒体出示)海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.下面是某港口从0时到12时的水深情况.(1)大约什么时刻港口的水最深?深度约是多少?(2)大约什么时刻港口的水最浅?深度约是多少? (3)在什么时间范围内,港口水深在增加?(4)在什么时间范围内,港口水深在减少?(5)A,B两点分别表示什么?还有几时水的深度与A点所表示的深度相同?(6)说一说这个港口从0时到12时的水深是怎样变化的.处理方式:让学生独立思考.教师巡视,学生完成后及时回答,老师适时点拨.同时借助多媒体答案,并对学生出现的问题进行矫正.设计意图:通过本题,加深了学生对利用图象表示变量之间的关系的理解,培养学生思考问题的全面性,提高学生的分析能力,调动学习的兴趣,同时培养学生解决问题的能力,鼓励学生独立完成,建立自信,培养学生数学语言的表达能力.活动内容二:(多媒体展示图片)处理方式:在老师的指导下,让学生欣赏图片,相互交流对潮汐的认识.设计意图:进一步丰富学生的课外知识,增加学生学生数学的乐趣,同时又可以调动学生课堂的兴趣,提高课堂效率.五、总结反思拓展升华同学们,竹子每生长一步,必做小结,所以它是世界上长的最快的植物,数学的学习也是如此.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!处理方式:学生小组交流,畅所欲言,积极回答,最后多媒体展示归纳本节课的知识要点.(1)在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.(2)由自变量确定因变量的值,由因变量确定自变量的值,图像上点的意义,确定自变量和因变量的范围,图像的上升和下降,预测图像的变化趋势.(3)图象法表示变量间关系的优点:直观﹑和生动,能从整体表示变量间的关系.不足:所画的图象是局部的﹑近似的,由图象确定的自变量和因变量的值往往不够准确.设计意图:通过本环节使学生对本节课所学进行梳理,进一步加深对图像法表示变量间关系的认识与理解,并养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示) (A 组)1.为了建设社会主义新农村,我市推进“行政村通畅工程”,张村和王村之间道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造道路里程y (公里)与时间x (天)的函数关系的大致图像是()A .B .C .D .2.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为( )3.右图表示 海口市某年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题 : (1)这天的最高气温______;(2)这天共有_______个小时的气温在30度以上; (3)这天在_______________(时间)范围内温度在上升;4.早晨亮亮烧得很厉害,吃过药后感觉好多了,中午时他的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么烫了.下面哪个图象能较好的刻画出亮亮今天体温的变化情况?26101418222630343803691215182124时间/时温度/ C体温体温5.某托运公司托运行李的费用与托运行李的重量关系如图所示.由图4可知行李的重量只要不超过______千克,就可免费托运,行李的重为50千克时收费______元,行李的重量年增加1千克多收费______元.(B 组)6.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上学时间,于是快马加鞭加快速度,在下图中给出的示意图中(s 为距离,t 为时间)符合以上情况的是( )7.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断下列说法错误的是:( )A.男生在13岁时身高增长速度最快B .女生在10岁以后身高增长速度放慢C .11岁时男女生身高增长速度基本相同D .女生身高增长的速度总比男生慢处理方式:A 组题目要求学生全部完成;B 组题目鼓励中上等学生完成.学生做完后,教师出示答案,指导学生校对,并统计学生答题情况,学生根据答案进行纠错.设计意图:学以致用,分层当堂检测,及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、分层作业,促进发展必做题:完成本节助学.选做题:分析下面反映变量之间关系的图,想象一个适合它的实际情境.结束语:我们生活在一个变化的世界中,时间、温度,还有你的身高、体重等都在悄悄地发生变化.从数学的角度研究变化的量,发现它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来.同学们,让我们继续努力吧!板书设计:。
《用图像表示的变量间关系》word教案 (公开课)2022年北师大版 (1)
3.3 用图象表示的变量间关系●教学目标〔一〕教学知识点1.经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.能从图象中获取变量之间关系的信息,并能用语言进行描述.〔二〕能力训练要求1.培养学生从图象中获取信息的广泛性和准确性.2.在具体情境中锻炼学生对变量之间关系的敏感和语言描述的合理.〔三〕情感与价值观要求从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.●教学重点1.用图象表示两个变量之间的关系.2.从图象中获取变量之间关系的信息,并能用语言合理地表示,并能结合具体情境理解图象上的点所表示的数学意义.●教学难点根据图象得出事物变化的规律.●教学方法自主探索法本节课的重点是使学生获得对图象反映变量之间关系的体验,学生可借助于以前读统计图的经验发现两个变量的关系,并尽可能多地从图象中获取信息.●教学过程一、温故知新1.某河受暴雨袭击,某天此河水的水位记录为下表:时间/小时0 4 8 12 16 20 24水位/米 2 3 4 5 6 8上表中反映了个变量之间的关系,自变量是,因变量是 .强调:借助表格,我们可以表示,因变量随自变量的变化而变化的情况.2.汽车油箱中原有汽油50升,汽车每行驶1小时耗油6升,请写出油箱中剩余油量y〔升〕与行驶时间t〔小时〕之间的关系式 .强调:利用关系式,我们可以根据一个自变量的值求出相应的因变量的值.二、创设情境,导入新课以以下图是我国某天的气温分布图,你能根据此图说一说家乡的气温吗?你还能从图中看出什么?三、探究交流,获取新知1.合作与探究——气温变化的情况请你根据图象,与同伴讨论某地某天温度变化情况.〔1〕上午9时的温度是多少?12时呢?〔2〕这一天的最高温度是多少?是几时到达的?最低温度呢?〔3〕这一天的温差是多少?从最低温度到最高温度经过了多长时间?〔4〕在什么时间范围内温度在上升?在什么时间范围内温度在下降?〔5〕图中的A点表示的是什么?B点呢?〔6〕你能预测次日凌晨1时的温度吗?说说你的理由.〔学生思考,交流〕2.知识归纳图象是我们表示变量之间关系的第三种方法,它的特点是非常直观.在用图象表示变量之间的关系时,通常用水平方向的数轴〔称为横轴〕上的点表示自变量,用竖直方向的数轴〔称为纵轴〕上的点表示因变量.如何从图象中获取关于两个变量的信息?(1)要明白图象上的点所表示的意义?(2)从自变量的值如何得到因变量的值?及从因变量的值如何得到自变量的值?(3)要明白因变量如何随自变量变化而变化的?3. 议一议——骆驼的体温骆驼被称为“沙漠之舟〞,它的体温随时间变化而发生较大的变化,下面是骆驼的体温随时间变化的图象,我们根据它来分析变量之间的关系.〔图中25时表示次日凌晨1时〕〔1〕一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间?〔2〕从16时到24时,骆驼的体温下降了多少?〔3〕在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?〔4〕你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?〔5〕A点表示的是什么?还有几时的温度与A点所表示的温度相同?〔6〕你还知道哪些关于骆驼的趣事?与同伴交流.〔学生思考交流〕四、达标检测,反响新知1.在夏天一杯开水放在桌面上,其水温T与放置时间 t 的关系大致图象为〔〕2.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )3.以以下图是今年5月1日至5月6日某市旅游人数统计图:〔1〕你能从图中获得哪些信息?〔2〕你能预测5月7日的旅游人数吗?〔3〕你会选择这7天中的哪一天出游?4.下面是一位病人的体温记录图,看图答复以下问题:(1)护士每隔几小时给病人量一次体温?护士每隔6小时给病人量一次体温.(2)这位病人的最高体温是多少摄氏度?最低体温是多少摄氏度?(3)他在4月8日12时的体温是多少摄氏度?(4)图中的横线表示什么?(5)从图中看,这位病人的病情是恶化还是好转?5.下面是某港口“水上游乐场〞从0时到12时的水深情况变化图:864201234567891011121.此图反映哪两个变量之间的关系?2.假设规定水深超过6米时,不允许游客下海,图中有哪些时间段可以下海?五、知识拓展,提升能力人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现了记忆遗忘规律。
北师大版七年级数学下册3.3《用图象表示的变量间关系(1)》习题含答案
3.3《用图象表示的变量间关系(1)》习题含答案一.填空题:1.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.2.如图是某地春季某一天的气温随时间变化的图象,仔细观察图象并回答:(1)这一天6时的气温是__________,14时的气温是__________.(2)这一天最高气温是__________,最低气温是__________,温度差是__________.第2题图第3题图3.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧的过程,如图是夏季晴朗的白天某种绿色植物叶片光合作用强度的曲线图,观察曲线图回答下列问题:(1)大约从7时到__________时的光合作用的强度不断增强;(2)__________时和__________时的光合作用强度不断下降.4.经科学家研究,蝉在气温超过28℃时才会活跃起来,此时边吸树木的汁液边鸣叫,如图是某地一天的气温变化图象,在这一天中,听不到蝉鸣的时间是小时.第4 题第5 题5.如图,一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;(3)当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一). 二.选择题:6.正常人的体温一般在37℃左右,在不同时刻体温也在变化;下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T(单位:℃)的范围是36.537.5≤≤TD.从5时至24时,小明体温一直在升高7.如图是某市某一天的气温T(℃)随时间t(时)变化的图象,那么这天的 ( ) A.最高气温是10 ℃,最低气温是2 ℃ B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃ D.最高气温是10 ℃,最低气温是-2 ℃8.如图,是某市某一天的温度随时间变化的图象;通过观察可知,下列说法不正确的是()A.这天15时温度最高 B.这天3时温度最低C.这天的温差是13℃ D.这天21时温度是32℃9.某市经常刮风,给人们出行带来很多不便,小明观测了某天连续24小时的风力情况,并绘出了风力随时间变化的图象,则下列说法中,正确的是()A.8时风力最小 B.20时风力最小C.在8时至12时,风力最大为7级 D.在8时至14时,风力不断增大第8题图第9题图第10题10.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如图,下面的说法正确的是 ( )A.每相隔1s苹果下落的路程是相同的 B.每秒钟下落的路程越来越大C.经过3s苹果下落了一半的高度 D.最后2s苹果下落了一半的高度第11题第12 题11.如图,图象记录了某地一月份某天的温度随时间变化的情况,仔细观察图象,根据图中提供的信息,判断不符合图象描述的说法是 ( )A.20时的温度约为-1℃ B.温度是2℃的时刻是12时C.最暖和的时刻是14时 D.在-3℃以下的时间约为8个小时12.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( ) A.在这一分钟内,汽车先提速,然后保持一定的速度行驶B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速C.在这一分钟内,汽车经过了两次提速和两次减速D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变三.解答题:13.如图所示是某港口从上午8时到下午8时的水深情况,根据图象回答下列问题:(1)在8时到20时,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?14.温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况:(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?15.根据下图回答问题:(1)上图表示的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)从图象中观察,哪一年的居民的消费价格最低?哪一年居民的消费价格最高?相差多少?(3)哪些年的居民消费价格指数与1989年的相当?(4)图中A点表示什么?(5)你能够大致地描述1986—2000年价格指数的变化情况吗?试试看.3.3《用图象表示的变量间关系(1)》习题答案1.图象法;水平;横轴;竖直;纵轴;2.(1)0℃;9℃;(2)10℃;2 ℃;12℃;3.(1)10;(2)10~12;14~18;4.12 5.(1)小;(2)0.5 xy;(3)大于;6.D7.D8.C9.D10.B11.B12.D 13.(1)13时,约7.5米;(2)8时,2米;(3)8时~13时,水位不断上升;13时~15时,水位不断下降;15时~20时,水位又开始上升;14.(1)37 ℃;15时;23 ℃;(2)14 ℃;12小时;15.(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量;(2)1994年最高,1999年最低,相差25;(3)1993年和1995年;(4)1998年的居民消费价格指数约为101;(5)略,只要合理即可.。
七年级数学下册3.3.1用图象表示的变量间关系教案1
课题:3.3用图象表示的变量间关系(1)教学目标:1.能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息.2.培养学生的观察能力,根据图像预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力.3.让学生体会数学与实际生活的紧密联系,激发学生学习数学的兴趣,增强学生的数学应用意识.教学重点与难点:重点:使学生获得对图象反映变量之间关系的体验.难点:能从图象中获取变量之间关系的信息,并能用语言进行描述. 课前准备:教师准备:多媒体课件. 学生准备:搜集的各种图象. 教学过程:一、创设情境,导入新课r 由_______ 关系的方法:表格法和关系式法,为本节课的新知学习作好铺垫.(板书课题) 3.3用图像表示的变量间关系(1)二、自主交流、合作探究:【活动一】探究气温的变化(课件展示)观察下表回答下列问题:(3)这一天的温差是,从最高温度到最低温度经过了______时间,(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由 .注意事项:此环节作为导入新课不易浪费过多时间,教师以引导为主,循序渐进的让学生感受到用图象表示变量之间的关系的必要性,折线统计图的优越性,让看似简单的数学内容丰富起来.【设计意图】让学生去体会温度这个变量和时间这个变量的关系,通过一系列的问题去体会到用图象表示变量之间的关系清晰明了.从而总结出如何用图象表示变量之间的关系.海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,(1)大约什么时刻港口的水最深?深度约是多少?(2)大约什么时刻港口的水最浅?深度约是多少?(3)在什么时间范围内,港口水深在增加?(4)在什么时间范围内,港口水深在减少?(5)A,B两点分别表示什么?还有几时水的深度与A点所表示的深度相同?时到【活动2】探究骆驼身上的数学师:骆驼被称为“沙漠之舟”,它的体温随时间变化而发生较大的变化.下面是骆驼的体温随时间变化的图象,(1)一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间? (2)从16时到24时,骆驼的体温下降了多少?(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降? (4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢? (5)A 点表示的是什么?还有几时的温度与A 点所表示的温度相同? (6)你还知道哪些关于骆驼的趣事?与同伴交流.【设计意图】1.通过温度的折线变化图,能够让学生从图象中找到变量并发现变量之间的关系,会利用图象准确回答相关的问题.2.利用这个折线图,可以让学生进一步巩固变量之间的关系,会利用图象解决实际问题.并清楚图象上的点所表示的内容.三、实际应用,升华新知【学以致用】某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x (吨)之间的关系图如图所示,根据图象回答: (1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元? (2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?【解析】:观察图象可以发现,当用水5吨时,刚好交水费10元,所以用水不足5吨时,每吨交费=2元;而当用水量达到8吨时,交水费20.5元.所以超过5吨的部分交水费20.5-10=10.5元,故超过5吨部分每吨交水费=3.5元.所以,居民用水3.5吨时,应交3.5×2=7元,若交17元水费,则用水5+=7吨.解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费=2元)5-810-20.5气温o 1 2 3 4 5 6 7 星期12108642当x =8时,y =20.5,故超过5吨部分每吨交水费 =3.5元. (2)因为x =3.5<5,所以y =3.5×2=7元;若交17元水费,则用水5+ =7吨.【设计意图】利用图象解决相关问题,是近年来重点考察的一个方面,要求学生要有较强的读图能力,提取有用信息的能力.通过这个例题的分析,让学生理解如何分析解决这类问题,为后续相关问题的学习打下坚实的基础.【反馈训练】某机动车出发前油箱内有油42L ,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q (L )与行驶时间t (h), 之间的关系如图所示,根据图象回答下列问题: (1)该机动车行驶几小时后加油?(2)中途加油______L ;【设计意图】加强学生读图能力的训练,理解变量之间的对应关系.四、诱导反思、归纳总结: 师生共同总结:这节课从图象中分析了两个变量之间的关系,结合温度的变化直观而形象地从图象中获得了变量之间的有关信息.用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的. 这节课我还有……疑问?【设计意图】总结能让学生加深对重要知识的印象.五、达标检测,反馈矫正 A 层:1.某市一周平均气温(℃)如图所示,下列说法不正确的是( ) A .星期二的平均气温最高B .星期四到星期日天气逐渐转暖C .这一周最高气温与最低气温相差4℃D .星期四的平均气温最低 2.某H7N9疑似病人夜里开始发烧,早晨烧得很厉害,医院及时抢救后体温开始下降,到中午时体温基本正常.但是下午他的体温又开始上升,直到夜里他才感觉到身上不那么发烫,下面能较好地刻画出这位H7N9疑似病人体温变化的图象是( )A B C DB 层: 3.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变30283.51017化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x (分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?【设计意图】达标检测一方面旨在知识的巩固与深化,通过以上习题使学生能根据具体问题,举一反三.另一方面,教师可以及时的了解学生对新知识的掌握情况,为下一步的教学做好准备.六、布置作业,巩固深化必做题:习题4.3 第1、2题. 拓展题:3.如图中的折线ABC 是甲地向乙地打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的关系的图像.(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费? (2)通话多少分钟以内,所支付的电话费不变? (3)如果通话3分钟以上,电话费y (元)与时间t (分钟)的关系式是 2.5(3)y t =+-,那么通话4分钟的电话费是多少元?【设计意图】复习巩固检测本节知识,提高学生分析和解决问题的能力.作业分为必做题与选做题,让不同的学生得到不同的发展,体会到不一样的成功.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
及从因变量的值如何得到自变量的值?
(3)要明白因变量如何随自变量变化而
C B
D
变化的?
10
0
5
10 12
20
26
横轴
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小。
以上三点是打开“解决图象类问题”的一把万能钥匙。
2、图象法能直观反映变量间的整体变化情况
及变化规律,这就是它的优越性。
3、及时复习才是好的学习习惯,它具有事
半功倍之功效。
纵轴 33 23 A
及从因变量的值如何得到自变量的值?
(3)要明白因变量如何随自变量变化而
C B
D
变化的?
10
0
5
10 12
20
26
横轴
骆驼被称为“沙漠之变化的关系 图:
(1)在什么时间范围内骆驼的体温在上升?在什么时间 范围内骆驼的体温在下降? 每天0时到4时、16时 每天4时到 到24时 16时
D
12时呢?
31º C
37º C (2)这一天的最高温度是___, 31 N 15 时达到的, 最低温 是____
度呢?
27 M
23º C
3时
14º C (3)这一天的温差是____,
从最低温度到最高温度经
23 E 12 小时. 过____
3
15
请根据下图,与同学讨论某地某天的温度变化情况.
温度/ º C D 3时到15时
进一步通过图象获取信息,分析变量之间的关系 .
请同学们用8分钟时间认真阅读课 本69页内容,并完成下列检测题.8分 钟后抽查.
独立闭卷完成,限时8分钟.
请根据下图,与同学讨论某地某天的温度变化情况.
温度/ º C
(1)上午9时的温度是____,12时呢? (2)这一天的最高温度是___,是____ 时达到的, 最低温度呢?
(4)在什么时间范围内温度在
上升? 在什么时间范围内温
度在下降?
0时到3时、15到24时 21时的温度是310C
(5)图中的A点表示的是什么? B点呢?
F 0时的温度是260C
E
(6)你能预测次日凌晨1时的温 度吗? 说说你的理由.
大约是240C左右
1.图象是我们表示变量之间关系的第三种方法,它的特点是非常直观。 2.在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴) 上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量。 3.如何从图象中获取关于两个变量的信息? (1)要明白图象上的点所表示的意义? (2)从自变量的值如何得到因变量的值?
3.解图象信息题突出了数形结合的思想方法。
Page 9
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合 称潮汐。潮汐与人类的生活有着密切的联系。下面是某港口从0时到12时的水深情况。 凌晨3时 7.5米 上午9时 (1)大约什么时刻港口的水最深?深度约是多少? (2)大约什么时刻港口的水最浅? 深度约是多少? 2.4米 凌晨0时到3时,上午9时到12时 7.5 (3)在什么时间范围内,港口水深在增加? 凌晨3时到上午9时 (4)在什么时间范围内,港口水深在减少? A点表示上午6时港口的水深为5米 4.3 (5)A,B两点分别表 示什么?还有几时 B点表示中午12时港口的水深为4.3米 水的深度与A点所表示的深度相同? 2.4 0时的水深与A点表示的水深相同
(6)说一说这个港口从0时到12时的水深 是怎样变化的。
0时到3时水深在增加,3时到9时水深在降 低,9时到12时水深在增加
当 堂 训 练
独立闭卷, 限时15分钟.
图象是我们表示变量之间关系的第三种方法,它的特点是非常直观。 在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴) 上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量。 如何从图象中获取关于两个变量的信息? (1)要明白图象上的点所表示的意义? (2)从自变量的值如何得到因变量的值?
收拾一下桌面,备好课本、学案、草稿纸; 备好0.5mm考试用笔和红色签字笔; 严肃认真,坐姿端正,腰挺直,不翘腿;
3.3 用图像表示的变量间关系(2)
学习目标
1. 能从图象分析变量之间的关系,加深对图象表示的理 解. 2. 能对实际情境中所蕴涵的变量之间的关系借助图象表 示.
【重难点】
(3)这一天的温差是____,从最低温度
到最高温度经过____小时. (4)在什么时间范围内温度在上升? 在什么时间范围内温度在下降? (5)图中的A点表示的是什么?B点呢? (6)你能预测次日凌晨1时的温度吗? 说说你的理由.
请根据下图,与同学讨论某地某天的温度变化情况.
温度/ º C 37 27º C (1)上午9时的温度是____,
40
(2)你能看出第二天8时骆驼的体温与第一天8时
有什么关系吗?其他时刻呢? 相同 每天同一时刻骆驼的温度都相同
(3)A点表示的是什么?还有几时的温度与A点 所表示的温度相同? 12时的温度 是390C 20时、36时及44时的温度与A点所 表示的温度相同。
1、两个变量之间关系的表示方法?
表格法 关系式 图象法