3.2线性规划问题的基本解
人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题
钢板张数最少?
分
A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,
x x
2y 3y
18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC
5
, kl
a
ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),
简单的线性规划问题
简单的线性规划问题一、基本知识1.规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础。
因为对在直线Ax+By+C=0同一侧的所有点(x,y),数Ax+By+C的符号相同,所以只需在此直线的某一侧任取一点(x0,y0) (若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧。
2.在求线性目标函数z=ax+by的最大值或最小值时,设ax+by=t,则此直线往右(或左)平移时,t值随之增大(或减小)。
要会在可行域中确定最优解。
3.新概念:①线性约束条件②线性目标函数③线性规划问题④可行解⑤可行域⑥最优解4.重要的思想方法:数形结合化归思想5.解线性规划问题总体步骤:设变量→ 找约束条件,找目标函数找出可行域求出最优解二、典型例题:例1.某工厂生产甲,乙两种产品,已知生产甲种产品1t,需耗A种矿石10t,B种矿石5t,煤4t, 生产乙种产品1t需耗A种矿石4t,B种矿石4t,煤9t,每1t甲种产品的利润是600元。
每1t乙种产品的利润是1000元。
工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t,B种矿石不超过200t,煤不超过360t,甲,乙这两种产品应各生产多少。
(精确到1t)。
能使利润总额达到最大?解:设生产甲,乙两种产品分别为x(t), y(t),利润总额为Z元,则,Z=600x+1000y。
作出以上不等式组所表示的平面区域,即可行域。
作直线600x+1000y=0即3x+5y=0。
将直线向上平移到如图位置,直线经过可行域上的点M ,且与原点距离最大,即Z 取最大值。
得x=360/29≈12。
y=1000/29≈34。
例2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:问每周生产空调器,彩电,冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?解:设每周生产空调器,彩电,冰箱分别为x 台,y 台,z 台,每周产值为f 元,则f=4x+3y+2z,其中x, y, z满足由(1),(2)得y=360-3x, z=2x。
线性规划问题的解
第二步:最优性检验。
第三步:从一个基本可行解转换到相邻的目标函
数值更大的基本可行解,列出新的单纯形表。
第四步:重复第二、三两步,一直到计算结束为止。
§1-6 .初始可行基的求法
一、 大M法
在上一节例 1-9 中,化为标准形式后约束 条件的系数矩阵中含有单位矩阵,以此作 初始基,使求初始基可行解和建立初始单 纯形表都十分方便。但时常化为标准形后 的约束条件的系数矩阵中不存在单位矩 例1-10 用单纯形法求解线性规划问题
s.t.
AX b X 0
B ( p1 , p2 ,, pm ) 中,不妨设 是一个可行基,则系数矩阵A可分块为 ( B , N ) 。 对 应 于 B 的 基 变 量 为,X B ( x1 , x2 ,, xm ) T ,非基变量 为 X N ( xm1 , xm 2 ,, xn ) T ,N T T = ( pm1 , pm2 ,, pn ) 。并令C T (C B , CN ) ,其 中 B 为基变量 X B的系数列向量, N 为 非基变量的系数列向量。于是原问题可化 为 XB T T T Max Z C X (CB , CN ) X N
0 x (4i aij 0 ,
0,这表明可能找到另一顶点(基可行解)目标函数值也达到最大
因而 的取值可无限增大不受限制, z 也可无限增大,表明线性 规划问题有无界解。
(1)
二、单纯形法的矩阵描述 在线性规划问题的标准型: T z C X Max
p6 , p7是人为添加上去的,它相当于在上述问题的约
1 0 0 0 1 0 0 0 1
p 4 p6 p7
“ -M” 称为“罚因子”,即只要人工变量取值大于零, 目标函数就不可能实现最优。因而添加人工变量后,例110的数学模型的标准形式就变为 max z 3x1 x3 0 x4 0 x5 Mx6 Mx7
线性规划问题的基本解
am1
x1
am2 x2
L
amn xn
bm
x1 0, x2 0,L , xn 0
1.2 1.3
满足约束条件的X称为线性规划问题的可行解;
X x1, x2, , xn T
所有可行解的集合称为可行域 (feasible region),
使目标函数(1.1)达到最大值的可行解称为最优解(an optimal solution)。
A.基本可行解 B.非基本解
C.非可行解
D.最优解
4. X是线性规划的基本可行解,则有( A. X中的基变量非零,非基变量为零 B. X不一定满足约束条件 C. X中的基变量非负,非基变量为零 D. X是最优解
)。
,P4
1
,P5
0
0
2
0
0
1
分别是变量 x1, x2 , x3, x4 , x5 的系数向量。
max z 3x1 5x2
3x1 2x2 x3
18
3 2 1 0 0
x1
x4 4
A 1 0 0 1 0
2x2
x5 12
0 2 0 0 1
x1, x2 , x3, x4 , x5 0
XB x j1 , x j2 ,L , x jm 表示基变量向量,
X N 表示非基变量向量。
现令所有的非基变量都等于0,即
XN 0
则约束方程(1.2)可化为:
Pj1 x j1 Pj 2 x j 2 L Pjm x jm b
BXB b
1.4
它是一个m个变量m个方程组成的线性方程组,B又是可逆
在上例1中,
对应于 B1 的基解为 X1 0, 0,18, 4,12T
线性规划原理与解法
c1 b1 a1,m 1 xm 1 a1,m 2 xm 2 ... a1n xn
z c1b1 c2b ... cmbm
cm1 ci ai,m1
i 1
m
cm 1 c1a1, m 1 c2 a2, m 1 ... cm am , m 1 xm 1 c c a i i ,m 2 m 2
i 1
对增广矩阵 作初等行变换 将基变为单位阵
1 0 0
x2 0 ... 0 a1, m 1 ... a1n b : 1 1 ... 0 a2, m 1 ... a2 n b xm 2 ...... x : m 1 bm 0 ... 1 am, m 1 ... amn : x n
第一节 线性规划求解原理
5)若约束条件为“≥”,“≤”和“=”的混合性, 则综合应用以上方法,确定初始基。
max z 3 x1 4 x2 例: x1 2 x2 ≤8 4 x ≤16 1 s.t. 4 x2 ≤12 x1 , x2≥0 max z 3x1 4 x2 0 x3 0 x4 0 x5 =8 x1 2 x2 x3 4 x x4 =16 1 s.t. x5 12 4 x2 x1 , x2 , x3 , x4 , x5≥0
xi bi
j m 1
a x (i 1, 2,..., m)
ij j
n
x1 b1 a1,m1 xm1 a1,m2 xm2 ... a1n xn x2 b2 a2,m1 xm1 a2,m2 xm2 ... a2 n xn ...... xm bm am,m1 xm1 am,m 2 xm 2 ... amn xn
3.3.2简单的线性规划问题2
[规范作答] 设需截第一种钢板 x 张,第二种钢板 y 张. 2x+y≥15, x+2y≥18, 可得 x+3y≥27, x≥0,y≥0.
且 x、y 都是整数,
求目标函数 z=x+y 取最小值时的 x、y.2 分 作可行域如图所示,6 分
18 x= 5 , x + 3 y = 27 , ∵ ∴ 2x+y=15, y=39, 5 平移直线
18 39 ∴A 5 , 5
18 39 z=x+y,可知直线经过点 5 , 5 ,此时
x+y
18 39 57 18 39 =5, 但 5 与 5 都不是整数, 所以可行域内的点 A 5 , 5 不
是最优解.8 分
方法一:平移求解法 首先在可行域内打网格,其次描出
下取得最大值时的最优解只有一个, 则实数 a
的取值范围是________. 解析:
x+y-3≥0 作出线性约束条件2x-y≤0 y≤a
表示的平面
区域, 如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数 a的取值范 围是[2,+∞). • 答案: [2,+∞)
∴A′(3,3)是最优解. 所以,甲、乙两种药片各用 3 片配餐最好.
•
已知变量x,y满足约束条件1≤x+y≤4,-2≤x -y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1) 处取得最大值,则a的取值范围为________.
• 由题目可获取以下主要信息: • ①可行域已知; • ②目标函数z=ax+y(a>0)仅在(3,1)处取得最大 值. • 解答本题可先画出可行域,利用数形结合求解.
• 1 . 用图解法解决线性目标函数的最优解问题的 一般步骤 • (1)画:根据线性约束条件,在直角坐标系中,把 可行域表示的平面图形准确地画出来,可行域可 以是封闭的多边形,也可以是一侧开放的无限大 的平面区域. • (2)移:运用数形结合的思想,把线性目标函数看 成直线系,把目标函数表示的直线平行移动,最 先通过或最后通过的顶点便是所需要的点. • (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
线性规划及其对偶问题
3.2 线性规划问题的基本解
Max
(1) 解的基本概念
Z CX AX b X 0
1 2 3
s.t
定义 在线性规划问题中,约束方程组(2)的系 数矩阵A(假定m )的任意一个 阶的非奇异 (可 m m n 逆)的子方阵B(即 ),称为线性规划问题的一 B 0 个基阵或基。
例、合理下料问题 2.9m 钢筋架子100个,每个需用 2.1m 各1,原料长7.4m
1.5m
求:如何下料,使得残余料头最少。 解:首先列出各种可能的下料方案; 计算出每个方案可得到的不同长度钢筋的数量及残余料 头长度;
确定决策变量;
根据下料目标确定目标函数; 根据不同长度钢筋的需要量确定约束方程。
例、运输问题
运输 单价
仓 1 2 库 3 需求 工 厂
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
求:运输费用最小的运输方案。
解:设xij为i 仓库运到j工厂的产品数量 其中:i =1,2,3
j =1,2,3
Min Z= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33
X1 =6 +(1- )· 15 X2=12+(1- )· 7.5 X1 =15-9 X2 =7.5+4.5 (0 1 )
例3、 Max Z=2X1+ 4X2
2X1+X2 8
X2
8
X1 0
-2X1+X2 2
s.t
-2X1+X2 2 X1 , X2 0
运筹学03-单纯形法
C
m n
m个!n。n! m!
定义 在线性规划问题的一个基本可行解中,如果
所有的基变量都取正值,则称它为非退化解,如
果所有的基本可行解都是非退化解。称该问题为
非退化的线性规划问题;若基本可行解中,有基 变量为零,则称为退化解,该问题称为退化的线 性规划问题。
21
解的集合: 解空间
非
基
可 行 解
可本 行可 解行
16
解:① 令X3 =X4 - X5 ② 加松弛变量X6 ③加剩余变量X7 ④ 令Z'= -Z
Max Z'= X1 -2X2 +3X4 -3X5 X1 +X2 +X4 -X5 +X6=7
s.t X1 -X2 +X4 -X5 -X7 =2
X1 , X2 , X4 , … , X7 0
17
3.2 线性规划问题的解
5
向量形式
Max Z CX
s.t
n
Pj x j
b
C c1
c2
cn
j1
X 0
价值向量
x1
X
x2
xn
决策向量
a1 j
Pj
a2 j
anj
列向量
b1
b
b2
bm
右端向量
6
(4) 一般型向标准型的转化
对于各种非标准形式的线性规划问题,我们总可 以通过以下变换,将其转化为标准形式: 目标函数
x1
,
x2 ,
x3 ,
x4
0
(2) 求基本解
由上式得
A
3 6
5 2
1 0
10 b 1254
《运筹学》试题及答案(六)
《运筹学》试题及答案(六)《运筹学》试题及答案第⼆章线性规划的基本概念⼀、填空题1.线性规划问题是求⼀个线性⽬标函数_在⼀组线性约束条件下的极值问题。
2.图解法适⽤于含有两个变量的线性规划问题。
3.线性规划问题的可⾏解是指满⾜所有约束条件的解。
4.在线性规划问题的基本解中,所有的⾮基变量等于零。
5.在线性规划问题中,基可⾏解的⾮零分量所对应的列向量线性⽆关6.若线性规划问题有最优解,则最优解⼀定可以在可⾏域的顶点(极点)达到。
7.线性规划问题有可⾏解,则必有基可⾏解。
8.如果线性规划问题存在⽬标函数为有限值的最优解,求解时只需在其基可⾏解_的集合中进⾏搜索即可得到最优解。
9.满⾜⾮负条件的基本解称为基本可⾏解。
10.在将线性规划问题的⼀般形式转化为标准形式时,引⼊的松驰数量在⽬标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加⼊松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,⽬标函数三个要素。
13.线性规划问题可分为⽬标函数求极⼤值和极⼩_值两类。
14.线性规划问题的标准形式中,约束条件取等式,⽬标函数求极⼤值,⽽所有变量必须⾮负。
15.线性规划问题的基可⾏解与可⾏域顶点的关系是顶点多于基可⾏解16.在⽤图解法求解线性规划问题时,如果取得极值的等值线与可⾏域的⼀段边界重合,则这段边界上的⼀切点都是最优解。
17.求解线性规划问题可能的结果有⽆解,有唯⼀最优解,有⽆穷多个最优解。
18.如果某个约束条件是“≤”情形,若化为标准形式,需要引⼊⼀松弛变量。
19.如果某个变量X j为⾃由变量,则应引进两个⾮负变量X j′,X j〞,同时令X j=Xj ′-Xj。
20.表达线性规划的简式中⽬标函数为max(min)Z=∑c ij x ij。
21..(2.1 P5))线性规划⼀般表达式中,a ij表⽰该元素位置在i⾏j列。
⼆、单选题1.如果⼀个线性规划问题有n个变量,m个约束⽅程(mA.m个 B.n个 C.Cn m D.Cmn个2.下列图形中阴影部分构成的集合是凸集的是 A3.线性规划模型不包括下列_ D要素。
线性规划图解法
下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
精选课件
图解法
Page 2
一、线性规划的图解法(解的几何表示)
对于只有两个变量的线性规划问题,可以在二维直角坐标 平面上作图表示线性规划问题的有关概念,并求解。
X1 + 1.9X2 = 10.2 (≤)
8=5X1+4X2 此点是唯一最优解 (0,2)
D可行域
43=5X1+4X2
max Z
X1 + 1.9X2 = 3.8(≥)
min Z
o
L0: 0=5X1+4X2
精选课件
X1 - 1.9X2 = 3.8 (≤)
Page 18
x1
图解法
x2
6 3x1+x2=6(≥) 4
X = X1 + (1- ) X2 则必定有X = X1 = X2,则称X为S的一个顶点。
精选课件
图解法
Page 24
可以证明,线性规划的可行域以及最优解有以下 性质:
(1)、若线性规划的可行域非空,则可行域必定为一凸集;
(2)、线性规划问题的基本可行解对应于可行域的顶点;
(3)、若可行域有界,线性规划问题的目标函数一定可以在 其可行域的顶点上达到最优,或在可行域的某个顶点(唯一最 优解)或在某两个顶点及其连线上(无穷多最优解)得到。
2x1+ x2 50 z = 50x1+30x2= 1350
z = 50x1+30x2= 900
(15, 20)
简单的线性规划问题(二)
3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1
解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
线性规划和最优解
线性规划和最优解线性规划是一种在数学和运筹学领域常见的问题求解方法,可以应用于各种现实生活中的决策问题。
它是通过一系列线性等式和不等式来建模,并在满足特定约束条件下求解使目标函数取得最优值的变量值。
线性规划的最优解能够帮助我们做出高效的决策,下面将详细介绍线性规划的原理和求解方法。
一、线性规划的基本概念线性规划中,我们首先需要明确问题的目标,并将其表示为一个线性函数,也被称为目标函数。
目标函数可以是最大化或最小化的,具体取决于问题的需求。
其次,我们需要确定一组变量,这些变量的取值将会对目标函数产生影响。
接下来,我们还需要列举出一系列约束条件,这些约束条件通常来自于问题的实际情况,例如资源限制、技术要求等。
最后,我们需要确定这些变量的取值范围,这也是约束条件的一部分。
二、线性规划的数学建模在线性规划中,我们可以通过以下步骤进行数学建模:1. 确定目标函数:根据问题的要求,我们可以定义一个线性函数作为目标函数。
例如,如果我们要最大化某个产品的利润,那么利润就可以是目标函数。
2. 列举约束条件:根据问题的实际情况,我们需要列举出一系列约束条件。
这些约束条件可以是线性等式或不等式,并且通常包含了变量的取值范围。
3. 确定变量的取值范围:根据问题的实际情况,我们需要确定变量的取值范围。
例如,如果某个变量代表一个产品的产量,那么它的取值范围可能是非负数。
4. 构建数学模型:根据目标函数、约束条件和变量的取值范围,我们可以构建一个数学模型,将问题转化为线性规划模型。
三、线性规划的最优解求解方法线性规划的最优解可以通过以下方法求解:1. 图形法:对于只有两个变量的简单线性规划问题,我们可以通过绘制变量的可行域图形,并计算目标函数在图形上的最优解点来求解问题。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。
它通过逐步迭代改进解向量,从而逼近最优解。
这个方法通常适用于复杂的线性规划问题,可以在较短的时间内得到比较好的结果。
3.3.2简单的线性规划问题(整数最优解)
1.应准确建立数学模型,即根据题意找出约束条件, 确定线性目标函数。 2.用图解法求得数学模型的解,即画出可行域, 在可行域内求得使目标函数取得最值的解.(一般最优解 在直线或直线的交点上,要注意斜率的比较。) 3.要根据实际意义将数学模型的解转化为实际 问题的解,即结合实际情况求得最优解。
二、练习(教材P91 T1、2)
12
例题6 某工厂现有两种大小不同规格的钢板可截成 A、B、C三种规格, 每张钢板可同时截得三种规示 :格的小钢板的块数如下表所
规格类型 钢板类型
A规格
2 1
B规格
1 2
C规格
1 3
第一种钢板
第二种钢板
某顾客需要A,B,C三种规格的成品分别为15,18,27块,若你是 经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张 数最少。 解:设需截第一种钢板x张,第二种钢板y张, 分 钢板总张数为Z则, 2x+y≥15, 析 x+2y≥18, 问 x+3y≥27, 目 标 函 数 : 题 x≥0 z = x + y : y≥0
平移L找交点及交点坐标
x 27
x+3y=27
2x+y=15
x+2y=18
当直线L经过点A时z=x+y=11.4, 但它不是最优整数解. 解得交点B,C的坐标B(3,9)和C(4,8)
作直线x+y=12
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
y
15 9
B(3,9)
高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法
3.3.2 简单的线性规划问题第1课时 线性规划的有关概念及图解法学习目标 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.1.可行域内每一个点都满足约束条件.(√)2.可行解有无限多个,最优解只有一个.(×)3.不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)类型一 最优解问题命题角度1 问题存在唯一最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示,求2x +3y 的最大值.考点 线性目标最优解 题点 求线性目标函数的最值解 设区域内任一点P (x ,y ),z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤(1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围. 考点 线性目标最优解 题点 求线性目标函数的最值解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一组平行直线.-13z 是直线在y 轴上的截距, 当直线截距最大时,z 的值最小, 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大, 即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小, 即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 命题角度2 问题的最优解有多个例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.考点 线性规划中的参数问题 题点 无数个最优解问题解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练2 给出平面可行域(如图阴影部分所示),若使目标函数z =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35C.4D.53考点 线性规划中的参数问题 题点 无数个最优解问题 答案 B解析 由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.类型二 生活中的线性规划问题例3 营养专家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 将已知数据列成下表:考点 实际生活中的线性规划问题 题点 线性规划在实际问题中的应用解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,则⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,如图阴影部分所示,把目标函数z =28x +21y 变形为y =-43x +z21,它表示斜率为-43,且随z 变化的一族平行直线,z21是直线在y 轴上的截距,当截距最小时,z 的值最小.由图可知,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6,得M 点的坐标为⎝⎛⎭⎫17,47. 所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 17 kg ,食物B 47 kg.反思与感悟 (1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb 越小,z 就越大.(2)求解的最优解,和目标函数与边界函数的斜率大小有关.跟踪训练3 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.考点 生活实际中的线性规划问题题点 线性规划在实际问题中的应用 答案 4,1解析 设甲、乙两种货物应各托运的箱数为x ,y ,则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52考点 线性目标最优解 题点 求线性目标函数的最值答案 C解析 画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A.6B.7C.8D.23 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A.-3B.3C.-1D.1 考点 线性规划中的参数问题 题点 无数个最优解问题答案 A解析 -1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C.[-1,6]D.⎣⎡⎦⎤-6,32 考点 线性目标最优解 题点 求目标函数的取值范围 答案 A解析 作出不等式表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6. 5.给出平面区域如图阴影部分所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为________.考点 线性规划中的参数问题 题点 无数个最优解问题 答案 35解析 将z =ax +y 变形,得y =-ax +z .当它与直线AC 重合时,z 取最大值的点有无穷多个. ∵k AC =-35,∴-a =-35,即a =35.1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、选择题1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值为( ) A.-6 B.-2 C.0 D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分(含边界)所示,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.715考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 画出可行域如图阴影部分(含边界)所示,令z =x +y ,则y =-x +z .当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 可行域如图阴影部分(含边界)所示,令z =0,得直线l 0:y -2x =0,平移直线l 0知, 当直线l 0过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0,得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A.3,-11B.-3,-11C.11,-3D.11,3考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 作出可行域如图阴影部分(含边界)所示,由图可知z =3x -4y 经过点A 时,z 有最小值,经过点B 时,z 有最大值.易求得A (3,5),B (5,3).∴z max =3×5-4×3=3,z min =3×3-4×5=-11. 5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2 考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.6.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A.1B.2C.3D.4考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,解得a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.7.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A.3 B.4 C.3 2 D.4 2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分(含边界)所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,当目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.8.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7 D.8 考点 线性目标最优解 题点 求线性目标函数的最值 答案 C解析 作出线段AB ,如图所示,作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值,为2×4-1=7. 二、填空题9.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________.(答案用区间表示) 考点 线性目标最优解 题点 求线性目标函数的最值 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分(含边界)所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值, z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值, z max =2×1+3×2=8. 所以z ∈[3,8].10.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,z =2x -y 的最小值是________.考点 线性目标最优解 题点 求线性目标函数的最值 答案 -7解析 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界.三条直线中x +3y =12与3x +y =12交于点A (3,3), x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.11.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为________元. 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用 答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N ,y ∈N .目标函数为z =200x +300y .作出其可行域(图略),易知当x =4,y =5时,z =200x +300y 有最小值2 300. 三、解答题12.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,求z =x +y 的取值范围.考点 线性目标最优解 题点 求线性目标函数的最值解 作出约束条件表示的可行域,如图所示,z =x +y 表示直线y =-x +z 过可行域时,在y 轴上的截距,当目标函数平移至过可行域内的A 点时,z 有最小值.联立⎩⎪⎨⎪⎧2x +y =4,x -2y =2,解得A (2,0).z min =2,z 无最大值.∴x +y ∈[2,+∞).13.某运输公司接受了向抗洪救灾地区每天送至少180 t 支援物资的任务.该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低? 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用解 设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.由表可知x ,y 满足线性约束条件⎩⎪⎨⎪⎧x +y ≤10,24x +30y ≥180,0≤x ≤8,0≤y ≤4,x ,y ∈N ,且目标函数z =320x +504y .作出可行域,如图阴影部分(含边界)所示.可知当直线z =320x +504y 过A (7.5,0)时,z 最小,但A (7.5,0)不是整点,继续向上平移直线z =320x +504y ,可知点(8,0)是最优解.这时z min =320×8+504×0=2 560(元),即用8辆A 型车,成本费最低.所以公司每天调出A 型卡车8辆时,花费成本最低. 四、探究与拓展14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B. 2C.322 D. 5考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 画出不等式组所表示的平面区域如图(阴影部分)所示,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,得A (1,2), 由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得B (2,1).由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两条直线为满足条件的距离最小的一对直线,即|AB |=(1-2)2+(2-1)2= 2.故选B.15.已知变量x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0.若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.考点 线性规划中的参数问题 题点 线性规划中的参数问题 解 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-12,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >12.。
8专题32 线性规划问题的求解策略(解析版)——王彦文
专题八:线性规划问题的求解策略【高考地位】线性规划问题是高考的必考内容,其基本解题策略是定区域、化函数、找最值。
近年来,高考中的线性规划问题更趋灵活多样,体现了“活、变、新”等特点,更加深刻的考查学生解决综合性问题的能力。
在高考中以各种题型中均出现过,其试题难度属中高档题.【方法点评】类型一线性目标函数问题使用情景:求目标函数的最值解题模板:第一步根据已知约束条件画出其可行域;第二步平移目标函数的直线系,根据直线的斜率和截距之间的关系求出其最优解;第三步得出结论.例1 已知实数,x y满足不等式组2,220,xyx y⎧⎪-⎨⎪+-⎩,≥≥≤则2x y-的最大值是___________.【答案】6考点:简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.例2 错误!未找到引用源。
已知x、y满足不等式组2303301x yx yy+-≤⎧⎪+-≥⎨⎪≤⎩,则2z x y=+的最大值是.【答案】6目标函数为2z x y =+,当3,0x y ==时,2z x y =+取得最大值是6. 考点:简单的线性规划. 【名师点睛】简单的线性规划问题,首先要作出可行域,作直线:0l ax by +=,把z ax by =+中转化为a zy x b b=-+,易知zb是直线的纵截距,因此当0b >时,直线向上平移,z 增大,在0b <时,直线向下平移,z 增大,这样我们把z 的值与直线纵截距联系起来,可容易求得最优解.【变式演练1】已知变量,x y 满足约束条件Ω:21y x y x y a ≤⎧⎪+≥⎨⎪-≤⎩,若Ω表示的区域面积为4,则3z x y =-的最大值为___________. 【答案】7试题分析:画出不等式组表示的区域如图,因BC AC ⊥且BC AC =,故区域的面积为4)212)(3(21=--+=a a S ,解之得1=a ,平移动直线z x y -=3,结合图形可以看出当动直线经过点)2,3(B 时,动直线z x y -=3的截距z -最小,z 最大,729max =-=z ,故应填7.C(a+12,1-a2)B(2+a,2)A(-1,2)x-y=ax+y=1y=2Oyx考点:线性规划的有关知识及运用.【变式演练2】已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则实数k 的值为( )A .0B .1 C.1或3 D .3 【答案】B考点:1、线性规划;2、三角形的面积.类型二 非线性目标函数问题使用情景:求非线性目标函数的最值解题模板:第一步 根据已知约束条件画出其可行域;第二步 借助目标函数的几何意义,并利用数形结合法将所求问题转化为我们所熟悉的问题如直线的斜率问题、两点的距离的平方等;第三步 得出结论.例3 已知不等式组0,0,4312x x y x y ≥⎧⎪-≤⎨⎪+≤⎩,则11y z x -=+的最大值为 .【答案】3考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.例4 在平面直角坐标系xOy 中,M 为不等式组360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩所表示的区域上一动点, 已知点()1,2A -,则直线AM 斜率的最小值为( )A .23-B .2-C .0D .45【答案】B试题分析:可行域为一个四边形OBCD 及其内部,其中(0,2),(2,0),(4,6)B C D ,因此直线AM 斜率的最小值为直线AO 斜率,为2-,选B. 考点:线性规划ABC例5 若,x y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪>⎩,则2||z y x =-的最大值为( )A .-8B .-4C .1D .2 【答案】D考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【变式演练3】已知实数,x y 满足401010x y y x +-≤⎧⎪-≥⎨⎪-≥⎩,则2y z x =的最大值是( )A .13B .9C .2D .11【答案】B考点:线性规划.【变式演练4】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤-≥+022002y x y x y x ,且a x y z -=仅在点)21,1(-A 处取得最大值,则实数a 的取值范围为( )A .)1,2[--B .)1,(--∞C .)1,2(--D .)1,1(- 【答案】C试题分析:由约束条件画出可行域如图所示,ax yz -=表示的几何意义是:点()y x ,与()0,a 连线的斜率的取值范围.当0≥a 时,通过图象旋转可知,不可能在⎪⎭⎫ ⎝⎛-21,1A 处取到最大值,舍去;当0<a 时,若01≤<-a ,则必然存在a x =与可行域有交点,此时无斜率,可以理解为斜率趋向于正无穷,故无最大值;当12-<<-a 时,在点A 处取到最大值,在O 处取得最小值,符合题意,故选C.考点:线性规划.【变式演练5】已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦ D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭【答案】D 【解析】考点:简单的线性规划问题.类型三 含参数线性目标函数问题使用情景:求含参数线性目标函数的最值解题模板:第一步 根据已知约束条件画出其可行域;第二步 画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较并进行分类讨论; 第三步 得出结论.例6已知,x y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =-的最大值是最小值的-2倍,则a 的值是 .【答案】12试题分析:由题意得可行域为一个三角形ABC 及其内部,其中(,)(,2),(1,1),(1)A a a B a a C a -<,直线2z x y =-过C 点时取最大值,过B 点时取最小值,因此112(22)2a a a =--+⇒=. 考点:线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【变式演练6】错误!未找到引用源。
线性规划的解的存在性
线性规划的解的存在性线性规划是运筹学中一种经典的优化方法,它用于在给定约束条件下寻找目标函数的最优解。
在实际问题中,我们希望线性规划问题存在一个解,以便能够找到最优解并得到可行的解决方案。
本文将探讨线性规划问题解的存在性,并介绍一些相关的定理和方法。
一、线性规划的基本形式线性规划问题的基本形式可以表示为:\[\begin{align*}&\text{最大化} && c^T x \\&\text{限制条件} && Ax≤b, \\&&&x≥0,\end{align*}\]其中,$c$为目标函数的系数向量,$x$为决策变量向量,$A$为约束条件的系数矩阵,$b$为约束条件的常数向量。
我们将问题的解称为可行解,假设至少存在一个可行解。
二、线性规划的解的存在性定理对于线性规划问题,存在性定理是我们研究和求解问题的基础。
其中最著名和应用广泛的定理是线性规划的有界性定理(boundedness theorem)和最优解存在定理(existence of optimal solution theorem)。
1. 有界性定理有界性定理指出:如果线性规划问题存在有限的目标函数值,则问题存在一个有界的最优解。
也就是说,目标函数值不可能无限大或无限小。
这个定理保证了线性规划问题的解的存在性。
即使问题的解可能会在约束范围的边界上取到,但至少存在一个最优解,可以提供一个具体的解决方案。
2. 最优解存在定理最优解存在定理指出:如果线性规划问题在可行域内具有非空的目标函数上确界,则问题存在一个最优解。
这个定理保证了线性规划问题在存在目标函数上确界的情况下,一定存在一个最优解。
它意味着无论如何调整目标函数,我们都能找到一个最优解,以最大或最小化目标函数的值。
三、线性规划解的存在性的探讨有了存在性定理的基础,我们可以进一步探讨线性规划问题解的存在性。
以下是一些常见的情况和相关讨论。
线性规划问题
以上约束方程组有无穷多个解,单纯形法就是 确定这些解的过程
.(1)初始单纯形表: X1 x2 x3 x4 x0
x3
x4
3
5
4
4
1
0
0
1
36
40
-32
-30
0
0
0
在初始单纯形表中,横线上以上部分即为约束方程组
的增广矩阵,而横线以下的这一行由目标函数的系数
组成(注意到目标函数中未出现 x3和x4 及常数项,
X1 X3 x1
0
0 1
x2
8 5 4 5
x3
1 0
x4
3 5 1 5
x0 12 8 256
22 5
0
32 5
对这张单纯形表,横线以上部分对应与原 约束方程组同解的方程组,此时等价地将 原规划问题变为如下问题:
22 32 min z 256 x2 x4 . 5 5
第二节:线性规划的解法 一、几个概念
对线性规划问题称满足全部约束条件的解为线 性规划问题的可行解,全部可行解的集合称为 可行域。使目标函数取最小值的可行解,称为 最优解,此时目标函数的最小值称为最优值。 一般讲,线性规划问题可行解有无穷多个,要从中 找出最优解也是很困难的。通常线性规划问题 的可行域的顶点只有有限多个,将这些点的的标 函数值全算出也是可以的.一般对于两个变量线 性规划问题进行图解法。
3x1 4 x 2 x3 36, 5x1 4 x 2 x 4 40;
以上可以得到问题的标准形 min z 32x 30x .
1 2
s.t.
3x1 4 x2 x3 36 5 x1 4 x2 x4 40 x 0 ( j 1,2,3,4) j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 A = 1 0
2 0 2
1 0 0
0 1 0
0 0 1
是线性无关组 是此问题的一个基
x 其中 3 , x 4 , x 5 是非基变量。 是非基变量。
x1 为基变量,而 为基变量,, x 2
max z = 3 x1 + 5 x 2
对应的基变量和非基变量, 分别指出 B 1 和 B 2 对应的基变量和非基变量,
求出基本解, 求出基本解,并说明 B1、B2 是不是可行基. 是不是可行基.
2.判断题(你认为下列命题是否正确, 判断题(你认为下列命题是否正确, 对正确的打“ 错误的打“ 对正确的打“√”;错误的打“×”。) 若线性规划无最优解则其可行域无界。 1.若线性规划无最优解则其可行域无界。 ( ) 凡基本解一定是可行解。 2.凡基本解一定是可行解。 ( ) 3.线性规划的最优解一定是基本最优解。( 线性规划的最优解一定是基本最优解。( 线性规划的最优解是可行解。( 4.线性规划的最优解是可行解。( ) 可行解是基本解。( 5.可行解是基本解。( )
记约束方程系数矩阵A的列向量是
P , P2 , ⋯ , Pn 1
即 设
A = (P1 , P2 , ⋯ , Pn ),
Pj1 , Pj2 ,⋯ , Pjm 是A的m个列向量, 个列向量,
如果 Pj1 , Pj 2 , ⋯, Pjm 是线性无关的, 则称
Pj1 , Pj 2 ,⋯ , Pjm
为基向量。 为基向量。
3 1 0 2 0 2 1 0 0 0 1 0 0 0 1
在上例1 在上例1中, 对应于 B1
X 的基解为, 12 )
T
是一个基可行解, 是一个基可行解, 对应于 B2
X 的基解为 2 =
(0 , 9 , 0 , 4 , − 6 )。
2、基(base) 、
max z = c1 x1 + c2 x2 + ⋯ + cn xn
(1.1)
(1.2 ) (1.3 )
a11 x1 + a12 x 2 + ⋯ + a1 n x n = b1 a 21 x1 + a 22 x 2 + ⋯ + a 2 n x n = b2 s .t . ⋯⋯ ⋯⋯ a x + a x + ⋯ + a x = b m2 2 mn n m m1 1 x1 ≥ 0, x 2 ≥ 0, ⋯ , x n ≥ 0
3 2 1 0 0 A = 1 0 0 1 0 0 2 0 0 1
约束方程A的系数矩阵为: 约束方程A的系数矩阵为:
其列向量: 3 2 1 0 0 P1 = 1 , P 2 = 0 , P 3 = 0 , P 4 = 1 , P 5 = 0 0 2 0 0 1
3.2 线性规划问题的基本解
基本概念: 基本概念
可行解、可行域、最优解、基、基变量、基阵、基本可 可行解、可行域、最优解、 基变量、基阵、 行解
一、基本概念: 基本概念
给定一个线性规划问题LP 给定一个线性规划问题LP
max z = c1 x1 + c 2 x 2 + ⋯ + c n x n
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b2 s . t . ⋯⋯⋯⋯ a x + a x + ⋯ + a x = b m2 2 mn n m m1 1 x 1 ≥ 0, x 2 ≥ 0, ⋯ , x n ≥ 0
3、基变量(basic variables)
构成线性规划问题的一组基向量, 设Pj 1 , Pj 2 , ⋯ , Pjm 构成线性规划问题的一组基向量, 称为基变量 基变量, 则对应的变量 x j 1 , x j 2 ,⋯ , x jm 称为基变量, 其余的向量称为非基向量,其余的变量称为非基变量 其余的向量称为非基向量 其余的变量称为非基变量 (non-basic-variable), (non-basic-variable), 矩阵 B = Pj 1 , Pj 2 , ⋯ , Pjm
分别是变量
x1 , x2 , x3 , x4 , x5 的系数向量。 的系数向量。
max z = 3 x1 + 5 x 2
= 18 3x1 + 2 x2 + x3 x + x4 = 4 1 2 x2 + x5 = 12 x1 , x2 , x3 , x4 , x5 ≥ 0
向量组 P3 , P4 , P5
1 0 0
0 1 0
0 0 1
4、基解
设 B = Pj1 , Pj 2 , ⋯, Pjm LP的一基阵 的一基阵, 题LP的一基阵,
(
)
是线性规划问 表示基变量向量, 表示基变量向量,
X B = x j 1 , x j 2 ,⋯ , x jm
XN
(
)
表示非基变量向量。 表示非基变量向量。
( 1.1)
( 1.2 ) ( 1.3 )
1、可行解 (a feasible solution)
maxz = c1 x1 + c 2 x 2 + ⋯ + c n x n
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b2 s . t . ⋯ ⋯ ⋯ ⋯ a x + a x + ⋯ + a x = b m2 2 mn n m m1 1 x 1 ≥ 0, x 2 ≥ 0, ⋯ , x n ≥ 0
可行解
可 行 解
行 解 可 基
基 解
图1
1.设线性规划 1.设线性规划
max Z = 5 x1 + 2 x 2 2 x1 + 3 x 2 + x 3 = 50 4 x1 − 2 x 2 + x 4 = 60 x ≥ 0, j = 1, ⋯ , 4 j
2 1 2 0 取基 B1 = (P1, P3 ) = 、 B2= 4 1 , 4 0
X B = B −1 b
得出约束方程(1.2)至少含有n 得出约束方程(1.2)至少含有n-m个0元的解 (1.2)至少含有
B −1 b X0 = 0
称之为相应于基B solution)。 称之为相应于基B的一个基本解或基解(a basic solution)。
5、基可行解
3.线性规划可行域的顶点一定是( 3.线性规划可行域的顶点一定是( 线性规划可行域的顶点一定是 A.基本可行解 B.非基本解 A.基本可行解 B.非基本解 C.非可行解 D.最优解 C.非可行解 D.最优解 4. A. B. C. D.
)。
X是线性规划的基本可行解,则有( X是线性规划的基本可行解,则有( 是线性规划的基本可行解 X中的基变量非零 中的基变量非零, X中的基变量非零,非基变量为零 X不一定满足约束条件 X不一定满足约束条件 X中的基变量非负 中的基变量非负, X中的基变量非负,非基变量为零 X是最优解 X是最优解
= 18 3x1 + 2 x2 + x3 x + x4 = 4 1 2 x2 + x5 = 12 x1 , x2 , x3 , x4 , x5 ≥ 0
向量组 P2 , P4 , P5
3 A = 1 0 2 0 2 1 0 0 0 1 0 0 0 1
是线性无关组
B2 = ( P , P , P ) 是此问题的一个基 2 4 5
x 2 , x 4 , x 5 是基变量, 是基变量,
而 x1 , x3 是非基变量。 是非基变量。
注:(1)基不一定唯一 (2)设B是A的一个m阶子矩阵,则B是线性规划问题的 的一个m阶子矩阵, 基阵,当且仅当B 基阵,当且仅当B是可逆阵
设 个基解, 个基解, 如果
B −1 b X0 = 0
是对应于基阵B的一 是对应于基阵B
B b X0 = 0 ≥0
−1
B −1b 则称 X 0 = 0 行解或基可行解. 行解或基可行解. (a basic feasible
(
)
称为基 基阵(basic matrix)。 称为基或基阵(basic matrix)。
例1
max z = 3 x1 + 5 x 2
= 18 3 x1 + 2 x 2 + x 3 + x4 = 4 x1 2 x2 + x 5 = 12 x ,x ,x ,x ,x ≥ 0 1 2 3 4 5
而不是基可行解。 而不是基可行解。 思考题:试列出例 中问题的所有基解、基可行解。 思考题:试列出例1中问题的所有基解、基可行解。
注:给定线性规划问题LP,其基可行 给定线性规划问题LP, LP m Cn 解的数目是有限个, 解的数目是有限个,不会超过 。 给出了线性规划问题的解的关系。 图1给出了线性规划问题的解的关系。
( 1.1)
( 1.2 ) ( 1.3 )
称为线性规划问题的可行解 可行解; 满足约束条件的X称为线性规划问题的可行解;
X = ( x1 , x 2 , ⋯ , x n )
T
所有可行解的集合称为可行域 (feasible region), 所有可行解的集合称为可行域 使目标函数(1.1)达到最大值的可行解称为最优解(an 使目标函数(1.1)达到最大值的可行解称为最优解(an (1.1)达到最大值的可行解称为最优解 solution)。 optimal solution)。