酵母双杂交原理与实验具体流程.
酵母双杂交的原理和应用
酵母双杂交的原理和应用
前言
酵母双杂交技术是一种常用的分子生物学实验方法,用于研究蛋白质间相互作用。本文将介绍酵母双杂交的原理和应用,并详细说明相关实验步骤和注意事项。
一、酵母双杂交原理
酵母双杂交利用酵母细胞中的转录因子来检测两个蛋白质是否发生相互作用。
该技术包括两个主要步骤:酵母杂交库的构建和蛋白质相互作用的检测。
1.酵母杂交库的构建
–首先,需要构建一个酵母细胞库,其中包含目标蛋白的编码序列,以及与之它相互作用的蛋白编码序列。
–这些蛋白编码序列被插入一个特殊的酵母表达载体中,该载体包含一个转录因子启动子和一个可变启动子。当目标蛋白与与之相互作
用的蛋白结合时,转录因子被激活,并启动报告基因的表达。
2.蛋白质相互作用的检测
–将酵母杂交库与一个可能与目标蛋白相互作用的蛋白质编码序列进行杂交。
–利用筛选或选择的方法,检测是否存在转录因子的激活,从而判断蛋白质是否发生相互作用。
二、酵母双杂交的应用
酵母双杂交技术在生物学研究中有广泛的应用,主要用于以下方面:
1.蛋白质相互作用的筛选
–酵母双杂交可以用于大规模筛选蛋白质间的相互作用。通过构建酵母杂交库,并与目标蛋白进行杂交,可以鉴定潜在的相互作用蛋白,
从而探索蛋白质间的相互作用网络。
2.功能区域的鉴定
–通过酵母双杂交,可以鉴定特定的蛋白质功能区域。例如,在研究某个转录因子的结构和功能时,可以利用酵母双杂交技术识别其与
其他蛋白质相互作用的功能区域。
3.药物靶点的鉴定
–酵母双杂交可以用于鉴定药物的靶点。通过与已知药物相互作用的酵母杂交库进行筛选,可以发现与特定药物相互作用的蛋白质,进
酵母双杂(共转)
酵母双杂交的原理及实验步骤
吴健2015.12.25
一酵母双杂交的原理
在酵母细胞中,有半乳糖存在的情况下,GAL4 可以激活半乳糖代谢酶GAL1
的转录。GAL4 蛋白包含两个结构域,单独的N 端的结构域(BD)可以特异地结合DNA 但是不能够激活转录;单独的C 端包含一个激活区域(AD)但是如果不能结
合到17-mer 上游激活序列USA G 也不能激活转录。将来自大肠杆菌的LecA DNA 结合域BD 和酵母的GAL4 转录激活域AD 重组后,在酵母中实现了下游基因的转录激活。说明转录因子的BD 和AD 功能域可相互独立地发挥各自的作用,并且在
重组后仍然具有基因转录的活性(Brent and Ptashne, 1985)。酵母双杂交系统就是在
这一分子基础上开发出来的,GAL4 的BD 和AD,分别与能够互作的蛋白X 和Y 融合表达。由于XY 蛋白的结合,实现了GAL4 的BD 和AD 重组,GAL4 就重新获得了转录活性,转录因子就可以驱动报告基因表达(Fields and Song, 1989)。除了
将两个杂合载体BD-X 或AD-Y 转化入同一酵母细胞外,利用两个不同性别的酵母杂交(mating)也是实现BD 和AD 蛋白重组和蛋白互作检测的有效方法(Bendixen et al., 1994)。
Fig1. 酵母双杂原理图
Fig2. 常用两种酵母菌的基因型
Fig3. 常用两种酵母菌的报告基因
Fig4. 常用AD和BD载体图Fig5. 酵母双杂流程图
二酵母双杂交的基本步骤
1 酵母感受态的制备
酵母双杂交技术原理
酵母双杂交技术原理
酵母双杂交技术是一种常用的遗传交互技术,用于检测蛋白质之间的相互作用关系。其原理基于两个主要组成部分:DNA 结合域和活化域。
在酵母双杂交系统中,常用的DNA结合域是DNA结合蛋白Gal4,它可以结合在特定的DNA序列上,形成Gal4-DNA复合物。同时,活化域是Gal4的活化域,它具有激活靶基因表达的能力。
当两个蛋白质相互作用时,可以通过特定的实验设计,将待测蛋白质A与Gal4的DNA结合域、待测蛋白质B与Gal4的活化域结合,从而在酵母细胞中形成Gal4-DNA-A-B的复合物。这个复合物可以激活靶基因的表达,从而使被激活的基因产生可观察的表型改变(比如生长能力、荧光等),表明蛋白质A 和B之间存在相互作用。
另外,在酵母双杂交系统中引入了质粒的概念,可以通过构建不同的融合质粒来进一步验证蛋白质相互作用的强弱以及特异性。例如,可以构建融合质粒A-DNA结合域-AD活化域和融合质粒B-DNA结合域-BD活化域,并通过检测酵母细胞的表型改变来判断蛋白质A和B之间的相互作用。
总体来说,酵母双杂交技术基于蛋白质与蛋白质之间的相互作用,通过构建特定的融合质粒和酵母细胞表型改变的观察,来验证蛋白质之间的相互作用关系。这项技术在生命科学研究中广泛应用,有助于揭示蛋白质网络的复杂关系和功能。
酵母双杂交具体实验流程
酵母双杂交具体实验流程
酵母双杂交(Yeast Two-Hybrid,Y2H)是一种常用的蛋白质相互作用分析方法,它基于酵母细胞内存在的转录激活子结合域(Transcription Activation Domain,TAD)和DNA结合域(DNA Binding Domain,DBD),通过融合特定的蛋白质序列并在酵母细
胞中共同表达,以实现筛选并鉴定蛋白质相互作用的目的。
酵母双杂交具体实验流程如下:
1.构建启动子驱动的酵母表达载体
该载体包含两部分:AD与DB,分别携带TAD和DBD结构域。这些结构域可以具体化作为外源蛋白的两个互补部分,这样当它们相互结
合时,激活酵母内的报告基因(RLUC或LacZ)表达,并通过信号放
大器Cre的介入增强了信号。
2.构建融合基因的酵母表达载体
将想要研究的两种蛋白质的氨基酸序列分别连接到AD与DB的C端,形成融合蛋白质基因,然后将融合基因与启动子驱动的表达载体转化
入双杂交酵母细胞。
3.获得蛋白质相互作用的筛选和确认
通过对酵母双杂交转化后的细胞进行筛选,并通过对表达的信号进行观察和测量,得到蛋白质相互作用的筛选结果。
4.确定筛选结果的真实性
在确定特定蛋白质相互作用是否真实的过程中,通常会进行一些补充实验。例如,可以通过分析生化反应,并利用免疫共沉淀等方法验证筛选结果的可靠性。
总的来说,酵母双杂交是一种常用的蛋白质相互作用分析方法,它可以快速、可靠地鉴定蛋白质相互作用,从而帮助研究者更深入地探究蛋白质的功能和作用机制。
酵母双杂交的原理
酵母双杂交的原理
引言:
酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用以及蛋白质与DNA或RNA的相互作用。本文将详细介绍酵母双杂交的原理及其在科研领域中的应用。
一、酵母双杂交的基本原理
酵母双杂交技术是基于酵母细胞的遗传特性和蛋白质相互作用的原理而发展起来的。其基本原理可简单概括为以下三个步骤:
第一步:构建酵母双杂交载体
将目标蛋白质分别与DNA的两个片段(称为“鱼饵”和“猎物”)融合,构建酵母双杂交载体。鱼饵片段通常与DNA结合蛋白质相连,而猎物片段通常与转录激活蛋白质相连。
第二步:转化酵母细胞
将构建好的酵母双杂交载体转化到酵母细胞中。这里使用的是酵母的双杂交株,其特点是缺失了酵母中的两个转录因子基因。
第三步:筛选蛋白质相互作用
在含有适当选择性培养基的培养条件下,酵母细胞将仅在存在蛋白质相互作用的情况下存活下来。通过对酵母细胞进行筛选,可以筛选出与目标蛋白质相互作用的蛋白质。
二、酵母双杂交的应用
酵母双杂交技术已经被广泛应用于生物学研究中,尤其是在蛋白质相互作用的研究方面。以下是酵母双杂交技术在不同领域的应用:1. 蛋白质相互作用研究
酵母双杂交技术是研究蛋白质相互作用的重要方法。通过酵母双杂交技术,可以筛选出与目标蛋白质相互作用的蛋白质,进一步研究其功能和调控机制。
2. 蛋白质与DNA或RNA相互作用研究
酵母双杂交技术也可以用于研究蛋白质与DNA或RNA的相互作用。通过将目标蛋白质与DNA或RNA片段进行融合,可以筛选出与目标蛋白质相互作用的DNA或RNA序列。
3. 药物靶点筛选
酵母双杂交的原理及其应用
酵母双杂交的原理及其应用
酵母双杂交是一种常用的蛋白质相互作用研究技术,通过构建酵母中的两个蛋白质相互作用所需要的分子间的结合,结合情况可以检测相互作用的程度或强度。
酵母双杂交的原理是基于兰伯特-贝尔特微分方程(Lambert-Beer-Bouguer Law),该方程描述了光强与溶液中物质的浓度之间的关系。在双杂交中,一对目标蛋白质分别与两个不同的报告蛋白质(通常是启动子与其相应的转录激活因子)结合,形成一个蛋白质复合物。当这两个蛋白质相互作用时,可以观察到报告蛋白质转录水平的上升。
酵母双杂交的应用广泛,可以用于以下方面:
1. 识别蛋白质-蛋白质相互作用:通过构建大规模的蛋白质相互作用图谱,可以帮助研究人员理解细胞内蛋白质相互作用网络的组织和功能。
2. 确定蛋白质结构和功能:通过和其他蛋白质的相互作用,可以获得相关蛋白质的结构和功能信息。
3. 寻找药物靶点:酵母双杂交可以用于筛选潜在的药物靶点,从而帮助药物研发。
4. 研究疾病机制:通过了解蛋白质之间的相互作用,可以揭示疾病的发生机制,
为疾病的治疗提供新的思路和方法。
总的来说,酵母双杂交技术是一种有效的方法,可以用于研究蛋白质相互作用和功能,对于生命科学研究具有重要的意义。
酵母杂交技术
酵母杂交技术:开启遗传学研究的新篇章酵母杂交技术是一种在遗传学研究中广泛使用的技术,它通过将不同遗传背景的酵母菌株进行交配,以揭示基因之间的相互作用和遗传信息传递的机制。本文将详细介绍酵母杂交技术的原理、应用和未来发展。
一、酵母杂交技术的原理
酵母杂交技术的基本原理是通过将两种遗传背景不同的酵母菌株进行交配,产生杂种细胞。这些杂种细胞将继承来自两个亲本的基因,从而可以研究基因之间的相互作用和遗传信息的传递。在杂种细胞中,基因可以通过同源重组或异源重组的方式进行交换,这使得研究人员能够精确地识别和定位基因之间的相互作用。
二、酵母杂交技术的应用
酵母杂交技术在遗传学研究中具有广泛的应用。首先,它被用于研究基因的功能和相互作用。通过将不同基因的酵母菌株进行交配,研究人员可以揭示基因之间的相互作用和依赖关系,从而深入了解基因的功能。此外,酵母杂交技术还可以用于研究基因表达的调控机制,例如转录因子对基因表达的调控。
三、未来发展
随着基因组学和蛋白质组学研究的深入,酵母杂交技术也在不断发展。未来,酵母杂交技术将更加注重对基因组和蛋白质组的全面分
析和解析,以揭示更复杂的基因相互作用和调控机制。此外,随着高通量测序技术的发展,酵母杂交技术将更加高效和精确,能够处理更大规模的样本和更复杂的数据。
总之,酵母杂交技术是一种强大的遗传学研究工具,它为研究基因功能、相互作用和调控机制提供了重要的手段。随着技术的不断发展和完善,酵母杂交技术将在未来发挥更大的作用,推动遗传学研究的进步。
酵母双杂交技术原理
酵母双杂交技术原理
酵母双杂交技术是一种DNA定向克隆的分子生物学技术,又称为抗性转移技术。它利用细胞壁抗生素的抗性性质作为分子生物学过程的引物,分子生物学的原理是利用噬菌体感染酵母的策略,将目标DNA 片段转移到仅有两种抗性的酵母菌中去。具体的操作步骤如下:首先制备携带乙醇容抗体型剂量胞壁抗生素的噬菌体,再将酵母菌与这些抗生素装载的噬菌体混合放置,此时目标DNA会受到噬菌体的选择性感染,而不会感染来源酵母菌,进而将目标DNA进行吸收,最后再使酵母双向繁殖,最终形成携带抗性基因的酵母菌。
酵母双杂交系统步骤
酵母双杂交系统的步骤
酵母双杂交法的原理:
典型的真核生物转录因子,如GAL4、GCN4、等都含有二个不同的结构域:DNA结合结构域和转录激活结构域。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。
酵母双杂交法的步骤:
1. 阳性克隆的筛选
2. 用质粒自然分选法筛除只含有AD-文库杂合子的克隆
3. 酵母杂合试验确定真阳性克隆
4. 阳性克隆的进一步筛选和确证
5. 对双杂交系统阳性结果的进一步研究
6. 阳性克隆的筛选
7. 用质粒自然分选法(Natural Segregation)筛除只含有AD-文库杂合子的克隆
8. 酵母杂合试验(Yeast Mating)确定真阳性克隆9. 阳性克隆的进一步筛选和确证
扩展资料:
酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:
1、采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。
2、信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。
3、杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。
4、通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。
在研究蛋白质的结构功能特点、作用方式过程中,有时还要通过突变、加抑制剂等手段破坏蛋白质间的相互作用。针对实际工作中的这种需要,Vidal等人发展了所谓的逆双杂交系统(reverse two-hybrid system)。
酵母双杂交 原理
酵母双杂交原理
酵母双杂交原理是指利用酵母作为载体,通过插入不同基因的DNA序列,来研究这些基因之间的相互作用关系。该技术通常分为两种类型:酵母一杂交和酵母二杂交。
酵母一杂交是通过将两个基因的DNA序列分别插入到酵母细胞中,然后观察它们是否能够相互作用。这种方法可以用来研究蛋白质相互作用、DNA-蛋白质相互作用等。
酵母二杂交则是将两个不同的基因序列分别插入到酵母细胞中,并使它们相互融合,从而形成新的基因。这种方法能够用来发现新的基因相互作用关系,从而研究基因调控、信号转导等。
酵母双杂交技术具有以下优点:高灵敏度、高特异性、易于操作、能够筛选大量样本等。因此,它被广泛应用于生物学研究中,尤其是在研究蛋白质相互作用和基因调控方面。
- 1 -
酵母双杂交实验原理
酵母双杂交实验是一种用于研究蛋白质之间相互作用的实验方法,它基于真核生物调控转录起始过程的机制。酵母双杂交实验主要通过检测两个蛋白质在酵母细胞中的相互作用,从而揭示它们在生物体内的功能和相互作用。
酵母双杂交实验原理如下:
1. 构建重组质粒:首先,将目标蛋白质的表达载体与酵母双杂交系统中的启动子、激活子等调控元件进行重组,得到重组质粒。
2. 转化酵母细胞:将重组质粒转化到酵母细胞中,使目标蛋白质在酵母细胞中表达。
3. 筛选融合蛋白:利用选择性培养基,筛选出成功表达目标蛋白质的酵母细胞。
4. 鉴定蛋白质互作:将筛选出的酵母细胞进行混合、共培养,观察转录激活效应。如果两个蛋白质之间存在相互作用,它们会结合在一起,形成完整的转录激活因子,从而激活报告基因的转录。通过检测报告基因的表达水平,可以判断蛋白质之间是否发生相互作用以及作用强度。
5. 结果分析:根据实验结果,分析蛋白质之间的相互作用,进一步研究它们在生物体内的功能和调控机制。
目前常用的酵母双杂交系统有LexA系统和Gal4系统两种。LexA系统基于原核蛋白LexA的DNA结合域和转录激活域,而Gal4系统则利用了酵母转录激活因子GAL4的DNA结合域和转录激活域。这两种系统在实验操作和应用范围上略有不同,但均具有较高的灵敏度和特异性。
酵母双杂交原理及步骤
酵母双杂交原理及步骤
以酵母双杂交原理及步骤为标题,本文将探讨酵母双杂交的原理和步骤。酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用、信号转导和基因调控等生物学过程。
酵母双杂交是一种基于酵母菌的遗传系统的实验方法,通过检测两个蛋白质是否相互作用,从而揭示它们之间的相互作用关系。这种方法的核心原理是将两个感兴趣的蛋白质分别与DNA结合域和激活域相连,当这两个蛋白质相互作用时,DNA结合域和激活域会靠近,从而激活报告基因的表达。
酵母双杂交实验的步骤如下:
1. 构建融合基因:首先需要选取两个感兴趣的蛋白质,并将它们的编码序列分别克隆到酵母双杂交载体的DNA结合域和激活域上。DNA结合域和激活域是两个功能区域,当两个蛋白质相互作用时,这两个功能区域会靠近并激活报告基因的表达。
2. 转化酵母菌:将构建好的酵母双杂交载体导入酵母菌中。酵母菌是双杂交实验中常用的宿主,因为它具有简单的遗传系统和易于生长的特点。
3. 筛选阳性克隆:将转化后的酵母菌分别接种在缺失报告基因所需的营养物的培养基上。只有当两个蛋白质相互作用时,DNA结合域
和激活域才能靠近并激活报告基因的表达,从而使酵母菌能够在缺失营养物的培养基上生长。
4. 验证相互作用:通过进一步的实验证实阳性克隆的相互作用。常用的方法包括酵母菌营养物补充实验、酵母菌生长曲线分析和蛋白质互聚实验等。
酵母双杂交技术的优点在于它能够直接在真核细胞中研究蛋白质相互作用,同时具有灵敏度高、结果可靠、重复性好等特点。然而,也需要注意到酵母双杂交实验存在一定的局限性,如假阳性和假阴性结果的可能性,以及蛋白质结构和功能的局限性等。
酵母双杂交 原理
酵母双杂交原理
酵母双杂交(Y2H)是一种广泛应用于分子生物学领域的实验技术。它基于酵母细胞内所含的转录因子结合区域分开的与激活区域结合的能力的原理而发展出来。
当把转录因子分成两个区域,一个称为DBD(DNA binding domain),另一个称为AD(activation domain),并使它们相互独立地与相应的配体结合时,它们就可以进行有效的转录激活。通常来说,DBD和AD都不具有激活作用,但它们可以相互结合并发挥起激活作用。因此,当DBD与某一DNA序列结合时,如果另一配体结合于AD,则该复合体就可以被转录激活。
基于这个原理,Y2H技术使用酿酒酵母(Saccharomyces cerevisiae)作为实验系统进行实验。它使用了两个重要的质粒:一个称为“鱼钩”质粒(bait plasmid),它含有DBD和一个感兴趣的基因的DNA序列;另一个称为“猎物”质粒(prey plasmid),它含有AD和另一感兴趣的基因的DNA序列。这两个质粒分别要被转化到两个不同的酿酒酵母分别作为它们的基因组。
当两个酵母的基因组都被转化后,它们被分别引入到含有选择性培养基的平板中去。在这些平板上,只有那些同时表达了成功酯化的双杂交融合DBD和AD的细胞才能成
长起来。因此,这个实验系统几乎可以保证筛选到高亲合力的蛋白质因子。
值得注意的是,由于酿酒酵母是真核生物,与含有DBD和AD的两个质粒的匹配也是在真核生物级别上完成的,而不是简单的受体和配体之间的作用。因此,这种技术可以很好地模拟在真核生物细胞内发生的相互作用。
酵母双杂交原理与实验具体流程
UAS and TATA regions are basic building blocks of yeast promoters
The initiation of gene transcription in yeast, as in other organisms, is achieved by several molecular mechanisms working in concert. All yeast structural genes (i.e., those transcribed by RNA polymerase II) are preceded by a region containing a loosely conserved sequence (TATA box) that determines the transcription start site and is also a primary determinant of the basal transcription level. Many genes are also associated with cis-acting elements—DNA sequences to which transcription factors and other trans-acting regulatory proteins that bind and affect transcription levels.
酵母双杂交 原理
酵母双杂交原理
酵母双杂交原理是一种常用的分子生物学技术,用于研究蛋白质相互作用和信号转导通路。该技术利用酵母细胞中的两个互补的基因片段,将它们分别与两个感兴趣的蛋白质的编码基因融合,形成一个融合蛋白。当这两个融合蛋白在酵母细胞中相互作用时,就会激活一个报告基因,从而实现对蛋白质相互作用的检测。
酵母双杂交技术的基本原理是利用酵母细胞中的两个互补的基因片段,将它们分别与两个感兴趣的蛋白质的编码基因融合,形成一个融合蛋白。其中一个融合蛋白包含了DNA结合域,另一个融合蛋白包含了激活域。当这两个融合蛋白在酵母细胞中相互作用时,就会激活一个报告基因,从而实现对蛋白质相互作用的检测。
酵母双杂交技术的优点是可以在活细胞中直接检测蛋白质相互作用,而不需要纯化蛋白质。此外,该技术可以用于高通量筛选,可以同时检测多个蛋白质相互作用,从而加快了研究进程。
酵母双杂交技术的应用非常广泛,可以用于研究蛋白质相互作用、信号转导通路、基因调控等方面。例如,利用酵母双杂交技术可以筛选出与某个蛋白质相互作用的蛋白质,从而揭示其功能和调控机制。此外,该技术还可以用于筛选药物靶点,从而为药物研发提供新的思路和方法。
酵母双杂交技术是一种重要的分子生物学技术,可以用于研究蛋白
质相互作用和信号转导通路等方面。该技术具有高通量、高灵敏度、高特异性等优点,是现代生命科学研究中不可或缺的工具之一。
酵母双杂交实验原理及具体步骤
酵母双杂交
原理:酵母双杂交(Yeast two-hybrid,Y2H)是一种常用的蛋白质相互作用研究技术,用于检测蛋白质间的物理相互作用关系。其原理基于转录因子的两个功能域的可拆分性。①转录因子可拆分性:构建酵母诱饵(bait)和猎物(prey)表达载体:将目标蛋白分别将其编码序列分别克隆到两个表达载体中。其中,诱饵载体通常包含一个“催化域”(activation domain,AD),用于连接目标蛋白和转录激活子域;猎物载体通常包含一个“DNA结合域”(DNA binding domain,BD),与转录因子的靶位点序列结合。通过将目标蛋白的相互作用引入到转录因子中,可以重新组装功能域并激活报告基因表达。②目标蛋白的诱饵和猎物构建:将目标蛋白分别克隆到诱饵载体和猎物载体中。诱饵载体中的目标蛋白与BD结合,形成诱饵蛋白-BD复合物;猎物载体中的目标蛋白与AD结合,形成猎物蛋白-AD复合物。③互补的转录因子和报告基因:将诱饵和猎物载体转化到同一酵母细胞中,诱饵蛋白与猎物蛋白发生相互作用后,诱饵蛋白的BD域与猎物蛋白的AD域重新组装为完整的转录因子。该转录因子能够结合到特定的报告基因启动子上,激活报告基因的表达。④报告基因表达和筛选:通过培养在所选的选择性培养基上,只有发生了特定蛋白相互作用的酵母细胞才能生长。选择性培养基可能缺乏某些必需营养物质,当酵母菌株与目标蛋白质发生相互作用时,新的遗传特征和功能产物的表达则能够弥补酵母细胞在选择性培养基上的缺陷。例如,当使用缺乏组氨酸(histidine)的培养基时,只有酵母菌株表达了完整的转录因子,才能够合成组氨酸并正常生长。⑤结果验证:据此可以筛选出具有蛋白相互作用的酵母突变株。验证通常通过进一步的亲和试验(如共免疫沉淀)或其他技术(如荧光共定位)来确认蛋白质相互作用的可靠性。总体来说,酵母双杂交实验通过利用转录因子可拆分性的原理来检测蛋白质的相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单杂与双杂的异同点
酵母单双杂,都基于许多 真核生物转录因子的转录激活
பைடு நூலகம்
域和DNA结合域在结构和功能
上都有区别。这就允许研究者 去构建不同的融合基因,当在 酵母中表达融合蛋白,就能结
合DNA靶序列激活下游启动子
的转录。单杂交是文库中的转 录因子直接与靶序列结合,使 与转录因子融合的GAL4AD激
活报告基因HIS3的转录,而双
UAS and TATA regions are basic building blocks of yeast promoters
The initiation of gene transcription in yeast, as in other organisms, is achieved by several molecular mechanisms working in concert. All yeast structural genes (i.e., those transcribed by RNA polymerase II) are preceded by a region containing a loosely conserved sequence (TATA box) that determines the transcription start site and is also a primary determinant of the basal transcription level. Many genes are also associated with cis-acting elements—DNA sequences to which transcription factors and other trans-acting regulatory proteins that bind and affect transcription levels.
单、双杂交的方法是基于许多真核生物转录因子都是以模块 形式存在的,它们的转录激活域和DNA结合域在结构和功能上都 有区别。这就允许研究者去构建不同的融合基因,当在酵母中表 达融合蛋白,能立即结合DNA靶序列激活下游启动子的转录(图 1所示),BD Matchmaker系统应用酵母中已经研究透彻的转录 因子GAL4的转录激活域和DNA结合域来进行研究。
two-hybrid assay because it is under the control of the intact GAL1 UAS.
Reporter genes under the control of a minimal HIS3 promoter
The HIS3 reporter gene in yeast strain Y190 is unusual among the GAL4 two-hybrid reporter gene constructs in that it is under the control of the GAL1 UAS and a minimal promoter containing both HIS3 TATA boxes The HIS3 reporter plasmids pHISi and pHISi-1 used in the
MATCHMAKER One Hybrid System also have both of the HIS3 TATA
boxes present in the minimal promoter. By inserting a cis-acting element in the MCS, the regulated TATA box (TR) can be affected, but there is still a significant amount of constitutive, leaky expression due
UAS and TATA regions can be switched to create novel promoters
For GAL4-based systems, either a native GAL UAS or a synthetic UASG 17-mer consensus sequence (Heslot & Gaillardin, 1992) provides the binding site for the GAL4 DNA-BD. If you are putting together your own one- or two-hybrid system, you must make sure that the reporter gene's promoter will be recognized by the DNA-BD moiety encoded in your DNA-BD fusion vector.
Reporter genes under the control of GAL4-responsive elements
AH109 contains four reporters—ADE2, HIS3, MEL1, and lacZ—under the control of three distinct GAL4 upstream activating sequences (UASs) and TATA boxes . The ADE2 reporter alone provides strong nutritional selection. For higher stringency, and to reduce the incidence of false positives, select for ADE2 and HIS3 (James et al., 1996). You also have the option of assaying for MEL1, which encodes α-
杂交中推荐使用pGADT7-Rec,
这一克隆是通过体内同源重组 来实现的(图2),这一步骤是 利用酵母中的高效重组系统使
ds DNA与GAL4 AD质粒融合。
借助于同源重组克隆,文库的 构建和筛选能快速接连地进行 (步骤3和4),不需任何细菌
转化步骤。用cDNA文库和
pHIS2载体进行简单的酵母转 化,接着在选择性培养基上进 行酵母双杂交的筛选。
The term “promoter” usually refers to both the TATA box and the associated cis-regulatory elements. This usage is especially common when speaking of yeast gene regulation because the cis regulatory elements are relatively closely associated with the TATA box (Yoccum, 1987). This is in contrast to multicellular eukaryotes, where cisregulatory elements (such as enhancers) can be found very far upstream or downstream from the promoters they regulate. In this text, "minimal promoter" will refer specifically to the TATA region, exclusive of other cis-acting elements. The minimal promoter (or TATA box) in yeast is typically approximately 25 bp upstream of the transcription start site. Yeast TATA boxes are functionally similar to prokaryotic Pribnow boxes, but are not as tightly conserved. Furthermore, some yeast transcription units are preceded by more than one TATA box. The yeast HIS3 gene, for example, is preceded by two different TATA boxes: TR, which is regulated, and TC, which is constitutive.
酵母双杂交系统原理及具体 操作流程
酵母双杂交系统可进行两个蛋白互作分析,可用
一个已知的蛋白因子(在双杂交系统中称为诱饵蛋白)
去钓取与其结合的蛋白;也可用进一步验证两个蛋白
之间的互作。应用Clontech第三代酵母双杂交系统, 并在按实验手册要求的严格操作下进行蛋白互作分析, 我们的筛选结果将具有较好的重复性与可靠性。
galactosidase. MEL1 is endogenous to both Y187 and AH109. Because αgalactosidase is a secreted enzyme, its activity can be detected by adding X-α-Gal to the selection plate: If MEL1 is active and X-α-Gal is present, the colony will turn blue. lacZ in Y187 exhibits a high level of induced β-galactosidase activity in a positive
杂是借助与诱饵蛋白与文库中 调控因子的互作,使得 GAL4BD和AD通过这个“桥 梁”共同起作用,激活报告基 因(ADE2、HIS3 、 lacZ和 MEL1)的转录。
推荐使用Clontech公司的第三 代载体,pGADT7-Rec 和 pGBKT7进行双杂交筛选,因 为它们产生更少的假阳性。对 于cDNA合成,构建一个与 GAL4激活域的融合文库,在双
图2. BD MatchmakerTM双杂交文库构建和筛选。上图所示,借 助于重组克隆使文库构建和筛选快速有效
Yeast promoters and other cis-acting regulatory elements play a crucial role in yeast-based expression systems and transcriptional assays such as the MATCHMAKER One- and Two-Hybrid Systems. Differences in the promoter region of reporter gene constructs can significantly affect their ability to respond to the DNA-binding domain of specific transcriptional activators; promoter constructs also affect the level of background (or leakiness) of gene expression and the level of induced expression. Furthermore, differences in cloning vector promoters determine the level of protein expression and, in some cases, confer the ability to be regulated by a nutrient (such as g al actose in the case of the G AL 1p romoter) .