人教版六年级数学上册:分数乘法知识点
人教版六年级数学第一学期分数乘法知识点归类与练习1
分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,结果化成最简分数。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c乘法分配率逆运算: a c + b c=( a + b )×c中考考点1:分数的乘法计算此类题在中考中的考查多为基础性题目,一般不单独命题,题型有选择题、填空题和计算题,解决这类问题需牢记分数乘法的运算法则,灵活的运用乘法的运算律进行简便运算。
例1:316967⨯ 练习1:489623⨯➢ 分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:1)1374135⨯⨯ 2)56153⨯⨯ 3)267831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用例题:1)27)27498(⨯+ 2)4)41101(⨯- 3)16)2143(⨯+ 涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
人教版六年级数学上册第一单元分数乘法知识点
一、引言在教育教学领域,数学一直是学生们普遍认为比较困难的学科之一。
特别是在小学阶段,学生们对数学的学习经常面临着许多挑战。
分数是小学阶段数学中一个较为抽象和难以理解的概念,而分数乘法更是其中的一个难点。
本文将以人教版六年级数学上册第一单元的分数乘法知识点为中心,深入探讨这一主题,帮助读者更好地理解和掌握相关知识。
二、分数乘法的基本概念分数乘法是指两个分数相乘的运算。
在学习分数乘法时,首先需要掌握分数的基本概念和相关运算规则。
分数是指一个整体被分成若干等分,其中的一份或几份。
在表示分数时,通常用一个分子和一个分母来表示,分子表示被分成的份数,分母表示整体被分成了几等分。
分数乘法的基本规则是将两个分数的分子和分母分别相乘,得到的乘积作为新分数的分子和分母。
在进行分数乘法运算时,需要注意分子、分母的乘法运算,以及乘积的化简。
通常情况下,分数乘法的结果可能是一个不可约分数,需要将其化简为最简形式。
了解分数乘法的基本概念和运算规则是掌握这一知识点的关键。
三、人教版六年级数学上册第一单元分数乘法知识点的具体内容在人教版六年级数学上册第一单元中,分数乘法知识点主要包括以下内容:1. 乘法的定义和基本性质2. 带分数的乘法3. 含有两个因数的分数的乘法4. 含有三个因数的分数的乘法5. 分数的乘法口诀通过学习这些知识点,学生们可以逐步掌握分数乘法的基本运算技巧,并能够灵活运用到实际问题中。
四、对分数乘法知识点的理解与思考在学习分数乘法知识点的过程中,我深刻理解到分数乘法是在掌握了分数的基本概念和运算规则后的延伸应用。
掌握分数乘法不仅可以帮助学生们更好地理解数学知识,还可以培养他们的逻辑思维能力和解决问题的能力。
在解决实际问题中,分数乘法常常与分数除法、加法、减法等运算相结合,需要学生们灵活运用,提高数学解题能力。
五、总结通过本文的探讨,我们对人教版六年级数学上册第一单元的分数乘法知识点有了更全面、深入的理解。
人教版数学六年级上册分数乘法知识点和题型(全面)
2020年~2021年最新《分数的乘法》一、分数乘法 (一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1.98×5表示( )。
2.83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( ) 3.24个32是多少? 145吨的7倍是多少吨?2.分数乘分数是求一个数的几分之几是多少。
例如: 1.98×43表示的意义是( )。
2.125吨的32是多少吨?3.一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1.72×3 53×6 214×9 103×5 1611×12 2.52米=( )厘米 32时=( )分 107千克=( )克 算式: 2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×281565×25122110×533.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
人教版六年级上数学知识点归纳
六年级数学(上册)知识点总结第一单元 分数乘法1、分数乘法的意义(1)分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
(2)一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
2、分数乘法的计算法则(1)整数和分数相乘:整数和分子相乘的积作分子,分母不变。
(2)分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
(3)注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、分数大小的比较(1)一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
(2)如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
4、乘法应用题有关概念(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
新人教版小学六年级数学上册《第1单元 分数乘法》知识点梳理
新人教版小学六年级数学上册
第1单元分数乘法
知识点梳理
一、分数乘整数的意义及计算方法
分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义
一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法
分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法
小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序
没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法
整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题
解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题
解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
六年级上册数学《分数乘法》知识点整理
分数乘法一、知识要点一、分数乘法的意义1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
888例如:①的和是多少,也表示×5表示求5个的5倍是多少。
999②5×89表示求5的89是多少2、分数乘分数是求一个数的几分之几是多少。
例如:89×34表示求89的34是多少?二、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例:(1) 51515222 (2)22669293224332、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
21212例:3535153、为了计算简便,能约分的要先约分,再计算。
例:1212134342111326注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
例:12192935232111531911333555三、规律:(乘法中比较大小时)1、一个数(0除外)乘大于1的数,积大于这个数。
2、一个数(0除外)乘小于1的数(0除外),积小于这个数。
3、一个数(0除外)乘1,积等于这个数。
四、分数混合运算的运算顺序和整数的运算顺序相同。
先乘除,后加减,同级运算从左到右运算,如果有括号要先算括号五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc。
六年级上册数学第二单元分数乘法知识点总结
第一单元分数乘法知识点总结(一)、分数乘法的意义。
(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少求几个相同分数的和是多少,就用这个分数乘”几“例如:×3,表示:3个相加是多少,还表示的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×,表示:6的是多少。
×,表示:的是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
例如:×1,表示:的1倍是多少。
(二)、分数乘法的计算法则:1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。
带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
用字母表示为x=(a不等于0,c不等于0)(分子乘分子,分母乘分母)分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x=x=分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。
列如2x=x=分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分数,再计算。
列如x4=x=注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
第一单元:分数乘法(讲义)-2024-2025学年人教版六年级数学上册
分数乘法(思维导图+知识梳理+典例分析+高频真题+答案解析)【分数乘法-知识点归纳】1、分数乘法的意义:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.2、乘积是1的两个数叫做互为倒数.3、分数乘法法则:(1)带分数乘法:先把带分数化成假分数,然后再乘.结果是假分数时,要把假分数化成带分数或整数.(2)(2)分数乘以分数:用分子相乘的积作为分子,用分母相乘的积作为分母.为了使计算简便,在计算的过程中,能够约分的,要约分.(3)分数乘以整数或整数乘以分数:由于任何整数(0除外)都可以化成分母是1的假分数,分数乘以整数或整数乘以分数,都可以转化成分数乘以分数的形式.因此,在计算中,是用分数的分子和整数相乘的积作为分子,分母不变.在乘的过程中,如果有可以约分的数,可以先约分,这样,可以使计算的数字缩小,从而使计算变得简便.【分数乘整数-知识点归纳】1、分子乘整数,可以求出一共有多少个这样的分数单位,而分数单位的个数其实就是分子乘整数的积,因此整数乘分子作分子。
求几个分数单位的和,分数单位不变,也就是分母不变。
2、分数乘整数的意义:分数乘整数,也是表示几个相同加数相加,与整数乘法的意义相同。
3、分数乘整数的计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。
其实就是计算分数单位的个数。
【整数乘分数-知识点归纳】1、一个数乘分数的意义就是求一个数的几分之几是多少。
2、“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)3、方法总结;(1)、整数与分数相乘,用分数的分子与整数相乘,分母不变;(2)、计算时能约分的可以先约分再计算出结果。
【分数乘分数-知识点归纳】分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
【典例1】在“世界无烟日”健康知识竞赛中,小星答对了50道题,小铭答对的题数比小星少15。
六年级上册第一单元分数乘法的讲解人教版
第一单元:分数乘法一、分数乘法的概念分数乘法是指在乘法运算中,其中有一个或两个乘数是分数,通过乘法运算规则,计算出分数的乘积。
分数乘法涉及到分数的乘法运算法则,要求掌握分数相乘的方法和技巧。
二、分数乘法的基本原理1. 分数乘法的定义分数乘法是指两个分数相乘的运算。
示例:1/2 × 3/4 = 3/82. 分数乘法的规则分数相乘时,先将两个分数的分子和分母分别相乘,得到的结果即为分数的乘积。
示例:1/3 × 2/5 = (1×2) / (3×5) = 2/153. 分数乘法的方法分数相乘时,可以先化简分数,然后再进行乘法运算得到最简分数,也可以先进行分子相乘和分母相乘,再进行化简得到最简分数。
示例:4/6 × 5/3 = 20/18 = 10/9三、分数乘法的实际应用1. 分数乘法在日常生活中的运用分数乘法在日常生活中有着广泛的应用,比如在烹饪中需要按照食谱中的比例计算食材的用量,就需要进行分数乘法的运算来得到准确的结果。
示例:如果食谱中需要用1/2杯的面粉,而需要一倍的食谱,则需要1/2 × 1 = 1/2杯的面粉。
2. 分数乘法在数学问题中的应用在解决数学问题中,也会遇到分数相乘的情况,需要根据题目要求进行分数乘法的运算。
示例:假设一个长方形的长为2/3米,宽为1/4米,求其面积。
解:长方形的面积为长乘以宽,即(2/3) × (1/4) = 2/12 = 1/6平方米。
四、分数乘法中的注意事项1. 分数乘法的注意事项在进行分数乘法运算时,需要注意分子相乘、分母相乘的顺序,并且最终的结果需要进行化简,得到最简分数形式。
示例:5/6 × 2/3 = (5×2) / (6×3) = 10/18 = 5/92. 分数乘法中的常见错误在分数乘法中,常见的错误包括忽略化简、分子错乘、分母错乘等,需要学生在练习分数乘法时要注意避免这些错误。
人教版六年级数学上册 分数乘法 知识点归纳
《分数乘法》知识点归纳
知识点一、分数乘以整数
1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:
①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数
1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:
①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律
1、乘法交换律:a×b=b×a
2、乘法结合律:a×b×c=a×(b×c)
3、乘法分配律(a+b)×c=a×c+b×c
知识点四、乘法规律
1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题
1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
新人教版小学数学6年级上册六年级数学上册各单元知识点归纳
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b ×a乘法结合律:( a × b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
新部编人教版小学六年级数学上册期末复习知识要点(第一单元 分数乘法 )
小部编人教版小学六年级数学上册期末复习要点(第一单元分数乘法 )第一单元 分数乘法1、分数乘整数的意义:与整数乘法的意义相同,求几个相同加数的和的简便运算。
例如:32×3就是求3个32是多少。
2、一个数乘分数的意义:求一个数的几分之几是多少。
例如:32×43就是求32的43是多少。
3、分数乘法的运算法则:分子乘分子,分母乘分母。
例如:32×43=4×33×2=214、约分方法:用整数和下面的分母约掉最大公因数。
例如32×43=4×33×2=21。
5、分数的基本性质:分子和分母同乘或除以同一个数(0除外),分数的大小不变。
例如: 32=3×33×2=96 ; 126=6÷126÷6=216、一个数(0除外)乘大于1的数,积大于这个数。
例如:32×45>327、一个数(0除外)乘小于1的数,积小于这个数。
例如:12×43<128、一个数(0除外)乘等于1的数,积等于这个数。
例如:1×43=129、分数乘法混合运算顺序:与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
10、整数乘法运算定律对分数乘法同样适用。
乘法交换律:a ×b=b ×a 例如:32×43=43×32乘法结合律:(a ×b)×c=a ×(b ×c) 。
例如:43×53×34=(43×34)×53=53 乘法分配律:a ×(b ±c)=a ×b ±a ×c 。
例如:32×43+43×31=(32+31)×43=43 11、倒数:乘积为1的两个数互为倒数。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
新人教版六年级数学上册知识点整理归纳
新人教版六年级数学上册知识点整理归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级数学上册分数乘法知识点
六年级数学上册分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.注:“分数乘整数”指的是第二个因数必须是整数,不能是分数. 例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少.注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变. 注:(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子、分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变. (三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数.a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数.a ×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况. 附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b1(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a乘法结合律:(a ×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”. 例如:a×b=1则a 、b 互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置. ②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数. ④求小数的倒数:先化成分数再求倒数. 4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母. 5、任意数a(a ≠0),它的倒数为a1;非零整数a 的倒数为a1;分数ab 的倒数是ba .6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身. 假分数的倒数小于或等于1. 带分数的倒数小于1.(六)分数乘法应用题 ——用分数乘法解决问题 1是多少?(用乘法)“1”×ab =例如:求25的53是多少? 列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘. 2、( 什么)是(什么 )的)()(几几. ( )= ( “1” ) ×)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少? 甲数=乙数×53 即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份.(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”.(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少)525,求甲数是多少?甲数=乙数 ± 乙数×53 即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.4、什么是速度?——速度是单位时间内行驶的路程. 速度=路程÷时间 时间=路程÷速度 路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为“1”的时间单位,每分钟、每小时、每秒钟等. 5、求甲比乙多(少)几分之几?多:(甲-乙)÷乙 “比”字后面的量乙)—甲(少:(乙-甲)÷乙“比”字后面的量乙)—甲(。
人教版六年级数学上册分数乘法知识点与练习
人教版六年级数学上册分数乘法知识点与练习分数乘法知识点归类一、分数乘法(一)分数乘法的意义:1.整数的分数乘法与整数乘法具有相同的含义。
求几个相同的加数之和是一个简单的运算。
88例如:×5表示求5个的和是多少?分数乘以分数就是求一个数的分数。
8833例如:×表示求的是多少?9944(II)分数乘法的计算规则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注:用分数进行乘法计算时,有分数的分数应在计算前转换为假分数。
练习1。
将分数乘以整数。
5611×4=26×=×5=121315练习2。
把分数乘以分数。
(注:可除部分先除后算。
)贰拾叁万陆仟柒佰伍拾捌×=×=×=×=×=×=5478915(III)定律:(当乘法较大时)一个数(0除外)乘大于1的数,积大于这个数。
一个数字(0除外)乘以一个小于1的数字(0除外),乘积小于这个数字。
一个数字(0除外)乘以1等于这个数字。
练习三:比较大小5522313× 4○9 × ○ 九○6633828(四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合。
七千五百零二亿四千一百五十五万三千二百五十四×(-)××14×+1+×166375166431215(五)整数乘法的交换律、结合律和分配律也适用于分数乘法。
乘法交换律:a×b=b×a乘法结合律:(a)×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc练习五、分数乘法、加法和减法。
137511917××5(+)×二十四××一万亿肆千一百五十亿贰亿陆仟捌佰壹拾贰万壹仟肆佰壹拾捌元整5497127(-)×叁仟陆佰玖拾玖××15-×壹拾伍亿陆仟玖佰玖拾捌万贰仟伍佰贰拾伍元整二、分数乘法的解决问题(知道单位“1”的数量(乘法)并找出单位“1”的分数)。
六年级数学上册分数乘法知识点
分数乘法(一)分数乘法意义 :1、分数乘整数的意义 与整数乘法的意义同样,就是求几个同样加数 的和的简略运算。
注:“分数乘整数”指的是第二个因数必定是整数,不能够是分数。
比方: 3 ×7表示: 求7个3的和是多少或表示: 3555的 7 倍是多少2、一个数乘分数的意义就是 求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必定是分数,不能够是整数。
(第一个因数是什么都能够)比方:3 1 表示: 求3的 1是多少5× 5669×A ×1 61 6表示: 求9的表示 : 求 a 的1616是多少是多少(二)分数乘法计算法规 :1、分数乘整数的运算法规是: 分子与整数相乘,分母不变。
注:(1)为了计算简略能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能够与分母相乘,计算结果必定是最简分数)2、分数乘分数的运算法规是: 用分子相乘的积做分子,分母相乘的 积做分母。
(分子乘分子,分母乘分母)注:(1)若是分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
( 3 )在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必定不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘也许除以一个同样的数( 0 除外),分数的大小不变。
(三)积与因数的关系:一个数( 0 除外)乘大于 1 的数,积大于这个数。
a ×b=c,当 b >1 时,c>a.一个数( 0 除外)乘小于 1 的数,积小于这个数。
a ×b=c,当b <1 时,c<a (b ≠0).一个数( 0 除外)乘等于 1 的数,积等于这个数。
a ×b=c,当b =1 时,c=a .注:在进行因数与积的大小比较时,要注意因数为 0 时的特别情况。
人教版小学六年级数学上册知识点:分数乘法
人教版小学六年级数学上册知识点:分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a times; b = b times; a乘法结合律: ( a times; b )times;c = a times; ( b times; c )乘法分配律: ( a + b )times;c = a c + b c a c +b c = ( a + b )times;c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数times;几倍; 求一个数的几分之几是多少:一个数times; 。
3、写数量关系式技巧:(1)“的” 相当于“times;” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量times;分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量times;(1 分率)=分率对应量针对练习:一、填空:1、3/8x4表示()2、2/7+2/7+2/7+2/7+2/7=()x()3、3/5x3=()x()/()=()/()。
4、2个2/9是();7个2/3千克是();6个4/5千米是()5、一个正方形的边长是7/10米,它的周长是()6、一支水笔15/10元,一鸣一个月需用10枝,共需()元,若买一只水笔和9枝8/10元一枝的替芯,共用()元,比买10支笔少用()元?分数与整数相乘,分子(),分母()二、判断:1、 4/5米的5倍和5个4/5米一样长()2、6/7x30=6/7x30=5/7中的6和30可以约分()3、5/6x2=5x2/6x2=5/6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级数学上册:分数乘法知识点
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:5
3×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的6
1是多少? 9 × 61表示: 求9的6
1是多少? A × 61表示: 求a 的6
1是多少? (二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).
一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b
1 (四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a ×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a 、b 互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a ≠0),它的倒数为a 1;非零整数a 的倒数为a 1;分数a b 的倒数是b
a 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1是多少?(用乘法)
“1”× a
b = 例如:求25的53是多少? 列式:25×5
3=15 甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×5
3=15 注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的
)()(几几。
( )= ( “1” ) ×
)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少? 甲数=乙数×53 即25×5
3=15 注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即5
3是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少)5
3,乙数是25,求甲数是多少? = ± 乙数×53 即25±25×53=25×(1±5
3)=40(或10) 3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。
速度=路程÷时间
时间=路程÷速度
路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为“1”的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 “比”字后面的量
乙)—甲( 少:(乙-甲)÷乙
“比”字后面的量
乙)—甲(。