高二下数学期末复习试题四(文科)

合集下载

(完整版)高二下期末文科数学试题及答案,推荐文档

(完整版)高二下期末文科数学试题及答案,推荐文档
哈师大附中高二下学期期末考试 文科数学试题
A. 9 B. 18 C. 27 D. 36
9.集合 M x 0 x 3, N x 0 x 2,则 a M 是 a N 的
建议收藏下载本文,以便随时学习! 一.选择题(本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目
8
16
(如图所示),设甲乙两组数据的平均数分别为 x甲,x乙 ,中位数分别为 m甲,m乙 ,则


2.将两颗骰子各掷一次,设事件 A 为“两个点数相同”则概率 P( A) 等于
865 0
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
n
m
n
n
二.填空题(本大题共 4 小题,每小题 5 分)
8.某单位共有老、中、青职工 430 人,其中有青年职工 160 人,中年职工人数是老年职工人数的
13.集合 A 2,3, B 1, 2,3从 A,B 中各任取一个数,则这两数之和为 4 的概率
2则倍该.样为本我了中解的去职老工年人身职体工也状抽况取就,人现有数采为用人分层!抽为样方U法R进扼行调腕查,入在抽站取的内样本信中有不青年存职在工 32向人 你偶同. 意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
x1, y1 , x2 , y2 ,, xn , yn ,其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方
A. x2 y2 1 B. x2 y2 1 C. x2 y2 1 D. x2 y2 1

高二下学期数学期末考试试卷(文科)

高二下学期数学期末考试试卷(文科)

1高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分) 1.把十进制的23化成二进制数是( ) A. 00 110(2)B. 10 111(2)C. 10 110(2)D. 11 101(2)2.从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是( )A.B.C.D.3.已知命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为( )A. 1a ∀<-,有260a a +<成立B. 1a ∀≥-,有260a a +<成立C. 1a ∃<-,有260a a +≤成立D. 1a ∃<-,有260a a +<成立4.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2, 则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A. x ,s 2B. 5x +2,s 2C. 5x +2,25s 2D. x ,25s 25.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,2抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A. 15B. 18C. 21D. 226.按右图所示的程序框图,若输入81a =,则输出的i =( ) A. 14 B. 17 C. 19D. 217.若双曲线22221(,0)y x a b a b -=>的一条渐近线方程为34y x =,则该双曲线的离心率为( )A.43B.53C.169D.2598.已知()01,0,a a x >≠∈+∞且,命题P :若11a x >>且,则log 0a x >,在命题P 、P 的逆命题、P 的否命题、P 的逆否命题、P ⌝这5个命题中,真命题的个数为( )A. 1B. 2C. 3D. 49.函数f(x)=ln 2x xx-在点(1,-2)处的切线方程为( ) A. 2x -y -4=0B. 2x +y =0C. x -y -3=0D. x +y +1=010.椭圆221x my +=( ) A. 1B. 1或2C. 4D. 2或411.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )3A. ()2,1B. ()2,1-C. 11,4⎛⎫- ⎪⎝⎭D. 11,4⎛⎫⎪⎝⎭12.已知函数()x x x f ln 1+=在区间()032,>⎪⎭⎫ ⎝⎛+a a a 上存在极值,则实数的取值范围是( )A. ⎪⎭⎫⎝⎛32,21 B. ⎪⎭⎫⎝⎛1,32 C. ⎪⎭⎫⎝⎛21,31 D. ⎪⎭⎫ ⎝⎛1,31二、填空题(每小题5分,共20分)13.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是__________.14.已知某校随机抽取了100名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该校有3000名学生,则在本次体育测试中,成绩不低于70分的学生人数约为__________.15.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NF F ∆的面积___________16.已知函数()ln mf x x x=+,若()()2,1f b f a b a b a ->><-时恒成立,则实数m 的取值范围是____________。

高二下学期文科数学期末复习

高二下学期文科数学期末复习

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z .2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U =A (用列举法表示).3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A . 5.全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (U B )等于 .6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = .7.命题“若b a >,则b a 22>”的否命题为 . 8.设函数()⎩⎨⎧=x x x f 2log 2 11>≤x x ,则()[]=2f f . 9.函数)23(log 5.0-=x y 的定义域是 .10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .11.)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的范围是 .12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 .13.已知函数211)(x x f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(R M )N ⋂等于 .14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2xx x f 1||1||>≤x x ,则)]21([f f 等于 . 15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 . 17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,x x f 3)(=,则=)2011(f .18.函数221xx y =+的值域为 . 19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 .22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 .二、解答题:1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围.2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?4.已知命题p :指数函数x a x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围.7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.。

高二下数学文科期末试卷四

高二下数学文科期末试卷四

高二下数学文科期末试卷四1.已知全集}6,5,4,3,2,1,0{=U ,集合{1,2}A =,}5,2,0{=B ,则集合=B A C U )(( )A .{}6,4,3B .{}5,3C .{}5,0D .{}4,2,02. 设复数)21)(43(i i z +-=(i 是虚数单位),则复数z 的虚部为( )A .2- B. 2C. i 2-D. i 23.若复数z 满足i z i 6)33(=-(i 是虚数单位),则z =( )A. i 2323+-B. 32C. 32D. 32- 4.设R x ∈,则“032>-x x ”是“4>x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l 平行,则=a ( )A .-1B .2C .0或2-D .1-或26.若抛物线)0(22>=p px y 的焦点在直线022=--y x 上,则该抛物线的准线方程为( ) A.2x =- B. 4=x C. 8-=x D. 4-=y7.等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( ) A .9B .18C .36D .728.已知椭圆的长轴长是8,离心率是43,则此椭圆的标准方程是( ) A.191622=+y x B.171622=+y x 或116722=+y x C.1251622=+y xD.1251622=+y x 或1162522=+y x 9.在ABC ∆中,若bc c b a -+=222,则A ∠=( )A.3π B. 6π C. 32πD.3π或32π10.设曲线2ax y =在点),1(a 处的切线与直线062=--y x 平行,则a =( )A .1 B.21C .21- D .1-11.已知函数x a x f cos )(=的图象经过点)1,3(πP ,则函数图象上过点P 的切线斜率等于( )A .2B. 3 C .3-D .1-12.椭圆2212516x y +=上一点P 到它一个焦点的距离是7,则P 到另一个焦点的距离是( ) A .17 B .15 C .3 D .113.准线方程为1=x 的抛物线的标准方程是( )A. 22y x =-B. 24y x =-C. x y 22=D. 24y x = 14.椭圆2266x y +=的长轴的端点坐标是( )A .)0,1(-, )0,1( B. )0,6(-, )0,6(C. )0,6(-, )0,6(D. )6,0(-,)6,0(15.函数32()23125f x x x x =--+ 在[]0,3上的最大值和最小值分别是( ) A.5,15- B. 5,4- C. 4-, 15- D. 5,16-16.已知函数()af x x =,若(1)4,f '-=-则a =( )A .4 B.-4 C . 5 D.-5 17.0)(=x f 的导数是( )A.0B.1C.不存在D.不确定18.命题p :∀R x ∈,210x x -+>的否定是( )A . 210x R x x ∀∈-+≤,B . 210x R x x ∃∈-+≤,C . 210x R x x ∀∈-+<,D . 210x R x x ∃∈-+<,19.函数3()1f x ax x =++有极值的充要条件是( )A .0a >B .0a ≥C .0a <D .0a ≤ 20.如图,函数()y f x =的图象在点P 处的切线方程是8y x =-+,则()()55f f '+= 21.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则a =( )A .3-B .3-或1C .3 或1-D .122.抛物线28x y =的焦点坐标是 ______________23.曲线34y x x =-在点()1,3--处的切线方程是 ______________24.已知0>m ,0>n ,向量)1,(m a =,)1,1(n b -= ,且a ∥b ,则12m n+的最小值是25.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200 人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本. 则从上述各层中依次抽取的人数分别是( )A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,6 26.设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条( ) A .充分非必要条件 B .必要非充分条件C .充分且不必要条件D .非充分非必要条件27.已知i 为虚数单位,复数121iz i+=-,则复数z 的虚部是( ) A .i 23 B .23 C .i 21- D .21-28.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么双曲线的离心率是( )AB29.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是 ( )30.设有一个回归方程ˆ2 2.5yx =-,变量x 增加一个单位时,变量ˆy 平均( ) A.增加2.5 个单位 B.增加2个单位 C.减少2.5个单位 D.减少2个单位 31.已知0>a ,0>b ,121=+ba ,则b a +的最小值是( ) A.24 B.223+ C. 22 D.5 32.曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 ( ) A.3 B.6 C. 8 D. 1033.在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )⎪⎩⎪⎨⎧==''23.A y y x x ⎪⎩⎪⎨⎧==y y x x 23.B ''⎪⎩⎪⎨⎧==y y x x 213.C '' ⎪⎩⎪⎨⎧==''213.D yy x x34.若实数y x , 满足:221169x y +=,则010=++y x 的取值范围是( ) A. []15,5 B .[]15,10 C .[]10,15- D .[]35,15- 35.已知y x ,的取值如下表:现已知y 与x 线性相关,且a x y+=95.0ˆ,则a = 36.设复数z 满足1z =,且z i )43(+是纯虚数,求z 的取值范围.37.已知复数z 满足: 13,z i z =+-求22(1)(34)2i i z++的值.38.某校90名专职教师的年龄状况如下表:现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年。

高二下期期末考试文科数学

高二下期期末考试文科数学

高二学年下学期期末考试数学(文)试题试题说明:1、本试题满分 150分,答题时间 120分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

第Ⅰ卷 选择题部分(共60分)一、选择题(每小题只有一个选项正确,每小题5分,共60分)1.已知集合{}52≤∈=x N x P ,{}1ln ->∈=x R x Q ,则Q P 的真子集个数为 ( )A 2B 3C 4D 72.在ABC ∆中,“B A >”是“B A sin sin >”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 非充分也非必要条件 3.已知命题p :()1-=xx f 在其定义域内是减函数;命题q :()x x g tan =的图象关于2π=x 对称。

则下列命题中真命题是( )A q p ∨B q p ∧C ()q p ∧⌝D ()q p ∨⌝4.设方程022=-+x x的根为1x ,方程021log 2=+-x x的根为2x ,则1x +2x = ( )A 1B 2C 3D 45.设23ln =a ,()523ln =b ,075sin =c 则( )A c b a <<B c a b <<C b c a <<D b a c << 6.已知函数()()⎩⎨⎧≥<-=-0,20,1log 122x x x x f x ,则()()()()=+-03f f f f ( )A 7B 3ln 7+C 8D 97.欲得到函数()x x f 2sin 2=的图象,只需将函数()⎪⎭⎫⎝⎛-=42cos 2πx x g 的图象 ( ) A 向右平移8π个单位 B 向右平移4π个单位 C 向左平移8π个单位 D 向左平移4π个单位8.函数()xx xx x f cos sin 2++=在[]ππ,-的图象大致是( )9. 命题“R x ∈∃0,使02≤x ”的否定是( )A 不存在R x ∈0,02>x B 存在R x ∈0,020≥xC R x ∈∀,02≤xD R x ∈∀,02>x10.设b a ,为正数,且bab a2log 142=+--- ,则( )A b a 2<B b a 2>C b a 2=D 12=+b a11.定义在R 上的函数()x f y =是奇函数,()x f y -=2为偶函数,若()11=f ,则()()()=++202120202019f f f ( )A 2-B 0C 2D 312. 函数()x f 是定义在R 上的函数,其导函数记为()x f ',()()b a x f x g +-=的图象关于()b a P ,对称,当0>x 时,()()x x f x f <'恒成立,若()02=f ,则不等式()01>-x x f 的解集为( )A ()()2,10,2 -B ()()2,10,2 -C ()()2,2,1-∞-D ()()+∞-,20,2第II 卷 非选择题部分(共90分)二、填空题(每小题5分,共20分)13.若函数()a ax x x x f ++-=2331在()1,0上不单调,则实数a 的取值范围是______. 14.已知钝角ABC ∆的三边都是正整数,且成等差,公差为偶数,则满足条件的ABC ∆的外接圆的面积的最小值为______.15.设0>a ,()ax x f 22=,()23-=x e x g (e 是自然对数的底),若对⎥⎦⎤⎢⎣⎡∈∀2,211x ,⎥⎦⎤⎢⎣⎡∈∃2,212x ,使得()()()()2121x g x g x f x f =成立,则正数=a ______.16.关于函数xx x f sin 1sin )(+=有如下四个命题: ①)(x f 的图像关于y 轴对称;②)(x f 的图像关于原点对称; ③)(x f 在)2,0(π上单调递减;④)(x f 的最小值为2;⑤)(x f 的最小正周期为π.其中所有真命题的序号是__________.三、解答题(共70分)17.(本题满分10分)已知()x x x f 2sin -=,(1)求()x f y =在0=x 处的切线方程;(2)求()x f y =在⎥⎦⎤⎢⎣⎡2,0π上的最值.18.(本题满分12分)已知βα,为锐角,34tan =α,()55cos -=+βα,(1)求αα2sin 2cos +的值; (2)求()αβ-tan 的值.19.(本题满分12分)已知()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=4cos 4cos 22sin sin 2ππππx x x x x f(1)求()x f 的最小正周期;(2)若()()a x f x g -=(a 为常数)在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的零点1x 和2x ,求1x +2x .20.(本题满分12分)ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,三个内角C B A ,,满足1sin sin sin sin sin sin sin 2=-+C B AB C C B , (1)求A ;(2)若2=a ,ABC ∆的内角平分线935=AE ,求ABC ∆的周长.21. (本题满分12分)已知椭圆C :()012222>>=+b a b y a x 的离心率为22,且经过点()2,2.(1)求椭圆C 的方程;(2)不过坐标原点也不平行于坐标轴的直线l 与椭圆C 交于A 、B 两点,设线段AB 的中点为M ,求证:直线OM 的斜率与直线l 的斜率之积为定值.22.(本题满分12分)已知函数1()e ln ln x f x a x a -=-+(e 是自然对数的底). (1)当1=a 时,求函数)(x f y =的单调区间;(2)若1)(≥x f 在),0(+∞上恒成立,求正数a 的取值范围.高二学年下学期期末考试数学(文)试题答案一、1-5 :BCDBC 6-10:DAADC 11-12:BA二、填空题(每小题5分,共20分。

高二数学文科期末测试题

高二数学文科期末测试题

高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。

)A。

①②。

B。

①③。

C。

②③。

D。

③④2.“x≠”是“x>”的(。

)A。

充分而不必要条件。

B。

必要而不充分条件C。

充分必要条件。

D。

既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。

)A。

$\forall a\in R^+$,方程C表示椭圆。

B。

$\forall a\in R^-$,方程C表示双曲线C。

$\exists a\in R^-$,方程C表示椭圆。

D。

$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。

)A。

$(0,\frac{1}{4})$。

B。

$(0,\frac{1}{2})$。

C。

$(1,\frac{1}{4})$。

D。

$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。

)A。

$y=\pm2x$,$e=3$。

B。

$y=\pm\frac{1}{2}x$,$e=5$C。

$y=\pm\frac{1}{2}x$,$e=3$。

D。

$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。

)A。

$y=2e(x-1)$。

B。

$y=ex-1$。

C。

$y=e(x-1)$。

D。

$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。

)A。

$a>$。

B。

$a\geq$。

C。

$a<$。

D。

$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。

)A。

$\frac{2}{3}$。

B。

$-1$。

C。

$1$。

D。

$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

湖北省荆门市高二数学下学期期末试题 文(含解析)-人教版高二全册数学试题

湖北省荆门市高二数学下学期期末试题 文(含解析)-人教版高二全册数学试题

2016-2017学年某某省某某市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四项中,只有一项是符合题目要求的)1.复数z满足z=i2017,则z的共轭复数的虚部是()A.﹣1 B.1 C.0 D.i2.设命题p:∀x>0,log2x<2x+3,则¬p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+33.已知A,B是非空集合,命题甲:A∪B=B,命题乙:A⊊B,那么()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件4.双曲线的离心率为,则其渐近线方程为()A. B.y=±2x C.D.5.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大其中正确的是()A.①④ B.②③ C.①③ D.②④6.设f(x)是定义在(﹣∞,+∞)上的单调递减函数,且f(x)为奇函数.若f(1)=﹣1,则不等式﹣1≤f(x﹣2)≤1的解集为()A.[﹣1,1] B.[0,4] C.[﹣2,2] D.[1,3]7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x 3 4 5 6y 2.5 t 4 4.5 A.3 B.3.15 C.3.5 D.4.58.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为()A.B.C.D.9.我国古代名著《九章算术》用“辗转相除法”求两个正整数的最大公约数是一个伟大创举.其程序框图如图,当输入a=1995,b=228时,输出的()A.17 B.19 C.27 D.5710.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆 C.双曲线的一支 D.抛物线11.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e﹣x,③f(x)=lnx,④f (x)=tanx,其中有“巧值点”的函数的个数是()A.1 B.2 C.3 D.412.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上相应位置)13.函数的定义域为.14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是.15.函数.若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,则f(x)的极小值(其中e为自然对数的底数)等于.16.已知函数y=f(x)恒满足f(x+2)=f(x),且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数g(x)=f(x)﹣|lgx|在R上的零点的个数是.三、解答题(本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=4x+m•2x+1(x∈(﹣∞,0],m∈R)(Ⅰ)当m=﹣1时,求函数f(x)的值域;(Ⅱ)若f(x)有零点,求m的取值X围.18.设命题p:方程表示双曲线;命题q:斜率为k的直线l过定点P(﹣2,1),且与抛物线y2=4x有两个不同的公共点.若p∧q是真命题,求k的取值X围.19.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.(Ⅰ)求T关于x的函数解析式;(Ⅱ)求食堂每天面包需求量的中位数;(Ⅲ)根据直方图估计利润T不少于100元的概率.20.已知函数f(x)=ax﹣1﹣lnx(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在x=1处取得极值,不等式f(x)≥bx﹣2对任意x∈(0,+∞)恒成立,某某数b的取值X围.21.已知椭圆C:=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,求的值.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分22.已知曲线C 的极坐标方程为ρ2﹣4(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P(x,y)在该曲线上,求x+y 的取值X围.23.在直角坐标系中,定义P(x1,y1),Q(x2,y2)之间的“直角距离”:d(P,Q)=|x1﹣x2|+|y1﹣y2|.若点A(﹣2,4),M(x,y)为直线x﹣y+8=0上的动点(Ⅰ)解关于x的不等式d(A,M)≤4;(Ⅱ)求d(A,M)的最小值.2016-2017学年某某省某某市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四项中,只有一项是符合题目要求的)1.复数z满足z=i2017,则z的共轭复数的虚部是()A.﹣1 B.1 C.0 D.i【考点】A1:虚数单位i及其性质.【分析】由已知求得,则答案可求.【解答】解:复数z满足z=i2016•i=i,则z的共轭复数=﹣i,则其虚部是﹣1,故选:A2.设命题p:∀x>0,log2x<2x+3,则¬p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+3【考点】2J:命题的否定.【分析】根据全称命题的否定为特称命题,即可得到答案.【解答】解:根据全称命题的否定为特称命题,则命题p:∀x>0,log2x<2x+3,则¬p为∃x>0,log2x≥2x+3,故选:B3.已知A,B是非空集合,命题甲:A∪B=B,命题乙:A⊊B,那么()A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】命题甲:A∪B=B,命题乙:A B,A∪B=B⇒A⊆B,A B⇒A∪B=B.由此能求出结果.【解答】解:∵命题甲:A∪B=B,命题乙:A B,A∪B=B⇒A⊆B,A B⇒A∪B=B.∴甲是乙的必要不充分条件.故选B.4.双曲线的离心率为,则其渐近线方程为()A. B.y=±2x C.D.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程分析可得其焦点在y轴上,由离心率公式可得e2==5,变形可得=2;由焦点在y轴上的双曲线的渐近线方程为y=±x,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在y轴上,且c=,若其离心率e=,则有e2==5,则有=2;又由双曲线的焦点在y轴上,其渐近线方程为:y=±x,即y=±x;故选:A.5.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线方程=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大其中正确的是()A.①④ B.②③ C.①③ D.②④【考点】BL:独立性检验;B3:分层抽样方法;BK:线性回归方程.【分析】第一个命题是一个系统抽样;这个说法不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1;在回归直线方程中,代入一个x的值,得到的是预报值,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确,两个随机变量相关性越强,则相关系数的绝对值越接近于1.②正确在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.③正确,对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,④不正确.综上可知②③正确,故选B.6.设f(x)是定义在(﹣∞,+∞)上的单调递减函数,且f(x)为奇函数.若f(1)=﹣1,则不等式﹣1≤f(x﹣2)≤1的解集为()A.[﹣1,1] B.[0,4] C.[﹣2,2] D.[1,3]【考点】3N:奇偶性与单调性的综合.【分析】根据题意,由函数为奇函数可得f(﹣1)=﹣f(1)=1,结合的单调性分析可得﹣1≤f(x﹣2)≤1⇒f(1)≤f(x﹣2)≤f(﹣1)⇒﹣1≤x﹣2≤1,解可得x的取值X围,即可得答案.【解答】解:根据题意,若f(x)为奇函数,则f(﹣1)=﹣f(1)=1,则﹣1≤f(x﹣2)≤1⇒f(1)≤f(x﹣2)≤f(﹣1),又由f(x)是定义在(﹣∞,+∞)上的单调递减函数,则﹣1≤f(x﹣2)≤1⇒f(1)≤f(x﹣2)≤f(﹣1)⇒﹣1≤x﹣2≤1,解可得1≤x≤3;即[1,3];故选:D.7.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x 3 4 5 6y 2.5 t 4 4.5A.3 B.3.15 C.3.5 D.4.5【考点】BQ:回归分析的初步应用.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.8.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】首先求得满足题意的排列的种数,然后利用古典概型公式进行计算即可求得概率值.【解答】解:使用乘法原理考查满足题意的排列方法,先从4个人里选3个进行调换,因为每个人都不能坐在原来的位置上,因此第一个人有两种坐法,被坐了自己椅子的那个人只能坐在第三个人的椅子上(一种坐法),才能保证第三个人也不坐在自己的椅子上.因此三个人调换有两种调换方法.故不同的调换方法有种,恰有一个人位置不变的概率为.故选:C.9.我国古代名著《九章算术》用“辗转相除法”求两个正整数的最大公约数是一个伟大创举.其程序框图如图,当输入a=1995,b=228时,输出的()A.17 B.19 C.27 D.57【考点】EF:程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:模拟程序框图的运行过程,如下;a=1995,b=228,执行循环体,r=171,a=228,b=171,不满足退出循环的条件,执行循环体,r=57,a=171,b=57,不满足退出循环的条件,执行循环体,r=0,a=57,b=0,满足退出循环的条件r=0,退出循环,输出a的值为57.故选:D.10.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆 C.双曲线的一支 D.抛物线【考点】KA:双曲线的定义.【分析】设动圆P的半径为r,然后根据⊙P与⊙O:x2+y2=1,⊙F:x2+y2﹣8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.【解答】解:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2﹣8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|﹣|PO|=(2+r)﹣(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.11.已知函数f(x)及其导数f'(x),若存在x0使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.给出下列五个函数:①f(x)=x2,②f(x)=e﹣x,③f(x)=lnx,④f (x)=tanx,其中有“巧值点”的函数的个数是()A.1 B.2 C.3 D.4【考点】63:导数的运算.【分析】根据题意,依次分析四个函数,分别求函数的导数,根据条件f(x0)=f′(x0),确实是否有解即可.【解答】解:根据题意,依次分析所给的函数:①、若f(x)=x2;则f′(x)=2x,由x2=2x,得x=0或x=2,这个方程显然有解,故①符合要求;②、若f(x)=e﹣x;则f′(x)=﹣e﹣x,即e﹣x=﹣e﹣x,此方程无解,②不符合要求;③、f(x)=lnx,则f′(x)=,若lnx=,利用数形结合可知该方程存在实数解,③符合要求;④、f(x)=tanx,则f′(x)=﹣,即sinxcosx=﹣1,变形可sin2x=﹣2,无解,④不符合要求;故选:B.12.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】K9:抛物线的应用;K8:抛物线的简单性质;KH:直线与圆锥曲线的综合问题.【分析】根据=,进而根据两三角形相似,推断出=,根据抛物线的定义求得=,根据|BF|的值求得B的坐标,进而利用两点式求得直线的方程,把x=代入,即可求得A的坐标,进而求得的值,则三角形的面积之比可得.【解答】解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB1|=2知x B=,y B=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,x A=2,∴|AF|=|AA1|=.故===.故选A.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上相应位置)13.函数的定义域为(].【考点】33:函数的定义域及其求法.【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【解答】解:由题意得:0<2x﹣1≤1,解得:<x≤1,故答案为:(].14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是甲.【考点】F4:进行简单的合情推理.【分析】此题可以采用假设法进行讨论推理,即可得出结论.【解答】解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故答案为:甲.15.函数.若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,则f(x)的极小值(其中e为自然对数的底数)等于 2 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】先利用导数的几何意义求出k的值,然后利用导数求该函数单调区间及其极值.【解答】解:由函数得f′(x)=﹣.∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0.即f′(e)=0,有﹣=0,解得k=e.∴f′(x)=﹣=,由f′(x)<0得0<x<e,由f′(x)>0得x>e.∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,当x=e时f(x)取得极小值f(e)=lne+=2.故答案为:2.16.已知函数y=f(x)恒满足f(x+2)=f(x),且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数g(x)=f(x)﹣|lgx|在R上的零点的个数是8 .【考点】3P:抽象函数及其应用.【分析】作出f(x)与y=|lgx|的函数图象,根据函数图象的交点个数得出答案.【解答】解:∵f(x+2)=f(x),∴f(x)的周期为2,令g(x)=0得f(x)=|lgx|,作出y=f(x)与y=|lgx|的函数图象如图所示:由图象可知f(x)与y=|lgx|在(0,1)上必有1解,又f(x)的最小值为,f(x)的最大值为1,∵lg2<lg=,lg4>lg=,lg9<1,lg11>1,∴f(x)与y=|lgx|在(10,+∞)上没有交点,结合图象可知f(x)与y=|lgx|共有8个交点,∴g(x)共有8个零点.故答案为:8.三、解答题(本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=4x+m•2x+1(x∈(﹣∞,0],m∈R)(Ⅰ)当m=﹣1时,求函数f(x)的值域;(Ⅱ)若f(x)有零点,求m的取值X围.【考点】34:函数的值域.【分析】(Ⅰ)当m=﹣1时,可得f(x)=)=4x﹣2x+1,转化为二次函数问题求解值域即可.(Ⅱ)f(x)有零点,利用分离参数m,讨论单调性即可得m的取值X围.【解答】解:当m=﹣1时,可得f(x)=)=4x﹣2x+1,令t=2x,x≤0,由指数函数的单调性和值域 t∈(0,1].(Ⅰ)函数f(x)化为y=t2﹣t+1=,t∈(0,1].当t=时,y取得最小值为;当t=1时,y取得最大值为1;∴函数的值域为[,1];(Ⅱ)f(x)有零点,即4x+m•2x+1=0有解(x∈(﹣∞,0],∴m=.∵t=2x,t∈(0,1].∴m==≤﹣2.(当且仅当t=1时,取等)即m≤﹣2.∴f(x)有零点,m的取值X围是(﹣∞,﹣2].18.设命题p:方程表示双曲线;命题q:斜率为k的直线l过定点P(﹣2,1),且与抛物线y2=4x有两个不同的公共点.若p∧q是真命题,求k的取值X围.【考点】2E:复合命题的真假.【分析】分别求出p,q为真时,k的取值X围,再利用p∧q为真命题,即可求k的取值X 围.【解答】解:命题p真,则(2+k)(3k+1)>0,解得k<﹣2或,…命题q为真,由题意,设直线l的方程为y﹣1=k(x+2),即y=kx+2k+1,…联立方程组,整理得ky2﹣4y+4(2k+1)=0,…要使得直线与抛物线有两个公共点,需满足,…解得且k≠0…若p∧q是真命题,则,即所以k的取值X围为…19.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.(Ⅰ)求T关于x的函数解析式;(Ⅱ)求食堂每天面包需求量的中位数;(Ⅲ)根据直方图估计利润T不少于100元的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90,当90<x≤110时,利润T=5×90﹣3×90,由此能求出T关于x的函数解析式.(Ⅱ)设食堂每天面包需求量的中位数为t,利用频率分布直方图能求出食堂每天面包需求量的中位数.(III)由题意,设利润T不少于100元为事件A,当利润T不少于100元时,求出70≤x ≤110,由直方图能求出当70≤x≤110时,利润T不少于100元的概率.【解答】解:(Ⅰ)由题意,当60≤x≤90时,利润T=5x+1×(90﹣x)﹣3×90=4x﹣180,当90<x≤110时,利润T=5×90﹣3×90=180,∴T关于x的函数解析式T=.…(Ⅱ)设食堂每天面包需求量的中位数为t,则10×0.025+10×0.015+(t﹣80)×0.020=,解得t=85,故食堂每天面包需求量的中位数为85个.…(III)由题意,设利润T不少于100元为事件A,由(Ⅰ)知,利润T不少于100元时,即4x﹣180≥100,∴x≥70,即70≤x≤110,由直方图可知,当70≤x≤110时,利润T不少于100元的概率:P(A)=1﹣P()=1﹣0.025×(70﹣60)=0.75.…20.已知函数f(x)=ax﹣1﹣lnx(a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在x=1处取得极值,不等式f(x)≥bx﹣2对任意x∈(0,+∞)恒成立,某某数b的取值X围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)对函数进行求导,然后令导函数大于0求出x的X围,令导函数小于0求出x的X围,即可得到答案;(Ⅱ)由函数f(x)在x=1处取得极值求出a的值,再依据不等式恒成立时所取的条件,求出实数b的取值X围即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞)..若a≤0,则f'(x)<0,∴f(x)在(0,+∞)上递减;若a>0,则由f'(x)>0得:;由f'(x)<0得:.∴f(x)在上递减,在递增.(Ⅱ)∵函数f(x)在x=1处取得极值,∴f'(1)=0,即a﹣1=0,解得:a=1.∴f(x)=x﹣1﹣lnx.由f(x)≥bx﹣2得:x﹣1﹣lnx≥bx﹣2,∵x>0,∴.令,则由g'(x)>0得:x>e2;由g'(x)<0得:0<x<e2.所以,g(x)在(0,e2)上递减,在(e2,+∞)递增.∴,∴.21.已知椭圆C:=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,求的值.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)由已知可得a﹣c=2,b=,结合隐含条件求得a,则椭圆方程可求;(Ⅱ)由(Ⅰ)知A(﹣4,0),B(4,0).设P(x1,y1),Q(x2,y2),可得,再由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,可得k QA•k2=﹣1,由A,P,Q三点共线,可得k AP=k QA,k PA•k2=﹣1.进一步求得.【解答】解:(Ⅰ)由已知可得a﹣c=2,b=,又b2=a2﹣c2=12,解得a=4.故所求椭圆C的方程为;(Ⅱ)由(Ⅰ)知A(﹣4,0),B(4,0).设P(x1,y1),Q(x2,y2),∴.∵P(x1,y1)在椭圆C上,∴,即.∴.…①由已知点Q(x2,y2)在圆x2+y2=16上,AB为圆的直径,∴QA⊥QB.∴k QA•k2=﹣1.由A,P,Q三点共线,可得k AP=k QA,∴k PA•k2=﹣1.…②由①、②两式得.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题记分22.已知曲线C 的极坐标方程为ρ2﹣4(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P(x,y)在该曲线上,求x+y 的取值X围.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由题意可知即可求得曲线C的普通方程;(Ⅱ)设圆的参数,将P代入圆的方程,即可求得x+y的表达式,根据二次函数的性质,即可求得正弦函数的性质即可求得x+y的取值X围.【解答】解:(Ⅰ)原方程变形为ρ2﹣4ρcosθ﹣4ρsinθ+6=0,化直角坐标方程为x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2,∴曲线C的普通方程(x﹣2)2+(y﹣2)2=2;…5分(Ⅱ)设圆的参数方程为(α 为参数),点P(x,y)在圆上,则x.所以x+y 的最大值为6,最小值为2,∴x+y 的取值X围[2,6].…10分23.在直角坐标系中,定义P(x1,y1),Q(x2,y2)之间的“直角距离”:d(P,Q)=|x1﹣x2|+|y1﹣y2|.若点A(﹣2,4),M(x,y)为直线x﹣y+8=0上的动点(Ⅰ)解关于x的不等式d(A,M)≤4;(Ⅱ)求d(A,M)的最小值.【考点】7E:其他不等式的解法;IS:两点间距离公式的应用.【分析】(Ⅰ)根据新定义建立关系,利用绝对值不等式的性质,去绝对值求解即可;(Ⅱ)利用绝对值不等式的性质,求解d(A,M)的最小值.【解答】解:(Ⅰ)由题意知d(P,Q)=|x1﹣x2|+|y1﹣y2|.∴d(A,M)≤4;即d(A,M)=|x+2|+|y﹣4|≤4,∵M(x,y)为直线x﹣y+8=0上的动点,∴x+8=y.∴d(A,M)=|x+2|+|x+4|≤4去掉绝对值:或或解得:﹣5≤x≤﹣4或﹣4<x<﹣2或﹣2≤x≤﹣1,∴不等式的解集为{x|﹣5≤x≤﹣1};(Ⅱ)d(A,M)的最小值.即d(A,M)=|x+2|+|y+4|≥|(x+2)﹣(x+4)|=2当且仅当(x+2)(x+4)≤0,即﹣4≤x≤﹣2时取等号.故当﹣4≤x≤﹣2时,d(A,M)的最小值为2.。

2020年高二数学下学期期末模拟试卷及答案(四)(文科)

2020年高二数学下学期期末模拟试卷及答案(四)(文科)

2020年高二数学下学期期末模拟试卷及答案(四)(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为()A.3 B.4 C.7 D.82.已知复数z满足(2﹣i)z=5,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为3,2,则输出的n=()A.2 B.3 C.4 D.54.已知数列{a n}为等比数列,且a3=﹣4,a7=﹣16,则a5=()A.8 B.﹣8 C.64 D.﹣645.设a,b∈R,则“<0”是“a<b”的()条件.A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要6.已知函数y=f(x)的图象关于y轴对称,当x∈(0,+∞)时,f(x)=log2x,若a=f(﹣3),b=f(),c=f(2),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b7.若α∈(,π),则3cos2α=cos(+α),则sin2α的值为()A. B.﹣C. D.﹣8.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.59.f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+)的图象,可以将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度10.如图,三棱锥P﹣ABC中,PB⊥BA,PC⊥CA,且PC=2CA=2,则三棱锥P﹣ABC的外接球表面积为()A.3πB.5πC.12πD.20π11.已知F1,F2分别是双曲线的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是()A.B.(,+∞)C.(1,2)D.(2,+∞)12.已知函数f(x)=(a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是()A.(0,) B.(,1) C.(,1) D.(0,)二、填空题(每题5分,共20分)13.已知=(1,﹣1),=(﹣1,2),则(2+)•=.14.已知实数x,y满足线性约束条件,若x﹣2y≥m恒成立,则实数m的取值范围是.15.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=b,sin2B=2sinAsinC则cosB=.16.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,﹣1),则的最小值等于.三、解答题(17题、18题、19题、20题、21题各12分,选做题10分,共70分)1*17.已知数列{a n}的前n项的和为S n,且S n+a n=1(n∈N*)(1)求{a n}的通项公式;(2)设b n=﹣log3(1﹣S n),设C n=,求数列{C n}的前n项的和T n.18.随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝.(I )从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询. ①在市第一医院出生的一孩宝宝中抽取多少个?②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关? 附:P (k 2>k 0)0.40.250.150.10k 00.7081.3232.072 2.70619.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为梯形,AD ∥BC ,AB=BC=CD=1,DA=2,DP ⊥平面ABP ,O ,M 分别是AD ,PB 的中点. (Ⅰ)求证:PD ∥平面OCM ;(Ⅱ)若AP 与平面PBD 所成的角为60°,求线段PB 的长.20.已知椭圆E : =1的离心率为,点F 1,F 2是椭圆E 的左、右焦点,过F 1的直线与椭圆E 交于A ,B 两点,且△F 2AB 的周长为8. (1)求椭圆E 的标准方程;(2)动点M 在椭圆E 上,动点N 在直线l :y=2上,若OM ⊥ON ,探究原点O 到直线MN的距离是否为定值,并说明理由.21.已知f(x)=lnx﹣ax+1,其中a为常实数.(1)讨论函数f(x)的单调性;(2)当a=1时,求证:f(x)≤0;(3)当n≥2,且n∈N*时,求证:<2.四、解答题(共1小题,满分10分)22.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为.再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.(1)求圆C的极坐标方程;(2)设圆C与直线l交于点A、B,求|MA|•|MB|的值.五、解答题(共1小题,满分0分)23.已知函数f(x)=|x﹣a|+|x+2|(1)当a=3时,求不等式f(x)≥7的解集;(2)若f(x)≤x+4的解集包含[1,2],求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为()A.3 B.4 C.7 D.8【考点】15:集合的表示法.【分析】先求出集合B中的元素,从而求出其子集的个数.【解答】解:由题意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选:D.2.已知复数z满足(2﹣i)z=5,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数、几何意义即可得出.【解答】解:复数z满足(2﹣i)z=5,∴(2+i)(2﹣i)z=5(2+i),∴z=2+i,=2﹣i,则在复平面内对应的点(2,﹣1)位于第四象限.故选:D.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为3,2,则输出的n=()A.2 B.3 C.4 D.5【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=3+=,b=4,满足进行循环的条件,当n=2时,a=+=,b=8,不满足进行循环的条件,故输出的n值为2,故选:A.4.已知数列{a n}为等比数列,且a3=﹣4,a7=﹣16,则a5=()A.8 B.﹣8 C.64 D.﹣64【考点】88:等比数列的通项公式.【分析】由等比数列通项公式知=a3•a7,且=﹣4q2<0,由此能求出a5的值.【解答】解:∵数列{a n}为等比数列,且a3=﹣4,a7=﹣16,∴=a3•a7=(﹣4)•(﹣16)=64,且=﹣4q2<0,∴a5=﹣8.故选:B.5.设a,b∈R,则“<0”是“a<b”的()条件.A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据不等式的关系,结合充分条件和必要条件的定义进行求解即可.【解答】解:由<0得a≠0且<0,即a≠0且a﹣b<0,则a≠0且a<b,则a<b成立,即充分性成立,反之不成立,则“<0”是“a<b”的充分不必要条件,故选:A.6.已知函数y=f(x)的图象关于y轴对称,当x∈(0,+∞)时,f(x)=log2x,若a=f (﹣3),b=f(),c=f(2),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【考点】3N:奇偶性与单调性的综合.【分析】根据题意,分析可得函数f(x)为偶函数,进而可得a=f(﹣3)=f(3),由对数函数的性质可得f(x)在区间(0,+∞)上为增函数,分析可得f()<f(2)<f (3),即可得答案.【解答】解:根据题意,函数y=f(x)的图象关于y轴对称,则函数f(x)为偶函数,则有a=f(﹣3)=f(3),当x∈(0,+∞)时,f(x)=log2x,则f(x)在区间(0,+∞)上为增函数,又由<2<3,则有f()<f(2)<f(3),即a>c>b,故选:D.7.若α∈(,π),则3cos2α=cos(+α),则sin2α的值为()A. B.﹣C. D.﹣【考点】GP:两角和与差的余弦函数;GS:二倍角的正弦.【分析】由已知利用二倍角的余弦函数公式,两角和的余弦函数公式化简可得3(cosα+sinα)(cosα﹣sinα)=(cosα﹣sinα),由范围α∈(,π),可得:cosα﹣sinα≠0,从而可求cosα+sinα=,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【解答】解:∵3cos2α=cos(+α),∴3(cosα+sinα)(cosα﹣sinα)=(cosα﹣sinα),∵α∈(,π),可得:cosα﹣sinα≠0,∴cosα+sinα=,∴两边平方可得:1+sin2α=,解得:sin2α=﹣.故选:D.8.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.5【考点】7G:基本不等式在最值问题中的应用.【分析】将(1,1)代入直线得: +=1,从而a+b=(+)(a+b),利用基本不等式求出即可.【解答】解:∵直线=1(a>0,b>0)过点(1,1),∴+=1(a>0,b>0),所以a+b=(+)(a+b)=2++≥2+2=4,当且仅当=即a=b=2时取等号,∴a+b最小值是4,故选:C.9.f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+)的图象,可以将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f (x)的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:由题意可得A=1,T=•=﹣,解得ω=2,∴f(x)=Acos(ωx+φ)=cos(2x+φ).再由五点法作图可得2×+φ=,∴φ=﹣,∴f(x)=cos(2x﹣)=cos2(x﹣),g(x)=﹣sin(2x+)=cos(2x++)=cos2(x+),而﹣(﹣)=,故将f(x)的图象向左平移个单位长度,即可得到函数g(x)的图象,故选:D.10.如图,三棱锥P﹣ABC中,PB⊥BA,PC⊥CA,且PC=2CA=2,则三棱锥P﹣ABC的外接球表面积为()A.3πB.5πC.12πD.20π【考点】LG:球的体积和表面积;L7:简单空间图形的三视图.【分析】由已知得PA是三棱锥P﹣ABC的外接球的直径,由此能求出三棱锥P﹣ABC 的外接球的表面积.【解答】解:∵三棱锥P﹣ABC中,PB⊥BA,PC⊥CA,且PC=2,CA=1,AC⊥BC,∴PA是三棱锥P﹣ABC的外接球的直径,PA=,半径为:,∴三棱锥P﹣ABC的外接球的表面积为:S=4=5π.故选:B.11.已知F1,F2分别是双曲线的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是()A.B.(,+∞)C.(1,2)D.(2,+∞)【考点】KC:双曲线的简单性质.【分析】可得M,F1,F2的坐标,进而可得,的坐标,由>0,结合abc 的关系可得关于ac的不等式,结合离心率的定义可得范围.【解答】解:联立,解得,∴M(,),F1(﹣c,0),F2(c,0),∴=(,),=(,),由题意可得>0,即>0,化简可得b2>3a2,即c2﹣a2>3a2,故可得c2>4a2,c>2a,可得e=>2故选D12.已知函数f(x)=(a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是()A.(0,) B.(,1) C.(,1) D.(0,)【考点】3L:函数奇偶性的性质.【分析】求出函数f(x)=sin(x)﹣1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.【解答】解:若x>0,则﹣x<0,∵x<0时,f(x)=sin(x)﹣1,∴f(﹣x)=sin(﹣x)﹣1=﹣sin(x)﹣1,则若f(x)=sin(x)﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin(x)﹣1=f(x),即y=﹣sin(x)﹣1,x>0,设g(x)=﹣sin(x)﹣1,x>0,作出函数g(x)的图象,要使y=﹣sin(x)﹣1,x>0与f(x)=log a x,x>0的图象至少有3个交点,如图,则0<a<1且满足g(5)<f(5),即﹣2<log a5,即log a5>log a a﹣2,则5<,解得0<a<,故选:A.二、填空题(每题5分,共20分)13.已知=(1,﹣1),=(﹣1,2),则(2+)•=﹣1.【考点】9R:平面向量数量积的运算.【分析】直接利用向量的坐标运算以及向量的数量积求解即可.【解答】解:=(1,﹣1),=(﹣1,2),则2+=(1,0)(2+)•=﹣1+0=﹣1.故答案为:﹣1.14.已知实数x,y满足线性约束条件,若x﹣2y≥m恒成立,则实数m的取值范围是(﹣∞,﹣6] .【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用目标函数的意义,转化求解目标函数的最小值,求出m的范围即可.【解答】解:实数x,y满足线性约束条件的可行域如图:若x﹣2y≥m恒成立,则m小于等于x﹣2y的最小值.平移直线x﹣2y=0可知:直线经过可行域的B时,目标函数取得最小值,由可得B(2,4),则x﹣2y的最小值为:2﹣8=﹣6,可得m≤﹣6.给答案为:(﹣∞,﹣6].15.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=b,sin2B=2sinAsinC则cosB=.【考点】HT:三角形中的几何计算.【分析】由正弦定理得b2=2ac,从而a=b=2c,由此利用余弦定理能求出cosB.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,且a=b,sin2B=2sinAsinC,∴由正弦定理得b2=2ac,∴a=b=2c,∴cosB=====.故答案为:.16.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,﹣1),则的最小值等于.【考点】K8:抛物线的简单性质.【分析】过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得|PF|=|PM|,则==sin∠PAM,∠PAM为锐角,当PA和抛物线相切时最小;利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【解答】解:由题意可得,抛物线x2=4y的焦点F(0,1),准线方程为y=﹣1.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得|PF|=|PM|,则==sin∠PAM,∠PAM为锐角;所以当∠PAM最小时,最小,即当PA和抛物线相切时,最小.设切点P(2,a),由y=x2的导数为y′=x,则PA的斜率为k=•2==,求得a=1,可得P(2,1),∴|PM|=2,|PA|=2,∴sin∠PAM==,则的最小值等于.故答案为:.三、解答题(17题、18题、19题、20题、21题各12分,选做题10分,共70分)1*17.已知数列{a n}的前n项的和为S n,且S n+a n=1(n∈N*)(1)求{a n}的通项公式;(2)设b n=﹣log3(1﹣S n),设C n=,求数列{C n}的前n项的和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)运用数列的递推式:a1=S1,n≥2,n∈N*,a n=S n﹣S n﹣1,结合等比数列的定义和通项公式即可得到所求通项;(2)S n=1﹣a n=1﹣()n,b n=﹣log3(1﹣S n)=﹣log3()n=n,C n===﹣,由数列的求和方法:裂项相消求和,化简整理即可得到所求和.【解答】解:(1)S n+a n=1①(n∈N*)可得a1=S1,即有a1+a1=1,可得a1=,当n≥2,n∈N*,即有S n﹣1+a n﹣1=1,②a n=S n﹣S n﹣1,①﹣②可得S n﹣S n﹣1+a n﹣a n﹣1=0,即有a n=a n﹣1,则a n=a1q n﹣1=•()n﹣1=2•()n,n∈N*;(2)S n+a n=1可得S n=1﹣a n=1﹣()n,b n=﹣log3(1﹣S n)=﹣log3()n=n,C n===﹣,前n 项的和T n =﹣+﹣+﹣+…+﹣+﹣ ═+﹣﹣=﹣﹣. 18.随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝.(I )从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询. ①在市第一医院出生的一孩宝宝中抽取多少个?②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关? 附:P (k 2>k 0)0.4 0.25 0.15 0.10k 0 0.708 1.323 2.072 2.706 【考点】BK :线性回归方程.【分析】(I )根据分层抽样原理计算,使用组合数公式计算概率;(II )计算K 2,与2.072比较大小得出结论.【解答】解:(Ⅰ)①7×=2.②在抽取7个宝宝中,出生在市第一医院的二孩宝宝由2人,出生在市妇幼保健院的二孩宝宝有1人.从7个宝宝中随机抽取2个的可能事件共有=21个,其中两个宝宝恰出生不同医院且均属“二孩”的基本事件有=2个.∴两个宝宝恰出生不同医院且均属“二孩”的概率P=.(Ⅱ)列联表如下:一孩二孩合计第一医院20 20 4020 10 30妇幼保健院合计40 30 70,故没有85%的把握认为一孩、二孩宝宝的出生与医院有关.19.如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.(Ⅰ)求证:PD∥平面OCM;(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.【考点】LS:直线与平面平行的判定;MI:直线与平面所成的角.【分析】(Ⅰ)连接BD交OC与N,连接MN.证明MN∥PD.然后证明PD∥平面OCM.(Ⅱ)通过计算证明AB⊥BD.AB⊥PD.推出AB⊥平面BDP,说明∠APB为AP与平面PBD所成的角,然后求解即可.【解答】(本小题满分15分)解:(Ⅰ)连接BD交OC与N,连接MN.因为O为AD的中点,AD=2,所以OA=OD=1=BC.又因为AD∥BC,所以四边形OBCD为平行四边形,…所以N为BD的中点,因为M为PB的中点,所以MN∥PD.…又因为MN⊂平面OCM,PD⊄平面OCM,所以PD∥平面OCM.…(Ⅱ)由四边形OBCD为平行四边形,知OB=CD=1,所以△AOB为等边三角形,所以∠A=60°,…所以,即AB2+BD2=AD2,即AB⊥BD.因为DP⊥平面ABP,所以AB⊥PD.又因为BD∩PD=D,所以AB⊥平面BDP,…所以∠APB为AP与平面PBD所成的角,即∠APB=60°,…所以.…20.已知椭圆E:=1的离心率为,点F1,F2是椭圆E的左、右焦点,过F1的直线与椭圆E交于A,B两点,且△F2AB的周长为8.(1)求椭圆E的标准方程;(2)动点M在椭圆E上,动点N在直线l:y=2上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.【考点】K4:椭圆的简单性质.【分析】(1)根据题意列出方程组求出a、b的值,写出椭圆E的标准方程;(2)①直线ON的斜率不存在,计算原点O到直线MN的距离d的值;②直线ON的斜率存在,设出直线OM、ON的方程,求出点M、N,计算|MN|2、|OM|2、|ON|2,求出原点O到直线MN的距离d,即可得出结论.【解答】解:(1)椭圆E:=1的离心率为,且△F2AB的周长为8,所以,解得a=2,b=,…所以椭圆E的标准方程为+=1;…(2)①若直线ON的斜率不存在,则|OM|=2,|ON|=2,|MN|=4,所以原点O到直线MN的距离为d==;…②若直线ON的斜率存在,设直线OM方程为y=kx,代入+=1,解得x2=,y2=;…则直线ON的方程为y=﹣x,代入y=2,解得N(﹣2k,2);…所以|MN|2=|OM|2+|ON|2=(+)+(12k2+12)=;设原点O到直线MN的距离为d,则|MN|•d=|OM|•|ON|,得d2==3,所以d=;…综上,原点O到直线MN的距离为定值.…21.已知f(x)=lnx﹣ax+1,其中a为常实数.(1)讨论函数f(x)的单调性;(2)当a=1时,求证:f(x)≤0;(3)当n≥2,且n∈N*时,求证:<2.【考点】6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出f(x)的最大值,从而证明结论;(3)根据lnn<n﹣1通过赋值,得到S=+++…+,求出S,错位相减证明结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f′(x)=﹣a,a≤0时,f′(x)>0,f(x)在(0,+∞)递增,a>0时,令f′(x)=0,解得:x=,故f(x)在(0,)递增,在(,+∞)递减;(2)a=1时,由(1)f(x)在(0,1)递增,在(1,+∞)递减,故f(x)max=f(1)=0,故f(x)≤0;(3)由(2)得:n≥2且n∈N*时,lnn<n﹣1,于是+++…+<+++…+,令S=+++…+①,则S=++…++②,错位相减得:S=2﹣,则S<2,故<+++…+<2.四、解答题(共1小题,满分10分)22.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为.再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.(1)求圆C的极坐标方程;(2)设圆C与直线l交于点A、B,求|MA|•|MB|的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用cos2θ+sin2θ=1消去参数可得圆的直角坐标方程式,由极坐标与直角坐标互化公式代入化简即可得出.(2)直线l的参数方程,(t为参数),代入圆方程得: +9=0,利用|MA|•|MB|=|t1|•|t2|=|t1t2|即可得出.【解答】解:(1)消去参数可得圆的直角坐标方程式为x2+(y﹣2)2=4,由极坐标与直角坐标互化公式得(ρcosθ)2+(ρsinθ﹣2)2=4化简得ρ=4sinθ,(2)直线l的参数方程,(t为参数).即代入圆方程得: +9=0,设A、B对应的参数分别为t1、t2,则,t1t2=9,于是|MA|•|MB|=|t1|•|t2|=|t1t2|=9.五、解答题(共1小题,满分0分)23.已知函数f(x)=|x﹣a|+|x+2|(1)当a=3时,求不等式f(x)≥7的解集;(2)若f(x)≤x+4的解集包含[1,2],求实数a的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)由题意利用绝对值的意义,求得不等式f(x)≥7的解集.(2)原命题等价于﹣2≤a﹣x≤2在[1,2]上恒成立,即x﹣2≤a≤x+2在[1,2]上恒成立,由此求得a的范围.【解答】解:(1)当a=3时,f(x)≥7⇔|x﹣3|+|x+2|≥7.由绝对值的几何意义得,f(x)表示数轴上的x对应点到3、﹣2对应点的距离之和,而4和﹣3对应点到3、﹣2对应点的距离之和正好等于7,故不等式|x﹣3|+|x+2|≥7 的解集为{x|x≤﹣3或x≥4}.(2)f(x)≤x+4的解集包含[1,2],⇔f(x)≤x+4在[1,2]上恒成立,⇔|x﹣a|+|x+2|≤x+4在[1,2]上恒成立,⇔当1≤x≤2时,|x﹣a|+|x+2|≤x+4恒成立,⇔当1≤x≤2时,|x﹣a|+x+2≤x+4恒成立,⇔当1≤x≤2时,|x﹣a|≤2 恒成立,⇔当1≤x≤2时,﹣2≤x﹣a≤2 恒成立,⇔当1≤x≤2时,﹣2≤a﹣x≤2,⇔x﹣2≤a ≤x+2在[1,2]上恒成立,⇔2﹣2≤a≤1+2,⇔0≤a≤3,故a的取值范围是a∈[0,3].。

2020-2021学年高二数学文科下册期末考试试题(含解析)

2020-2021学年高二数学文科下册期末考试试题(含解析)

第二学期高二级期末试题(卷)数学(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(1)(2)i i +-=( ) A. 3i + B. 1i +C. 3i -D. 1i -【答案】A 【解析】 【分析】直接利用复数代数形式的乘法运算化简得答案. 【详解】(1+i )(2﹣i )=2﹣i+2i ﹣i 2=3+i . 故选:A .【点睛】本题考查复数代数形式的乘除运算,是基础题.2.设集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4},则()U A B =I ð( ) A. {2,4}B. {0,4}C. {0,1,3}D. {1,2,3}【答案】C 【解析】 【分析】先得到A B I ,再计算()U A B ⋂ð,得到答案【详解】集合{0U =,1,2,3,4},{0A =,2,4},{2B =,3,4}, 则{2A B ⋂=,4},(){0U A B ⋂=ð,1,3}.故选:C .【点睛】本题考查集合的交集运算与补集运算,属于简单题.3.已知平面向量a r ,b r 的夹角为23π,||1a =r ,||2b =r ,则()a a b ⋅+=r r r ( )A. 3B. 2C. 0D. 1【答案】C 【解析】 【分析】由1a =v ,2b =r ,a v ,b r的夹角为23π,先得到a b ⋅v v 的值,再计算()a ab ⋅+r v v ,得到结果.【详解】Q 向量a r ,b r的夹角为23π,1a =r ,2b =r ,∴ 1·1212a b r r ⎛⎫=⨯⨯-=- ⎪⎝⎭, 则()2··110a a b a a b +=+=-=r rr r r r , 故选:C .【点睛】本题考查向量数量积的基本运算,属于简单题.4.已知函数()sin cos f x x x =,则( ) A. ()f x 的最小正周期是2π,最大值是1B. ()f x 的最小正周期是π,最大值是12 C. ()f x 的最小正周期是2π,最大值是12D. ()f x 的最小正周期是π,最大值是1【答案】B 【解析】 【分析】对()f x 进行化简,得到()f x 解析式,再求出其最小正周期和最大值. 【详解】函数()1sin cos sin22f x x x x ==, 故函数的周期为22T ππ==, 当222x k ππ=+,即:()4x k k Z ππ=+∈时,函数取最大值为12. 故选:B .【点睛】本题考查二倍角正弦的逆用,三角函数求周期和最值,属于简单题.5.若a b >,0ab ≠则下列不等式恒成立的是( ) A. 22a b >B. lg()0a b ->C.11a b< D.a b 22>【答案】D 【解析】 【分析】利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解. 【详解】对于选项A, 22a b >不一定成立,如a=1>b=-2,但是22a b <,所以该选项是错误的;对于选项B, 1111,,,lg 0,2366a b a b ==-=<所以该选项是错误的; 对于选项C,11,0,b a b a a b ab--=-<Q ab 符号不确定,所以11a b <不一定成立,所以该选项是错误的;对于选项D, 因为a>b,所以a b 22>,所以该选项是正确的. 故选:D【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.某程序框图如图所示,该程序运行后输出的值是( )A. 55B. 45C. 66D. 36【答案】A 【解析】 【分析】根据程度框图的要求,按输入值进行循环,根据判断语句,计算循环停止时的S 值,得到答案.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量12310S =+++⋯+的值由于1231055S =+++⋯+=. 故选:A .【点睛】本题考查根据流程框图求输入值,属于简单题.7.抛物线28y x =的焦点到双曲线2214y x -=的渐近线的距离是( )5 25455【答案】C 【解析】 【分析】求得抛物线的焦点,双曲线的渐近线,再由点到直线的距离公式求出结果.【详解】依题意,抛物线的焦点为()2,0,双曲线的渐近线为2y x =±,其中一条为20x y -=,由点到直线的距离公式得455d ==.故选C. 【点睛】本小题主要考查抛物线的焦点坐标,考查双曲线的渐近线方程,考查点到直线的距离公式,属于基础题.8.函数()()2ln 1f x x 的图像大致是=+( )A. B.C.D.【答案】A 【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.9.在ABC ∆中,120A =︒,14BC =,10AB =,则ABC ∆的面积为( ) A. 15 B. 153 C. 40D. 3【答案】B 【解析】 【分析】先利用余弦定理求得b ,然后利用三角形面积公式求得三角形的面积.【详解】由余弦定理得2221410210cos120b b =+-⨯⨯⨯o ,解得6b =,由三角形面积得1106sin1201532S =⨯⨯⨯=o B.【点睛】本小题主要考查余弦定理解三角形,考查三角形面积公式,属于基础题.10.函数()3213f x x x =-在[]1,3上的最小值为( ) A. -2 B. 0C. 23-D. 43-【答案】D 【解析】 【分析】求得函数的导数()22f x x x '=-,得到函数()f x 在区间[]1,3上的单调性,即可求解函数的最小值,得到答案. 【详解】由题意,函数()3213f x x x =-,则()22f x x x '=-, 当[1,2)x ∈时,()0f x '<,函数()f x 单调递减; 当(2,3]x ∈时,()0f x '>,函数()f x 单调递增, 所以函数()f x 在区间[]1,3上的最小值为()321224323f =⨯-=-, 故选D .【点睛】本题主要考查了利用导数求解函数的最值问题,其中解答中熟练应用导数求得函数的单调性,进而求解函数的最值是解答的关键,着重考查了推理与运算能力,属于基础题.11.法国机械学家莱洛(F. Reuleaux 1829-1905)发现了最简单的等宽曲线莱洛三角形,它是分别以正三角形ABC 的顶点为圆心,以正三角形边长为半径作三段圆弧组成的一条封闭曲线,在封闭曲线内随机取一点,则此点取自正三角形ABC 之内(如图阴影部分)的概率是( )D.【答案】B【解析】【分析】先算出封闭曲线的面积,在算出正三角形ABC的面积,由几何概型的计算公式得到答案. 【详解】设正三角形的边长为a,由扇形面积公式可得封闭曲线的面积为(2221322342aS a aππ=⨯⨯⨯-⨯=,由几何概型中的面积型可得:此点取自正三角形ABC之内(如图阴影部分)∴概率是22SPS阴封闭曲线===故选:B.【点睛】本题考查几何概型求概率,属于简单题.12.定义域为R的可导函数()y f x=的导函数为()f x',满足()()f x f x'>,且()02f=,则不等式()2xf x e<的解集为()A. (),0-∞ B. (),2-∞ C. ()0,∞+ D. ()2,+∞【答案】C【解析】【详解】构造函数()()xf xg xe=,根据()()f x f x'>可知()0g x'<,得到()g x在R上单调递减;根据()()02fge==,可将所求不等式转化为()()0g x g<,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x x f x e f x e f x f x g x e e''--'==< ()g x ∴在R 上单调递减 ()02f =Q ()()002f g e ∴== 则不等式()2xf x e >可化为()2xf x e< 等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()x f x g x e=,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系.二、填空题。

高二下数学期末复习试题四(文科)

高二下数学期末复习试题四(文科)

青岛高二数学期末测试一.选择题:本大题共10小题,每小题5分,共50分.1.直线与平面平行的充要条件是这条直线与平面内的 A .两条直线不相交 B .三条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交2.正四棱锥侧棱与底面成45 o 角,则侧面与底面所成二面角的正弦值为A .56 B .66 C .36 D .463.口袋中有4个红球和4个白球,从中任取3个球,取到一个红球得2分,取到一个白球得1分,则总得分低于5分的概率为A .141B .21C .73D .14134.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时内恰好坏了一个的概率为 A .0.384B .31C .0.128D .0.1045. 6个同学排成一排,甲、乙不能排在一起,不同的排法有A .2246A AB .5566A A - C .2544A AD .2344A A6.如果A 、B 是互斥事件,则下列结论中:①B A +是必然事件;②A +B 是必然事件;③A 与B 是互斥事件;④A 与B 不是互斥事件.其中正确的是 A .①② B .①③ C .②③ D .②④7. 已知两点A (-1,3),B (3,1),当C 在坐标轴上,若∠ACB =2π,则这样的点C 的个数为 A .1 B .2 C .3 D .48.直线a 是平面α的斜线,b α⊂,a 与b 成60°的角,且b 与a 在α内的射影成45°的角,则a 与平面α所成的角的大小为 A .30° B .45° C .60° D .90° 9.空间有8个点,任意四点都不共面,过其中任意两点均有一条直线,则成为异面直线的对数为 A .70 B .210 C .420 D .以上答案均不对10.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A.线段B 1CB .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段二.填空题:本大题共5小题,每小题5分,共25分.将正确答案填在题中横线上.11.已知7292222210=+⋅⋅⋅+++n n n n n n C C C C ,则nnn n n C C C C +⋅⋅⋅+++321等于 . 12.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 .13.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①//l m αβ⇒⊥; ②//l m αβ⊥⇒; ③//l m αβ⇒⊥;④//l m αβ⊥⇒,其中正确的是 (写出所有正确的命题).14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率.(用数值作答)15.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三.解答题:本大题共6小题,满分75分.16.在n xx 23)21(+的展开式中,前三项的系数成等差数列,求展开式中的常数项.P AB CDA 1B 1C 1D 117.如图,△ABC 中,AB =6cm ,AC =8cm ,BC =10cm ,P 是平面ABC 外一点,且P A =PB =PC =6cm . (1)求点P 到平面ABC 的距离; (2)求P A 与平面ABC 所成角的大小.18.袋里装有35个球,每个球上都记有从1到35的一个号码,设号码为n 的球重为|15532+-n n |(克),这些球以等可能性(不受重量、号码的影响)从袋里取出.(1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果同时任意取出2球,试求它的重量相同的概率.19.如图,四棱锥P -ABCD 底面AC 是边长为a 的正方形,PD =2a ,P A =PC =5a .(1)求证:PD ⊥平面ABCD ; (2)求二面角A -PB -C 的大小.20. 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比PBACPA B C D赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.21.如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点. (1) 若NCBNMA BM =,求证:无论点P 在D 1D 上如何移动,总有BP ⊥MN ; (2)若D 1P : PD =1 : 2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的大小; (3)棱DD 1上是否存在点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.ABCDD 1C 1A 1B 1PMN。

高二数学下学期期末考试试卷 文含解析 试题

高二数学下学期期末考试试卷 文含解析 试题

2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,选出符合题目要求的一项。

,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。

高二下学期(文科)数学期末考试试卷(含答案)

高二下学期(文科)数学期末考试试卷(含答案)

江西省南昌市2021学年高二下学期(文科)数学期末考试试卷一、选择题(本大题共12小题,共60.0分)1.设复数z满足,则A. 1B.C.D. 22.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图两坐标轴单位长度相同,用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是A. 线性相关关系较强,b的值为B. 线性相关关系较强,b的值为C. 线性相关关系较强,b的值为D. 线性相关关系太弱,无研究价值3.若m,n是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题是A. 若,,则B. 若,,则C. 若,,则D. 若,,,则4.在正方体中,如图,M,N分别是正方形ABCD,的中心.则过点,M,N的截面是()5. A. 正三角形 B. 正方形 C. 梯形 D. 直角三角形6.九章算术是中国古代张苍,耿寿昌所撰写的一部数学专著,成书于公元一世纪左右,内容十分丰富.书中有如下问题:“今有圆堢瑽,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢瑽就是圆柱体,它的体积底面的圆周长的平方高,则该问题中的体积为估算值,其实际体积单位:立方尺,一丈=10尺应为A. B. C. D.7.从11,12,13,14,15中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则等于A. B. C. D.8. 函数的图象大致为A. B.C. D.9. 如图,在正方体中,P ,Q ,M ,N ,H ,R 是各条棱的中点.直线平面MNP ;;,Q ,H ,R 四点共面;平面其中正确的个数为10.A. 1B. 2C. 3D. 411. 已知正三棱锥的四个顶点都在球O 的球面上,且球心O 在三棱锥的内部.若该三棱锥的侧面积为,,则球O 的表面积为 A.B.C.D.10. 如图,四棱锥P ABCD -中,PAB ∆与PBC ∆是正三角形,平面PAB ⊥平面PBC ,AC BD ⊥,则下列结论不一定成立的是A .PB AC ⊥ B .PD ⊥平面ABCD C . AC PD ⊥ D .平面PBD ⊥平面ABCD 11.如图,四棱锥中,底面为直角梯形,,,E 为PC 上靠近点C 的三等分点,则三棱锥与四棱锥的体积比为A. B. C. D.12.已知P为双曲线C:左支上一点,,分别为C的左、右焦点,M为虚轴的一个端点,若的最小值为,则C的离心率为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知x,y取值如表:x0 1 3 5 6y 1 m3m画散点图分析可知:y与x线性相关,且求得回归方程为,则__________.14.若一个圆台的母线长为l,上、下底面半径,满足,且圆台的侧面积为,则.15.甲乙两人练习射击,命中目标的概率分别为1/2和1/3,甲乙两人各射击一次,目标被命中的概率是__________.16.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,由勾股定理有:设想将正方形换成正方体,把截线换成截面.这时从正方体上截下一个角,那么截下一个三棱锥如果该三棱锥的三个侧面面积分别为1,2,4,则该三棱锥的底面EFG的面积是________.三、解答题(本大题共6小题,共70.0分)17在直角坐标系xOy中,曲线的参数方程为:为参数,曲线:.Ⅰ在以O为极点,x轴的正半轴为极轴的极坐标系中,求,的极坐标方程;Ⅱ射线与的异于极点的交点为A,与的交点为B,求.18.在直三棱柱中,,,D是AB的中点.求证:平面;若点P在线段上,且,求证:平面.19.BMI指数身体质量指数,英文为BodyMassIndex,简称是衡量人体胖瘦程度的一个标准,体重身高的平方.根据中国肥胖问题工作组标准,当时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如图:Ⅰ求被调查者中肥胖人群的BMI平均值;Ⅱ填写下面列联表,并判断是否有的把握认为35岁以上成人患高血压与肥胖有关.肥胖不肥胖合计高血压非高血压合计k附:,其中.20.四棱锥如图所示,其中四边形ABCD是直角梯形,,,平面ABCD,,AC与BD交于点G,COS,点M线段SA上.若直线平面MBD,求的值;若,求点A到平面SCD的距离.21.如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.Ⅰ求证:平面平面;Ⅱ若,,求几何体的体积.22.已知函数,.若,恒成立,求实数m的取值范围;设函数,若在上有零点,求实数a的取值范围.参考答案一选择题1-12、ABBAB BDCDB BC二填空题(13)3/2 (14)2 (15)(16)三解答题17.解:Ⅰ曲线为参数可化为普通方程:,由可得曲线的极坐标方程为,曲线的极坐标方程为.Ⅱ射线与曲线的交点A的极径为,射线与曲线的交点B的极径满足,解得,所以.18.证明:连结,设交于点O,连结OD.四边形是矩形是的中点.在中,OD分别是,AB的中点,又平面,平面,平面;,D是AB的中点,又在直三棱柱中,底面侧面,交线为AB,平面ABC,平面平面,.,,,又,∽,从而,所以,.又,平面,平面平面.19.解:Ⅰ被调查者中肥胖人群的BMI平均值;Ⅱ高血压人群中肥胖的人数为:人,不肥胖的人数为:人,非高血压人群中肥胖的人数为:,不肥胖的人数为:人,所以列联表如下:肥胖不肥胖合计高血压70 130 200非高血压230 770 1000合计300 900 1200则K 的观测值:,有的把握认为35岁以上成人患高血压与肥胖有关.20.【答案】解:连接MG.,,且AB,CD在同一平面内,,设,,得,平面MBD,平面平面,平面SAC,,故;在平面SAD内作于点N 平面ABCD ,又,,得平面SAD.平面SAD,.又,平面SCD.角SCA的余弦值为,即,又,,则,而,,求得,,即点A到平面SCD的距离为.21.证明:取BC的中点D,连接AD,D.四边形是正方形,,又平面平面ABC,平面平面.平面ABC,平面ABC .中,,,,又,平面.四边形是梯形,,且.,四边形是平行四边形,,又,,四边形是平行四边形.,平面.又平面,平面平面.Ⅱ解:由可得:三棱柱是直三棱柱,四边形是矩形,底面.直三棱柱的体积,四棱锥的体积.几何体的体积.22.解:由题意得的定义域为,.,、随x的变化情况如下表:x 3单调递减极小值单调递增由表格可知:.在上恒成立,.函数在上有零点,等价于方程在上有解.化简,得.设.则,,、随x的变化情况如下表:x 1 30 0单调递增单调递减单调递增且,,,.作出在上的大致图象如图所示当时,在上有解.故实数a的取值范围是.。

山东省菏泽第一中学2021-2022学年高二下学期期末考试数学(文)试题 Word版含答案

山东省菏泽第一中学2021-2022学年高二下学期期末考试数学(文)试题 Word版含答案

高二数学下学期期末考试试题(文科)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,ii -1= A.i 2121+ B.i 2121+- C.i 2121- D. i 2121-- 2.设集合A={-1,0,1},B={x|x>0},则A B=A.{-1,0}B.{-1}C.{0,1}D.{1}3.有一段“三段论”推理是这样的:对于可导函数f (x ),若0)(0='x f ,则x=0x 是函数f (x )的极值点,由于f (x )=3x 在x=0处的导数值为0,所以x=0是f (x )=3x 的极值点,以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确4.用反证法证明命题:“已知a 、b 是自然数,若a+b ≥3,则a 、b 中至少有一个不小于2”提出的假设应当是( )A.a 、b 至少有二个不小于2B.a 、b 至少有一个不小于2C.a 、b 都小于2D. a 、b 至少有一个小于25.已知x 、y 的值如图所示,假如y 与x 呈现线性相关且回归直线方程为y=bx+27,则b=A.21-B.21C.101-D. 1016. 函数f (x )的导函数()x f ',满足关系式()x x f x x x f ln 3)(2-'+=,则)2(f '的值为A.47 B.-47 C.49 D.-49 7.执行如图所示的程序框图,则输出的k 的值为A.7B.6C.5D.48. 某班主任对全班50名同学进行了作业量调查,数据如下表;依据表中数据得到k=059.526242327981518502≈⨯⨯⨯⨯⨯-⨯⨯)(,由于P(024.52≥k )=0,025 则认为宠爱玩电脑玩耍与认为作业量的多少有关系的把握大约为A.97.5%B.95%C.90%D.无充分依据9. 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话。

人教A版必修四高二下学期期末考试数学(文).docx

人教A版必修四高二下学期期末考试数学(文).docx

高二下学期期末考试数学(文)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 集合2{|16}M x x =<与}1|{≤=x x N 都是集合I 的子集,则图中阴影部分所表示的集合为A. }1|{≤x xB. {|4}x x <C. {|44}x x -<<D. {|41}x x -<≤ 2. 如果0,0a b <>,那么下列不等式中正确的是 A .11a b< B. a b -< C. 22a b < D. ||||a b >3. 函数x x x x f cos sin )(+=的导数是A .x x x sin cos +B .x x cosC .x x x sin cos -D .x x sin cos - 4. 若,a b 是任意实数,且a b >,则A. 22a b > B. 11()()22ab< C. lg()0a b -> D.0ba< 5. 有一段演绎推理是这样的:“直线平行于平面,则此直线平行于平面内的所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线//b 平面α,则直线//b 直线a ” .结论显然是错误的,这是因为A .大前提错误B .推理形式错误C .小前提错误D .非以上错误 6. 函数xx g x x f -=+=122)(log 1)(与在同一直角坐标系下的图象大致是A B C D7.已知偶函数()f x 在区间[)0,+∞单调增加,则满足1(21)()3f x f -<的x 取值范围是)32,31.(A )32,31.[B )32,21.(C )32,21.[D8.下列有关命题说法正确的是A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”;B .“1x =-”是“2560x x --=”的必要不充分条件;C .“1是偶数或奇数”为假命题;D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.9.已知函数()21log 3xf x x =-⎛⎫⎪⎝⎭,若实数0x 是函数的一个零点,且100xx <<,则1()f x的值为 A.恒为正值 B.等于0 C.恒为负值 D.不大于0 10.03522<--x x 的一个必要不充分条件是A .-1<x <6B .021<<-x C .213<<-x D .321<<-x 11. 已知x,y 满足010112x y y x ⎧⎪≤≤⎪≤≤⎨⎪⎪-≥⎩,则y x z +-=21的最大值为A. 2B. 1C. 23D. 0 12. 已知函数()2g x ax =+ (0)a >,[]1,2x ∃∈-,使得[]()1,3g x ∈-,则实数a 的取值范围是A. 1(0,]2 B. 1[,3]2C. (0,3]D. [3,)+∞二、填空题:(每小题5分,共15分)13.已知0t >,则函数241t t y t-+=的最小值为____________14.已知圆C 的圆心是直线()为参数t t y tx ⎩⎨⎧+==1与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为15.的解集为不等式311≥-++x x 三、解答题:(共6个小题,计75分,要求写出解答过程) 16.(本小题满分12分)已知函数2()sin 22sin f x x x =-(I ) 求函数()f x 的最小正周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛高二数学期末测试
一.选择题:本大题共10小题,每小题5分,共50分.
1.直线与平面平行的充要条件是这条直线与平面内的 A .两条直线不相交 B .三条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交
2.正四棱锥侧棱与底面成45 o 角,则侧面与底面所成二面角的正弦值为 A .56 B .66 C .36 D .4
6
3.口袋中有4个红球和4个白球,从中任取3个球,取到一个红球得2分,取到一个白球得1分,则总得分低于5分的概率
为 A .
14
1 B .
21 C .
7
3 D .
14
13 4.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时内恰好坏了一个的概率为 A .0.384
B .
3
1 C .0.128
D .0.104
5. 6个同学排成一排,甲、乙不能排在一起,不同的排法有
A .2
246A A
B .5
5
66A A - C .2
544A A
D .2
344A A
6.如果A 、B 是互斥事件,则下列结论中:①B A +是必然事件;②A +B 是必然事件;③A 与B 是互斥事件;④A 与B
不是互斥事件.其中正确的是 A .①② B .①③ C .②③ D .②④
7. 已知两点A (-1,3),B (3,1),当C 在坐标轴上,若∠ACB =
2
π
,则这样的点C 的个数为 A .1 B .2 C .3 D .4
8.直线a 是平面α的斜线,b α⊂,a 与b 成60°的角,且b 与a 在α内的射影成45°的角,则a 与平面α所成的角的大小为
A .30°
B .45°
C .60°
D .90°
9.空间有8个点,任意四点都不共面,过其中任意两点均有一条直线,则成为异面直线的对数为 A .70 B .210 C .420 D .以上答案均不对
10.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是
A .线段
B 1
C B .线段BC 1
C .BB 1中点与CC 1中点连成的线段
D .BC 中点与B 1C 1中点连成的线段
二.填空题:本大题共5小题,每小题5分,共25分.将正确答案填在题中横线上.
11.已知7292222210=+⋅⋅⋅+++n n n n n n C C C C ,则n
n
n n n C C C C +⋅⋅⋅+++321等于 . 12.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 .
13.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①//l m αβ⇒⊥; ②//l m αβ⊥⇒; ③//l m αβ⇒⊥;④//l m αβ⊥⇒,其中正确的是 (写出所有正确的命题). 14.某篮运动员在三分线投球的命中率是
1
2
,他投球10次,恰好投进3个球的概率 .(用数值作答)
15.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长
为 .
三.解答题:本大题共6小题,满分75分.
16.在n x
x 23)21(+的展开式中,前三项的系数成等差数列,求展开式中的常数项.
P A B
C D A B C
D
17.如图,△ABC 中,AB =6cm ,AC =8cm ,BC =10cm ,P 是平面ABC 外一点,且P A =PB =PC =6cm . (1)求点P 到平面ABC 的距离; (2)求P A 与平面ABC 所成角的大小.
18.袋里装有35个球,每个球上都记有从1到35的一个号码,设号码为n 的球重为|1553
2
+-n n |(克),这些球以等可能性(不受
重量、号码的影响)从袋里取出.
(1)如果任意取出1球,试求其重量大于号码数的概率; (2)如果同时任意取出2球,试求它的重量相同的概率.
19.如图,四棱锥P -ABCD 底面AC 是边长为a 的正方形,PD =2a , P A =PC =5a .
(1)求证:PD ⊥平面ABCD ; (2)求二面角A -PB -C 的大小. P
B
A
C
P
A B
C
D
20. 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为
1
2
,且各局胜负相互独立.求: (Ⅰ) 打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.
21.如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点. (1) 若
NC
BN
MA BM =
,求证:无论点P 在D 1D 上如何移动,总有BP ⊥MN ; (2)若D 1P : PD =1 : 2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的大小; (3)棱DD 1上是否存在点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.
A
B
C
D
D 1
C 1
A 1
B 1
P
M
N。

相关文档
最新文档