变量之间的关系

合集下载

变量之间的关系

变量之间的关系

第13课变量之间的关系知识点1 变量、自变量、因变量1、变量在某一变化过程中,不断变化的量叫做变量。

2、自变量和因变量如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

知识点2 表示变量之间关系的方法1、列表法采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

(1)列表法的优点列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,(2)列表法的缺点具有局限性,只能表示因变量的一部分。

2、关系法关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

3、图像法图像法是利用在坐标系中进行描点连线形成的图像,一般横坐标表示自变量,纵坐标表示因变量。

图像法具有直观、生动的特征,更容易看出自变量与因变量的变化关系。

知识点3 事物变化趋势的描述对事物变化趋势的描述一般有两种:1、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).知识点4 估计(或者估算)对事物的估计(或者估算)有三种:1、利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(()次数或相差年数首数尾数平均每次的变化量-=).2、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3、利用关系式:首先求出关系式,然后直接代入求值即可.知识点4 变化速度的比较在相同的时间内因变量变化速度的比较,哪一支图像更陡一些,这支图像代表的因变量变化会更快一些.1、增长速度2、下降速度练习变量之间的关系基础知识回顾:1、表示两个变量之间关系的方法有()、()、().2.用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示(),用竖直方向的数轴(纵轴)上的点表示().专题一、速度随时间的变化1、 汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。

变量之间的关系有哪三种

变量之间的关系有哪三种

变量之间的关系有哪三种
变量之间的关系可用表格,函数关系式,图象法三种方法表示。

变量之间的关系是相关关系。

相关关系是客观现象存在的一种非确定的相互依存关系,即自变量的每一个取值,因变量由于受随机因素影响,与其所对应的数值是非确定性的。

相关分析中的自变量和因变量没有严格的区别,可以互换。

变量相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。

变量间的这种相互关系,称为具有不确定性的相关关系。

当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。

马赫的要素一元论把科学和认识所及的世界归结为要素的复合,又把要素解释为感觉,认为这个世界以人的感觉为转移。

他指出,人的感觉是相同的,对于同一对象,不同的人乃至同一个人在不同的情况下会有不同的感觉,因此,世界上事物的存在只是相对的。

变量间的相互关系

变量间的相互关系




ˆ b
( x x)( y y) x y n x y
i 1 i i
n
n
( x x)
i 1 i
n

2
i 1 n
i
i
x
i 1
2 i
nx
2
,
ˆx ˆ y b a
例1:观察两相关变量得如下表:
x y
解:
-1 -9
-2 -7
-3 -5
-4 -3
-5 -1
(2)当x=5时, y=30.3676≈30.37。
小结
1、现实生活中存在许多相关关系:商品销售与 广告、粮食生产与施肥量、人体的脂肪量与年 龄等等的相关关系. 2、通过收集大量的数据,进行统计,对数据 分析,找出其中的规律,对其相关关系作出 一定判断. 3、由于变量之间相关关系的广泛性和不确定 性,所以样本数据应较大,才有代表性.才能对 它们之间的关系作出正确的判断.
25 脂肪含量
如图:
20 15 10 5 年龄
O
20 25 30 35 40
45 50 55 60 65
我们再观察它的图像发现这些点大致分布在一条 直线附近,像这样,如果散点图中点的分布从整体上看 大致在一条直线附近,我们就称这两个变量之间具有 线性相关关系,这条直线叫做回归直线,该直线叫回归 直线方程。 脂肪含量
Ù
= bx + a
7.回归方程被样本数据惟一确定,各样本点 大致分布在回归直线附近.对同一个总体, 不同的样本数据对应不同的回归直线,所以 回归直线也具有随机性.
8.对于任意一组样本数据,利用上述公式都 可以求得“回归方程”,如果这组数据不具 有线性相关关系,即不存在回归直线,那么 所得的“回归方程”是没有实际意义的.因此, 对一组样本数据,应先作散点图,在具有线 性相关关系的前提下再求回归方程.

变量之间的关系

变量之间的关系

变量之间的关系在编程中,变量是用来存储数据的命名空间。

通过给变量赋值,我们可以在程序中引用和操作这些数据。

变量之间的关系可以通过多种方式来描述,如赋值关系、依赖关系、相等关系等,下面将对这几种关系进行回顾与思考。

1.赋值关系:赋值是最基本的变量之间的关系。

通过将一个变量的值赋给另一个变量,可以在程序中传递和修改数据。

例如,可以将一个变量的值赋给另一个变量,从而将数据从一个变量传递给另一个变量。

2.依赖关系:变量之间可能存在依赖关系,即一个变量的值依赖于另一个变量的值。

当一个变量的值发生变化时,依赖于它的其他变量的值也会受到影响。

这个关系可以用于构建复杂的逻辑和算法。

3.相等关系:4.执行关系:除了上述几种关系之外,变量之间还可能存在其他的关系,如引用关系、作用域关系等。

引用关系指的是一个变量引用了另一个变量所在的内存空间,从而可以通过引用来访问和操作该变量。

作用域关系指的是变量的可见范围,即变量在何处可以被引用和访问。

变量之间的关系在程序设计中起着重要的作用。

通过合理地建立和利用变量之间的关系,可以实现复杂的功能和逻辑,提高程序的可读性和可维护性。

因此,我们应该深入理解和掌握变量之间的关系,善于利用这些关系来解决问题和提高编程效率。

总结来说,变量之间的关系可以通过赋值关系、依赖关系、相等关系等来描述。

这些关系在程序设计中起着重要作用,通过合理地建立和利用这些关系,可以实现复杂的功能和逻辑。

因此,我们应该深入理解和掌握变量之间的关系,善于利用这些关系来解决问题和提高编程效率。

变量之间的关系__变量之间的关系知识讲解

变量之间的关系__变量之间的关系知识讲解

变量之间的关系撰稿:康红梅 责编:李爱国【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);2.感受生活中存在的变量之间的依赖关系.3.能读懂以不同方式呈现的变量之间的关系.4. 能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测.【要点梳理】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.要点诠释:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.要点诠释:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.要点诠释:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.【典型例题】类型一、常量、自变量与因变量1、对于圆的周长公式C=2πR,下列说法正确的是( )A .π、R 是变量,2是常量B .R 是变量,π是常量C .C 是变量,π、R 是常量D .C 、R 是变量,2、π是常量【思路点拨】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【答案】D ;【解析】解:C 、R 是变量,2、π是常量.【总结升华】本题主要考查了常量,变量的定义,是需要识记的内容.举一反三:【变式】从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体 B.速度 C.时间 D.空气【答案】C.类型二、用表格表示变量间关系2、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.【思路点拨】(1)用铝量是随底面半径的变化而变化的,因而底面半径为自变量,用铝量为因变量;(2)根据表格可以直接得到;(3)选择用铝量最小的一个即可;(4)根据表格,说明随底面半径的增大,用铝量的变化即可.【答案与解析】解:(1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm间变化时,用铝量随半径的增大而增大.【总结升华】根据表格理解:随底面半径的增大,用铝量的变化情况是关键.类型三、用关系式表示变量间关系3、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=x.若y表示△APB的面积.(1)求y与x之间的关系式;(2)求自变量x的取值范围.【答案与解析】解: (1)因为AC=6,∠C=90°,BC=10,所以116103022ABC S AC BC ∆==⨯⨯=. 又116322APC S AC PC x x ∆==⨯⨯=, 所以303APB ABC APC y S S S x ∆∆∆==-=-,即303y x =-.(2)因为点P 不与点B 、C 重合,BC =10,所以0<x <10.【总结升华】利用三角形面积公式找到变量之间的关系式,要把握点P 是一动点这个规律,结合图形观察到点P 移动到特殊点,便可求出自变量的取值范围.举一反三:【变式】 小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的关系式,并求自变量x 的取值范围.【答案】解:由题意得,2x y +=80,所以802y x =-,由于三角形两边之和大于第三边,且边长大于0,所以080202802x y x x x >⎧⎪=->⎨⎪>-⎩,解得2040x << 所以802,2040y x x =-<<.类型四、用图象表示变量间关系4、星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分钟;(2)小红在公共阅报栏看新闻一共用了______分钟;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分钟;(4)小红从邮亭走回家用了______分钟,平均速度是______米/分钟.【答案】(1)300,4;(2)6;(3)200,3;(4)5,100.【解析】由图象可知,0到4分钟,小红从家走到离家300米的报栏,4到10分钟,在公共报栏看新闻,10到13分钟从报栏走到200米外的邮亭,13到18分钟,从离家500米的邮亭返回家里.【总结升华】这个图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动.这条线段左右端点的横坐标的差,对应相应活动所用的时间.举一反三:【变式】一列货运火车从南京站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是( ).【答案】B;。

变量之间的关系15页word文档

变量之间的关系15页word文档

变量之间的关系知识梳理1.概念变量:在某一变化过程中,数值发生变化的量是变量。

自变量、因变量:一般地,在一个变化过程中,如果有两个变量x和y,其中y随x的变化而变化,我们就说x是自变量,y是因变量。

常量:在某一个变化过程中,数值始终保持不变的量是常量。

2.自变量与因变量的区别3.表示方法:表格法:借助表格,可以表示因变量随自变量的变化而变化的情况。

表格法的基本特征是:表示两个变量之间的表格,一般第一栏表示自变量,第二栏表示因变量,从表格中可以发现因变量随自变量变化而存在一定的变化规律,从而可以利用变化趋势对结果作出预测。

关系式法:利用等式表示两个变量之间的关系。

关系式的基本特征是:(1)等式的左边是因变量,等式的右边是关于自变量的代数式;(2)等式中只含有自变量和因变量两个变量,其他的量都是常数;(3)自变量可在允许的范围内任意取值。

图像:将一个变量随着另一个变量的变化而变化的情况绘制成一条曲线,这条曲线称为两个变量之间关系的图像。

图像法:用图像来表示一个变量与另一个变量之间关系的方法,叫做图像法。

4.变式变量之间关系的方法的优缺点例题精讲考点1.变量、自变量、因变量、常量例1.甲、乙两城市相距300千米,在甲城市有一列火车以每小时100千米的速度向乙城市行驶,t小时后火车与乙城市的距离为y千米,在这个问题中,是常量,是自变量,是因变量。

变式1.下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60m的篱笆围城一个边长为l(m)、面积为S(㎡)的矩形场地;(2)正方形边长是3,若边长增加x,则面积增加y。

变式2.小明帮妈妈预算家庭4月份电费的开支情况,下表是小明家4月处连续8天每天早上电表显示的读数。

(1)表格中反映的变量是,自变量是,因变量是。

(2)估计小明家4月份(按30天计)用电量是,若每度电0.55元,估计他家4月份应交电费元。

考点2.表格法表示变量之间的关系例2.下表是一次秋汛期某河流在一天内涨水情况,警戒水位是25米。

变量之间的关系

变量之间的关系

变量之间的关系知识梳理1.概念变量:在某一变化过程中,数值发生变化的量是变量。

自变量、因变量:一般地,在一个变化过程中,如果有两个变量x和y,其中y随x 的变化而变化,我们就说x是自变量,y是因变量。

常量:在某一个变化过程中,数值始终保持不变的量是常量。

表格法:借助表格,可以表示因变量随自变量的变化而变化的情况。

表格法的基本特征是:表示两个变量之间的表格,一般第一栏表示自变量,第二栏表示因变量,从表格中可以发现因变量随自变量变化而存在一定的变化规律,从而可以利用变化趋势对结果作出预测。

关系式法:利用等式表示两个变量之间的关系。

关系式的基本特征是:(1)等式的左边是因变量,等式的右边是关于自变量的代数式;(2)等式中只含有自变量和因变量两个变量,其他的量都是常数;(3)自变量可在允许的范围内任意取值。

图像:将一个变量随着另一个变量的变化而变化的情况绘制成一条曲线,这条曲线称为两个变量之间关系的图像。

图像法:用图像来表示一个变量与另一个变量之间关系的方法,叫做图像法。

例题精讲考点1.变量、自变量、因变量、常量例1.甲、乙两城市相距300千米,在甲城市有一列火车以每小时100千米的速度向乙城市行驶,t 小时后火车与乙城市的距离为y 千米,在这个问题中, 是常量, 是自变量, 是因变量。

变式1.下列各题中,哪些量在发生变化?其中的自变量与因变量各是什么?(1)用总长为60m 的篱笆围城一个边长为l (m)、面积为S (㎡)的矩形场地; (2)正方形边长是3,若边长增加x ,则面积增加y 。

变式2.小明帮妈妈预算家庭4月份电费的开支情况,下表是小明家4月处连续8天每天早上电表显示的读数。

(1)表格中反映的变量是 ,自变量是 ,因变量是 。

(2)估计小明家4月份(按30天计)用电量是 ,若每度电0.55元,估计他家4月份应交电费 元。

考点2.表格法表示变量之间的关系例2.下表是一次秋汛期某河流在一天内涨水情况,警戒水位是25米。

变量之间的关系知识点及常见题型

变量之间的关系知识点及常见题型

变量之间的关系一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。

二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计;2、关系式(1)能根据题意列简单的关系式;(2)能利用关系式进行简单的计算;3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。

1、明明从给远在的爷爷打,费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、费C、时间D、爷爷2上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量,是自变量,是因变量。

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着自变量的变化,因变量变化的趋势是什么?(3)你认为入学儿童的人数会变成零吗?5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤提出概念所用时间(x)257101213141720对概念的接受能力(y)47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量? (2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x 在什么围,学生的接受能力逐步增强?当时间x 在什么 围,学生的接受能力逐步降低?(5) 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?6 时间(分) 0123456789101112温度(℃) 60 6570 75 80 85 90 95 100 100 100 100 100(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?1.给定自变量x 与因变量y 的关系式x y 1-=,当x=2时,y = ,当x=x1-时y = 2、地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )A 、增大B 、减小C 、不变D 、以上答案都不对3、如图, 一圆锥高为6cm ,当其底面半径从5cm 变化到10cm 时, 其体积从 变化到 。

表示两个变量之间的关系的三种方法

表示两个变量之间的关系的三种方法

表示两个变量之间的关系的三种方法一、直接关系直接关系是指两个变量之间存在着直接的因果关系或者正向的相关关系。

在这种关系中,随着一个变量的增加,另一个变量也会相应地增加或减少。

下面列举了几种常见的直接关系的表达方法:1.变量A随着变量B的增加而增加。

2.变量A与变量B呈正相关关系。

3.变量A是变量B的原因之一。

直接关系的示例: - 温度升高,冰淇淋的销售量增加。

- 学习时间增加,考试成绩提高。

- 雨水增加,草地变得更绿。

二、间接关系间接关系是指两个变量之间存在着中介或者相互作用的关系。

在这种关系中,一个或多个额外的变量会影响两个主要变量之间的关系。

下面是几种常见的间接关系表达方法:1.变量A通过变量C间接地影响变量B。

2.变量A和变量B受到变量C的共同影响。

3.变量A和变量B之间存在着复杂的相互作用关系。

间接关系的示例: - 吃得更多的人更容易发胖,这可能是因为他们摄入了更多的卡路里。

- 高质量的教育可以提高人们的就业机会,进而改善经济发展。

- 一种药物可以通过改善睡眠质量来减轻焦虑症状。

三、无关关系无关关系是指两个变量之间不存在任何明显的关联或者相关性。

下面是几种常见的描述无关关系的表达方法:1.变量A和变量B之间没有任何关系。

2.变量A的变化对变量B没有影响。

3.变量A和变量B是相互独立的。

无关关系的示例: - 过去的月份对今天的天气没有影响。

- 身高和人的智商之间没有明显的关系。

- 鞋子的颜色与一个人的性格没有关联。

总结通过以上的介绍,我们可以看出,表示两个变量之间的关系可以采用直接关系、间接关系和无关关系的描述方法。

这些描述方法能够帮助我们更清晰地理解和表达变量之间的关系。

了解和掌握这些方法对于科研、数据分析以及日常生活中的决策制定都具有重要的意义。

我们应该根据具体情况选择合适的描述方法,准确地反映变量之间的关系。

初中数学-变量之间的关系

初中数学-变量之间的关系

变量之间的关系第一节用表格表示变量之间的关系知识点一变量、自变量、因变量、常量的定义一般地,在某一变化过程中,数值发生变化的量成为变量. 如果有两个变量,当其中一个变量在一定范围内取一个数值时,两一个变量也有唯一的一个数值与其对应,那么,通常前一个变量叫自变量,后一个变量叫做因变量. 在变化过程中数值始终不变的的那个量叫做常量.注意:(1)常亮与变量往往是相对的,相当于某个变化过程.(2)在某一变化过程中,可能有一个或几个常量,不可能没有变量,也不可能只有一个变量,一般有两个变量.知识点二自变量与因变量的区别与联系自变量与因变量共同存在于一个变化过程中,它们既有区别又有联系.因变量随自变量的变化情况:知识点三从表格中获取信息对变化趋势进行初步预测借助表格可以表示两个变量之间的关系.表示两个变量之间关系的表格,一般第一行表示自变量,第二行表示因变量,从表格中发现因变量随自变量变化存在一定的规律——或者增加或者减少或者呈规律性的起伏变化,从而利用变化趋势对结果作出预测.用列表法表示两个变量之间的关系时,表格只能提供自变量与因变量对应的部分数据,不能全面反映两个变量之间的关系,想要知道表格中没有出现的自变量与因变量的对应数据,需要对表格中的数据进行分析,从已知部分数据中观察变量的变化规律并依此估计未在表格中出现的数据.例题1. 某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是()A.y,t和100都是变量 B.100和y都是常量C.y和t是变量D.100和t都是常量练习1. 下表是某报纸公布的世界人口数情况:上表中的变量是()A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有在这三个量中,__________是常量,__________是自变量,__________是因变量.练习4. 在利用太阳能热水器给水加热的过程中,热水器里水的温度随所晒太阳光时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.热水器里水的温度C.所晒太阳光的时间D.热水器练习5. 一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量练习6. 明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()。

变量之间的相互关系

变量之间的相互关系

变量之间的相互关系一、引言在研究数据科学、统计学、经济学以及其他众多领域时,变量间的相互关系是不可或缺的议题。

这种关系描述了不同变量如何互相影响,从而帮助我们理解和预测现象。

本文将深入探讨变量间相互关系的概念、类型和测量方法。

二、变量间的关系类型1.因果关系:如果一个变量(原因)的变化导致了另一个变量(结果)的变化,则存在因果关系。

这种关系是有方向的,原因必定在前,结果只能在后。

2.相关关系:当两个或多个变量同时发生变化,但不表示因果方向时,我们称之为相关关系。

相关关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少)。

3.函数关系:当一个变量(自变量)完全确定另一个变量(因变量)的值时,我们称之为函数关系。

这种情况下,因变量的变化完全依赖于自变量的变化。

三、测量变量间关系强度的方法1.皮尔逊相关系数:衡量两个连续变量的线性相关程度,取值范围在-1到1之间。

接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。

2.斯皮尔曼秩相关系数:与皮尔逊相关系数类似,但适用于非参数数据。

它衡量的是两个连续变量之间的秩次相关性。

3.偏相关系数:当存在多个变量影响因变量时,偏相关系数可以用来衡量特定自变量与因变量之间的线性关系。

四、应用场景理解并测量变量间的相互关系在众多实际场景中都有应用价值。

例如,在市场营销中,通过分析消费者行为、购买历史等变量与购买决策之间的相互关系,可以更有效地制定营销策略。

在医学研究中,了解疾病症状、患者生理指标等变量之间的关系,有助于疾病的诊断和治疗。

五、结论理解并测量变量间的相互关系是数据科学和统计学中的重要概念。

通过明确关系的类型和测量方法,我们可以更好地理解和预测现象,从而在各个领域中做出更有效的决策。

随着技术的发展和数据的丰富,变量间相互关系的研究将继续深化和拓展,为我们提供更多的洞见和可能。

初中数学-变量之间的关系

初中数学-变量之间的关系

练习10:某工厂现有甲种原料360千克, 乙种原料290千克,计划利用这两种 原料生产A、B两种产品共50件,已 知生产一件A种产品需用甲种原料9 千克,乙种原料3千克,可获利700 元;生产一件B种产品需用甲种原料 4千克,乙种原料10千克,可获利 1200元.
⑴按要求安排A、B两种产品的生产件数, 有哪几种方案?请你设计出来.
(2)若估计变速车的辆次不小于25%,但不 大于40%,试求该保管站这个星期日的收 入的范围。 解:因变速自行车的比例在25%到40%之间, 故一般自行车的比例在60%到75%之间. 当 x=3500×60%=2100 时, y=-0.2×2100+1750=1330; 当 x=3500×75%=2625 时, y=-0.2×2625+1750=1225. 所以保管站这个周日的收入在1225元到 1330元之间。
A产品(x件)
甲的用量 乙的用量
B产品(50-x件) 4(50-x)千克
9x千克 3x千克 700x元
10(50-x)千克
1200(50-x)元
甲共有360千克;乙共有290千克。
(1)设生产A种产品x件,则B种产品(50-x)件,
9 x 4(50 x) 360 3x 10(50 x) 290
Y = 4×85%x

Y = 4×90%(x-100)

(2)就张村的购买量,分析哪家更优惠?
解:若Y甲=Y乙,则4×85%x = 4×90%(x-100)
此时 x=1800;
若Y甲>Y乙,则4×85%x > 4×90%(x-100) 此时 x < 1800; 若Y甲<Y乙,则4×85%x < 4×90%(x-100) 此时 x > 1800;

变量之间的相关关系

变量之间的相关关系
知识点——
变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?

变量间的相互关系

变量间的相互关系

称该图为散点图。
30
25
脂肪含量
如图:
20
15
10 5
O
A 20
25 30 35 40
年龄 45 50 55 1640 65
我们再观察它的图像发现这些点大致分布在一条
直线附近,像这样,如果散点图中点的分布从整体上看
大致在一条直线附近,我们就称这两个变量之间具有线
性相关关系,这条直线叫做回归直线,该直线叫回归直
A
13
从上表发现,对某个人不一定有此规律,但对很多个体 放在一起,就体现出“人体脂肪随年龄增长而增加”这 一规律.而表中各年龄对应的脂肪数是这个年龄人群的样 本平均数.我们也可以对它们作统计图、表,对这两个变 量有一个直观上的印象和判断.
下面我们以年龄为横轴,
脂肪含量为纵轴建立直 40
角坐标系,作出各个点,35
A
12
探究:
.
年龄 23 27 39 41 45 49 50 53 54 56 57 58 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 年龄 60 61 脂肪 35.2 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
A
2
自变量取值一定时,因变量的取值带 有一定随机性的两个变量之间的关系叫 相关关系。
怎样判断两个变量有没有相关关系
设某地10户家庭的年收入和年饮食支出 的统计资料如下表: (单位:万元)
年收入 2 4 4 6 6 6 7 7 8 10
饮食支出 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3
如何进行定量分析呢?由于变量间的相 关关系是一种随机关系,因此,我们只能借 助统计这一工具来解决问题,也就是通过收 集大量数据,在对数据进行统计分析的基础 上,发现其中的规律,并对它们之间的关系 作出推断。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2用关系式表示的变量间关系
1.理解两个变量之间的关系可以用关系式表示,能在一个关系式中指出自变量和因变量;
2.能够在具体的情境中列出表示变量关系的关系式.(重点,难点)
一、情境导入
汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.
先填写下表:
在以上这个过程中,t的式子表示s:________.
二、合作探究
探究点:用关系式表示变量间关系
【类型一】列关系式表示变量之间的关系
一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)
的数据如下表:
写出用t表示s的关系式:________.
解析:观察表中给出的t与s的对应值,再进行分析,归纳得出关系式.t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.故答案为s =2t2(t≥0).
方法总结:本题以关系式法表示时间t与距离s之间的关系,认真观察分析s随t的变化而变化的规律是列出关系式的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】用关系式表示图形的变化规律
图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函
数关系中正确的是()
A.y=4n-4 B.y=4n
C.y=4n+4 D.y=n2
解析:由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.故选B.
变式训练:见《学练优》本课时练习“课堂达标训练”第9题
【类型三】列关系式并求值
已知水池中有800立方米的水,每小时抽50立方米.
(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式;
(2)6小时后池中还有多少水?
(3)几小时后,池中还有200立方米的水?
解析:(1)根据“抽水时间×抽水速度=抽水量”,“蓄水量-抽水量=剩余水量”解题即可;(2)根据自变量与因变量的关系式,可得自变量相应的值;(3)根据自变量与因变量的关系式,可得相应自变量的值.
解:(1)Q=800-50t(0≤t≤16);
(2)当t=6时,Q=800-50×6=500(立方米).
答:6小时后,池中还剩500立方米的水;
(3)当Q=200时,800-50t=200,解得t=12.
答:12小时后,池中还有200立方米的水.
方法总结:利用关系式,根据任何一个自变量的值求出相应因变量的值,其实质是代数式求值,根据因变量的值求出相应自变量的值,其实质是解方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
【类型四】关系式与表格的综合
一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所
示:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?
(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;
(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?
解析:(1)认真分析表中数据可知,油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,再根据自变量、因变量的定义找出自变量和因变量;(2)由表中数据可知随着行驶时间的不断增加,油箱中剩余油量的变化趋势;(3)由分析表中数据可知,每行驶1h消耗油量为7.5L.然后根据此关系写出油箱中剩余油量Q(L)与行驶时间t(h)的代数式;(4)根据图表可知汽车行驶每小时耗油7.5L,油箱原有汽油54L,即可求出油箱中原有汽油可以供汽车行驶多少小时.
解:(1)表中反映的是油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,时间t是自变量,油箱中剩余
油量Q是因变量;
(2)随着行驶时间的不断增加,油箱中的剩余油量在不断减小;
(3)由题意可知汽车行驶每小时耗油7.5L,Q=54-7.5t;把t=6代入得Q=54-7.5×6=9(L);
(4)由题意可知汽车行驶每小时耗油7.5L,油箱中原有54L汽油,可以供汽车行驶54÷7.5=7.2(h).
答:最多能连续行驶7.2h.
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.用关系式表示变量间关系
2.表格和关系式的区别与联系:
表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.
本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法。

相关文档
最新文档