新人教版第十一章三角形-复习课

合集下载

三角形的外角及常见结论的证明复习课件人教版八年级上册

三角形的外角及常见结论的证明复习课件人教版八年级上册

4、如图,已知△ABC中,∠A沿着EF翻折到∠A’,
解:因为∠ADC是△ABD的外角. 说出下列图形中∠1和∠2的度数:
A
所以∠ADC=∠B+∠BAD=80°.
(1)位置关系:相邻和不相邻.
外角大于不相邻的任何一个内角.
所以∠ADC=∠B+∠BAD=80ห้องสมุดไป่ตู้.
探究1:三角形外角的性质 解:因为∠ADC是△ABD的外角. 如图,求证:∠BDC= ∠B+ ∠C+ ∠BAC
__36_0°_.
B
A
C
1
P
N3
2M
F
D
E
2 .如图,D 是△ABC 的BC边上一点,∠B =∠BAD, ∠ADC =80°, ∠BAC =70°,求:(1)∠B 的度数;(2)∠C 的度数.
解:因为∠ADC是△ABD的外角.
所以∠ADC=∠B+∠BAD=80°.
又因为∠B=∠BAD,
所以B 80 1 40, 在△ABC中: 2
.
80 ° ∠ACD = ∠A +∠B.
∠C=180º-40º-70º=70°. 1、如图,试求出∠A+∠B+∠C+∠D+∠E+∠F =____.
6、如图所示,已知△ABC ,∠CBD和∠BCE的角平分
60 ° 1 请用三种不同的方法证明该结论!
如图,求证:∠BDC= ∠B+ ∠C+ ∠BAC ∠1+ ∠2+ ∠3=?
∠B+∠BAC+∠C=180°, ∠C=180º-40º-70º=70°.
A
70°
40°
80°
B
D
C
课堂 小结

人教版数学八上第十一章三角形复习课件共34张PPT

人教版数学八上第十一章三角形复习课件共34张PPT

2

(3,3,1;2,2,3)
1、如图,求△ABC各内角的度数。 A
解:3x + 2x + x = 180
35xx
6x=180
X=30
23xx
B
xx C
∴三角形各内角的度数分别为:30°,60°,90°
2、已知三角形三个内角的度数比为1:3:5, 求解这:三设个三内个角内的角度分数别。为x,3x,5x
B A
小莉的设计方案:先在池塘旁取一个能
直接到达A和B处的点C,连结AC并延长至
D点,使AC=DC,连结BC并延长至E点,
使BC=EC,连结CD,用米尺测出DE的长,
这个长度就等于A,B两点的距离。请你说
明理由。
解: AC=DC
∠ACB=∠DCE
A
B
BC=EC
C
△ACB≌△DCE(SAS)
E
D
AB=DE
则x + 3x + 5x = 180 x=20
∴三角形三个内角分别为:20°,60°,100°
题型考查
1.符合条件∠A+∠B=62°的三角形是( C )
A、锐角三角形 C、钝角三角形
B、直角三角形 D、不能确定
2.在下列长度的四根木棒中,能与4㎝,9㎝ 两根木棒围成三角形的是( C )
A、4㎝ B、5㎝ C、9㎝ D、14㎝ 3.如图,在△ABC中,∠A=70° A
点,∠1=∠2,AE=DE,
试求AB=DC。
AD
12
BEC
简解:∵E是BC的中点, ∴BE=EC。又∴ ∠1=∠2,AE=DE, △ABE≌△DCE(SAS),∴AB=DC 。
3.如图,已知BE⊥AD, CF⊥AD,且BE=CF,请你 判断AD是△ABC的中线还是

人教版初中八年级上册数学第十一章《三角形(小结复习课)》精品教案

人教版初中八年级上册数学第十一章《三角形(小结复习课)》精品教案

A
D
1
2
B
C
本题源自《教材帮》
深化练习 4
∠ABD和∠ACE是△ABC的两个外角,若∠A=55°,则∠ABD+∠ACE=( 235° ).
解:∵∠ABD和∠ACE是△ABC的外角, ∴∠ABD=∠A+∠ACB, ∠ACE=∠A+∠ABC. ∴∠ABD+∠ACE =∠A+∠ACB+∠A+∠ABC =∠A+∠ACB+∠ABC+∠A =180°+55° =235°.
深化练习 3
如图,已知BD平分∠ABC交AC于点D,且∠ABC=∠C=2∠A,求△ABC各角的度数.
解:∵BD平分∠ABC,∠ABC=∠C=2∠A, ∴∠1=∠2=∠A. 设∠1=∠2 =∠A=x°,则∠ABC=∠C=2x°. ∵在△ABC中,∠A+∠ABC+∠C=180°. ∴x+2x+2x=180,解得x=36. ∴∠A=36°,∠ABC=∠C=2∠A=72°.
从三角形的一个顶点向它所对的边所在直线画垂线,顶点与垂足之间的线段叫做三 角形的这条边上的高. 连接三角形的一个顶点和它所对的边的中点,所得线段叫做三角形这条边上的中线. 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线.
知识梳理
与三角形有关的线段
3、三角形的重心 三角形的三条中线的交点叫做三角形的重心.
知识梳理
与三角形有关的角
1、三角形的内角和定理 三角形三个内角的和等于180°.
2、直角三角形的性质 直角三角形的两个锐角互余. 有两个角互余的三角形是直角三角形.
知识梳理
与三角形有关的角 3、三角形内角和定理的推论 三角形的外角等于与它不相邻的两个内角的和. 4、三角形外角和的性质 三角形的外角和等于360°.

人教版八年级上册11三角形单元复习课件(共41张)

人教版八年级上册11三角形单元复习课件(共41张)
;由三角形的外角性质,∠4+∠5=∠2成立,故B选项正确;由
三角形的内角和定理与对顶角相等,∠1+∠3+∠6=180°,
∠1+∠5+∠4=180°成立,故C、D选项正确.
正解:A.
过关训练
3.如图Z11-1-4,在△ABC中,E是AB上的一点,D是BC延长线上的
一点,DE交AC于点F.
(1)如果∠D>∠A,比较∠AEF与∠A的大小,并说明理由;
∴∠BDC=65°,则△BDC不满足“准直角三角形”的条件.
综上所述,△ABD是“准直角三角形”.
7.(几何直观、推理能力、模型观念)已知在△ABC中,AE平分
∠BAC(∠C>∠B),F为直线AE上一点,且FD⊥BC于D.
(1)如图Z11-5-7①,若∠B=40°,∠C=60°,点F在线段AE上
,求∠EFD的度数;
解:(1)设底边长为x cm,则腰长为2x cm.
由题意,得x+2x+2x=24.解得x=4.8.
∴底边长为4.8
cm.
(2)能.理由如下:
①当底边长为6
cm时,腰长为(24-6)÷2=9(cm),因为9+
9>6,所以此时能围成三角形;
②当腰长为6
cm时,底边长为24-6×2=12(cm),因为6+6=
所对的角_______________;
相等或互补
(3)模型应用:在钝角三角形ABC中,∠A=45°,高BD和CE所在
的直线交于点H,则∠BHC的度数为______.
45°
解:(1)∠BHC+∠A=180°或∠BHC=∠A.
当∠ACB<90°时,△ABC为锐角三角形,如答图Z11-1-2①.

人教版八年级上册教案11章《三角形》复习课

人教版八年级上册教案11章《三角形》复习课

课题第十一章《三角形》复习课教学目标1.复习本章的重点内容,整理本章知识,形成知识体系,体会研究几何问题的思路和方法.2.进一步发展推理能力,能够有条理地思考、解决问题及表达的能力.教学重点复习三角形三边关系,三角形内角和定理、多边形内、外角和公式进行有关的计算与证明,构建本章知识结构.教学难点本章知识体系的建构,较复杂几何问题的证明与计算.教学准备课件、学案教学方法自主建构合作提升展示引导、点拨教学过程1.梳理知识与建构问题1 请同学们回答下列问题,并举例说明:(1)三角形的三边之间有怎样的关系?得出这个结论的依据是什么?(2)三角形的三个内角之间有怎样的关系?如何证明这个结论的?(3)直角三角形的两个锐角之间有怎样的关系?三角形的一个外角和它不相邻的两个内角之间有怎样的关系?这些结论能有三角形内角和定理得出吗?(4)n边形的n内角有怎样的关系?如何推出这个结论?(5)N边形的外角和与n有关吗?为什么?(教师出示问题,学生根据问题独立思考,回顾本章所学内容,梳理本章知识.然后教师组织学生逐题展示交流.教师关注:学生能否运用自己的语言解释答案的过程,举例子来说明对所学知识的理解,而不是简单地重复教科书上的结论.)问题2 您能发现上述知识之间的联系吗?请你画出一个本章的知识结构图.(教师组织学生在纸上画出本章的知识结构图,然后展示部分学生画的知识结构图,并请这些学生简要说明自己所画知识结构图.最后,教师引导学生得出,本章主要是研究两大块内容:一是与三角形有关的线段,二是与三角形有关的角及内角和定理和外角和;说明将多边形有关问题的研究转化成三角形来解决,得到n 边形的内外角和的计算公式,并将它用于生活实践.)2.基础练习,面向全体A 组:复习与三角形有关的线段:1.若三角形的两边分别为3和5,那么第三边的取值范围是: .2.若三角形的两边分别为4和9,那么它的周长是 .3.如图:(1) AD ⊥BC 于D ,则∠_____=∠_____=90 º.(2)如果∠BAE=∠CAE=21∠BAC ,则:线段AE 是△ABC 的____.(3)若AF=CF ,则△ABC 的中线 .B 组:巩固三角形相关的角及其分类如图,在△ABC 中,若∠A=80º,∠B=60º.(1)则∠C=____ .(2)若AE是△ABC的角平分线,则∠AEC=____.(3)若BF是△ABC的高,交角平分线AE于点O,则∠EOF=____.(4)问△BFC是什么三角形?你还记得三角形按角、按边怎么分类吗?(教师分类出示两组问题,学生先独立思考这些问题,通过复习笔记或看书在作业本上写出答案.然后,教师组织学生逐题展示交流,让学生巩固本章所学的基础知识.)3. 典型例题,提炼思想方法与规律例1:已知等腰三角形的两边长分别为10和6,则三角形的周长是____.变式1:若等腰三角形的周长为20,一边长为4,则其它两边长为____.变式2:小明用一条长20cm的细绳围成了一个等腰三角形,他想使这个三角形的一边是另一边的2倍,那么这个三角形的各边分别是多少?(学生先进行讨论,教师再引导学生分析:第(1)题,用设未知数,找相等关系,列方程来解,体现了几何问题用代数方法解和方程思想,第(2)题,要注意分两种情况考虑,注意检查是否符合两边之和都大于第三边,体现了数学中的分类讨论思想.最后,请学生板书解答过程.)例2:如图在△ABC中,∠ABC、∠ACB的平分线BD、CE交于点O,若∠ABC=40 º,∠ACB=60 º,则∠BOC=____.变式1:若∠A=80 º,则∠BOC=____变式2:你能猜想出∠BOC与∠A之间的数量关系吗?变式3:若换成两外角平分线相交于O,则∠BOC与∠A又有怎样的数量关系?变式4:若换成一内角与一外角平分成相交于点O,则∠O与∠A又有怎样的数量关系?变式5:若将△ABC的两条角平分线BD、CE改为高交于O点,∠A与∠BOC又有怎样的关系?(学生先独立完成,教师请学生上台讲解自己的解题思路和做法,其他同学补充.教师强调解题格式,展示书写规范的.通过这组变式题型,让学生在层层探索中加深对三角形内角和、外角以及角平分线的理解,体验数学活动的多变性,与数学知识的灵活运用.最后教师引导学生总结本题所用数学知识和思想方法.)四、达标提升:1.以下列各组线段为边,能组成三角形的是( )(A)1cm 2cm 4cm (B) 8cm 6cm 4cm (C)12cm 5cm 6cm (D)2cm 3cm 6cm2.在△ABC 中,AD 是中线,则△ABD 的面积 △ABC 的面积(填“>” “<” “=”)3.若△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,∠ABC+∠ACB=116 º,则∠BOC=____4.一个多边形的每一个外角都等于30 º,这个多边形的边是 ___,它的内角和是____度.5.(2015·恩施中考)如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于 ( )A.50°B.60°C.65°D.90°6.(2015·来宾中考)如图,在△ABC 中,已知∠A=80°,∠B=60°,DE ∥BC ,那么∠CED 的大小是 ( )A.40°B.60°C.120°D.140°7.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( ). A B C D E OA BC D E O F O A O E D C BA.k B.2k+1 C.2k+2 D.2k-28.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于()A.16 B.14 C.12 D.1010.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115°B.105°C.95°D.85°11.如图,∠1,∠2,∠3,∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠312.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.13.(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__________,∠XBC+∠XCB=__________;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.14.平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.15.小设计:一块三角形优良品种试验田,现进行四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明.ADB C5.归纳小结,内化所学教师与学生一起回顾本节课内容,并请学生回答以下问题:(1)本章的核心知识有哪些?这些知识间有什么样的联系?(2)通过本节课的复习,说说三角形内角和定理的由来及作用.(通过小结,学生回顾复习的内容,体会图形的位置关系与数量关系在一定条件下能相互转化的数学思想.)布置作业1、作业本上复习题11 P29第10、11、122、基础训练同步练习能力提高教学反思:本节课以学生的学为主,通过题海训练加深学生对知识的理解以及应用能力,效果很好,同时又培养了孩子的观察能力,拓展了思维。

第十一章 三角形章节复习(教学设计)-八年级数学上册同步备课系列(人教版)

第十一章 三角形章节复习(教学设计)-八年级数学上册同步备课系列(人教版)

第十一章三角形章节复习教学设计一、教学目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.二、教学重点、难点:重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.三、教学过程:知识网络知识梳理1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.△ABC的三边,有时也用a,b,c来表示.顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.2.三角形的分类:3.三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边.已知三角形的两边a、b(a>b),则第三边的范围“a-b<第三边<a+b”4.三角形的高、中线与角平分线:高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.三条角平分线相交于一点,如图.5.三角形的内角和与外角:(1)三角形的内角和等于180°;(2)直角三角形的两个锐角互余;(3)直角三角形的判定:有两个角互余的三角形是直角三角形;(4)三角形的一个外角等于与它不相邻的两个内角的和;(5)三角形的一个外角大于和它不相邻的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形是各个角都相等,各条边都相等的多边形.(2)从n边形的一个顶点出发,能引出(n﹣3)条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形;(4)n边形一共有n(n-3)�条对角线.(5)n边形内角和等于(n-2)×180°(n≥3的整数)(6)n边形的外角和等于360°(7)正多边形的每个内角的度数是n n 180)2( 或n360180 (8)正多边形的每个外角的度数是n360考点解析考点一:三角形的三边关系例1.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a +10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.解:∵a 2+b 2=6a +10b ﹣34,∴a 2﹣6a +9+b 2﹣10b +25=0,∴(a ﹣3)2+(b ﹣5)2=0,∴a =3,b =5,∴5﹣3<c <5+3,即2<c <8.又∵c 是△AB C 中最长的边长,∴c =5、6、7.例2.已知a,b,c 是△ABC 的三边长.(1)若a ,b ,c 满足,(a -b )2+�−�=0,试判断△ABC 的形状;(2)化简:�−�−�+�−�+�-�−�−�.解:(1)∵(a -b )2+|�−�|=0,∴(a -b )2=0且|�−�|=0,∴a =b =c ,∴△ABC 是等边三角形.(2)∵a ,b ,c 是△ABC 的三边长,∴b -c -a <0,a -b +c >0,a -b -c <0,原式=-(b -c -a )+a -b +c -[-(a -b -c )]=a +c -b +a -b +c -b -c +a=3a -3b +c.例3.已知a ,b ,c 分别为△ABC 三边的长,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.(1)解:∵a ,b ,c 分别为△ABC 三边的长,a +b =3c -2,a -b =2c -6,3-226c c c c>∴<∴解得2<c <6.(2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18.解得c =5.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A .3cm 、3cm 、6cmB .3cm 、5cm 、7cmC .2cm 、4cm 、6cmD .2cm 、9cm 、6cm答案:B【1-2】已知三角形的三边长分别为2,a -1,4,则化简|a -3|-|a -7|的结果为___________.答案:2a -10【1-3】已知a ,b ,c 是ABC 的三边长,a 、b 满足2|7|(2)0a b ,且ABC 的周长为偶数,则边长c 的值为多少?解:∵a ,b 满足|a −7|+(b −2)2=0,∴a −7=0,b −2=0,解得a =7,b =2,根据三角形的三边关系,得7−2<c <7+2,即:5<c <9,又∵三角形的周长为偶数,a +b =9,∴c =7.考点二:三角形中的重要线段例4.如图,在△AB C 中,∠ABC =40°,∠C =60°,AD ⊥BC 于D,AE 是∠BAC 的平分线.(1)求∠DAE 的度数;(2)指出AD 是哪几个三角形的高.解:(1)AD ⊥BC 于D,∴∠ADB =∠ADC =90°∵∠ABC =40°,∠C =60°,∴∠BAD =50,∠CAD =30°∴∠BAC =50°+30°=80°∵AE 是∠BAC 的平分线,∴∠BAE =40°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长;(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=C D.∵△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,即AB—AC=2①.又AB+AC=10②,①+②得2AB=12,解得AB=6.∴AC=4.(2)∵AB=6,AC=4,∴2<BC<10.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.解:∵点D 是AC 的中点,∴AD =12A C.∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.【点睛】三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.【迁移应用】【2-1】如图,在△AB C 中,∠ACB =90°,CD ⊥AB 于D ,图中可以作为△ACD 的高的线段有()A .0条B .1条C .2条D .3条【2-2】如图,在△AB C 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是()A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.答案:【2-1】C;【2-2】C;【2-3】� �.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD=��∠BA C.∵∠EDA=∠B+∠BAD,∠EAD=∠CAD+∠EAC,∠EDA=∠EAD,∴∠EAC=∠B.(2)解:由(1)可知∠EAC =∠B =50°.设∠CAD =x ,则∠E =3x ,∠EAD =∠ADE =x +50°,∴50°+x +50°+x +3x =180°.∴x =16°.∴∠E =3x =48°.例8.如图,在△AB C 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC于点G .(1)若∠ABC =40°,∠BAC =60°,求∠BOD 和∠COG 的度数;解:∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =50°,∠COG =90°-∠OCG=90°-12(180°-∠ABC -∠BAC )=90°-40°=50°.解:∠BOD =∠COG .理由如下:∵∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =12(180°-∠ACB )=90°-12∠ACB ,∠COG =90°-∠OCG =90°-12∠ACB ,∴∠BOD=∠COG.【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°答案:B【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β答案:B【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.答案:50°,【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15则这个锐角三角形三个内角的度数为___________________.答案:17°、78°、85°考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:∵∠A+∠D+∠F=180°,∠B+∠C+∠E+∠G=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°+360°=540°.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.解:设新的多边形的边数为n,∵新的多边形的内角和是1980°,∴180°×(n﹣2)=1980°,解得:n=13,∵一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形,①若截去一个角后边数增加1,则原多边形边数为12,②若截去一个角后边数不变,则原多边形边数为13,③若截去一个角后边数减少1,则原多边形边数为14,∴原多边形的边数可能是:12或13或14.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为(C)A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.答案:十七边形或十八边形或十九边形【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11答案:D【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°答案:B考点六:本章中的思想方法:1.方程思想:例13.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.解:设∠C=x°,则∠ABC=x°∵△BDE是等边三角形∴∠ABE=60°∴∠EBC=x°-60°∵BE⊥AC,∴∠BEC=90°在△BCE中,根据三角形内角和定理得90+x+x-60=180,解得x=75∴∠C=75°【点睛】在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.解:设∠1=x,根据题意得∠2=x.因为∠3=∠1+∠2,∠4=∠2,所以∠3=2x,∠4=x,又因为∠3=∠C,所以∠C=2x.在△AB C中,根据三角形内角和定理,得x+2x+2x=180°,解得x=36°,所以∠1=36°.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.【解析】由于没有指明等腰三角形的腰和底,所以要分两种情况讨论:第一种10为腰,则6为底,此时周长为26;第二种10为底,则6为腰,此时周长为22.【点睛】别忘了用三边关系检验能否组成三角形这一重要解题环节.3.化归思想:如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:连接CD,由“8字型”模型图可知∠F+∠G=∠FCD+∠GDC,∴∠A+∠B+∠BCF+∠EDG+∠E+∠F+∠G=∠A+∠B+∠BCF+∠EDG+∠E+∠FCD+∠GDC=∠A+∠B+∠BCD+∠CDE+∠E=(5-2)×180°=540°.。

三角形全等复习精品复习课

三角形全等复习精品复习课

好高的纪 念碑呀! 念碑呀! 相当于几 层楼高呢? 层楼高呢?
想到办法 了,要站 在路中间。 在路中间。ຫໍສະໝຸດ 他在干 吗呢? 吗呢?A
你能用所学的知识说 说这样做的理由吗? 说这样做的理由吗?
我知道 了,相 当于八 层楼高。 层楼高。
A’
B
O B’
谈一谈你在本 2.数学来源于实践 数学来源于实践, 2.节课的收获 ,又应用 数学来源于实践
A
B
点A、点B分别位 、 分别位 于池塘的两端, 于池塘的两端,不 能直接测量, 能直接测量,你能 想一个办法测出 A,B的距离吗? 的距离吗? 的距离吗
C D F E G
在墙上有 一个很大的圆 形设计图, 形设计图,O 是圆心, , 是圆心,A,B 在圆周上, 在圆周上,现 要想测量AB的 要想测量 的 距离, 距离,但墙很 高,又没有梯 子,不能直接 测量。 测量。如果给 你一根超过直 径的竹竿和一 把卷尺, 把卷尺,你能 测量AB间的距 测量 间的距 离吗? 离吗?
第十一章 三角形全等复习
1.已知:如图 、BD相交于 ,OA=OC, 已知:如图AC、 相交于 相交于O, 已知 , 请你添加一个条件, 请你添加一个条件,使△AOB≌△COD并 ≌ 并 说明理由; 说明理由; A O D C B
1.已知:如图 、BD相交于 ,OA=OC, 已知:如图AC、 相交于 相交于O, 已知 , 请你添加一个条件, 请你添加一个条件,使△AOB≌△COD并 ≌ 并 说明理由; 说明理由; 添加 OB = OD A B 理由:在△AOB与△COD中, 理由: 与 中 O D C
A’
B
O B’
∴ AO = CO ∠ AOB = ∠ COD BO = DO △AOB≌△COD(SAS) ≌ ( )

人教版八年级上册数学第十一章三角形复习课件

人教版八年级上册数学第十一章三角形复习课件

第十一章 三角形
知识点4:三角形内角和定理 10.如图,△ABC中,AD平分∠BAC, DE∥AC,且∠B=40°,∠C=60°, 则∠ADE的度数为 40° . 11.如图,在△ABC中,∠B、∠C的平分线BE, CD相交于点F,∠A=60°,则∠BFC的 度数为 120° .
Байду номын сангаас
第十一章 三角形
第十一章 三角形
知识点6:直角三角形的性质 19.在Rt△ABC中,∠C=90°,∠B=35°,则
∠A=( B )
A.45° B.55° C.65° D.75° 20.如图,∠BAC=90°,AD⊥BC,∠BAD=
30°,则∠C的度数是( A )
A.30° B.40° C.50° D.60°
第十一章 三角形
C.6,8,13
D.2,2,4
7.若三角形的三边长分别为3,1+2x,8,则x的取
值范围是( A )
A.2<x<5
B.3<x<8
C.4<x<7
D.5<x<9
第十一章 三角形
8.在三角形ABC中,AB=7,BC=2,并且AC的
长为奇数,则AC=( C )
A.3
B.5
C.7
D.9
第十一章 三角形
9.一个三角形的两边长为3和5, (1)求它的第三边a的取值范围; (2)求它的周长L的取值范围; (3)若周长为偶数,求三角形的第三边长.
∵AD⊥BC,∴∠ADC=90°, ∴∠C=90°-∠A=90°-30° =60°,在△BCE中, ∠BEC=180°-∠EBC-∠C=180°-40°- 60°=80°.
第十一章 三角形
知识点7:多边形及其内角和 24.八边形的内角和等于 1080° . 25.一个多边形的每个外角都等于60°,则这个多 边形的边数是 6 . 26.如图,在四边形ABCD中,∠A=140°,∠D= 90°,OB平分∠ABC,OC平分 ∠BCD,则∠BOC= 115° .

人教版八年级数学上册第十一章三角形章末复习课件

人教版八年级数学上册第十一章三角形章末复习课件
(4)n 边形的n 个内角有怎样的关系?如何推出这
个结论?
(5)n 边形的外角大小和与n 有关吗?为什么?
建构体系
与三角形有关的 线段
三 角 三角形的内 形 角和
三角形的外 角和


中 线角平分 线 多边形的内 角和
多边形的外 角和
① 三角形的定义
a.边:组成三角形的线段 b.顶点:相邻两边的交点 c.角:相邻两边组成的角
c.三角形的高:从三角形的一个顶点向它的对边作垂 线,所得线段叫做三角形的高.
④三角形三边间的关系: 三角形两边的和大于第三边.
⑤三角形的稳定性及应用: 三角形具有稳定性.
⑥多边形的对角线、内角和、外角和:
n 边形的对角线条数等于 n(n 3) 和等于(n-2)·180°,外角和等于3602°.
基础巩固
随堂演练
1.已知a、b、c是三角形的三边长,化简:|a-b +c|-|a-b-c|=_________2.a-2b
综合应用
2.如图,在直角三角形ABC中, ∠ACB =90°,CD是AB边上的高, AB = 13cm,BC = 12cm,AC = 5cm.
(1)求出△ABC的面积及 CD的长; (2)已知BE是 △ABC的边AC上的中线,求出△ABE
O
B
C
练习1(1)三角形的两边分别为3和5,则三角形周长y
的范围是(
A.2<y<8

C
B.10<y<18
C.10<y<16
D.无法确定
练习1(2)在下列条件中:① ∠A + ∠B =∠C,②
∠A:∠B:∠C =1:2:3,③∠A = 90°-∠B,④∠A
=∠B =∠C中,能确定△ABC是直角三角形的条件有(

人教版八年级上册数学第十一章《三角形》复习课件

人教版八年级上册数学第十一章《三角形》复习课件


C
EDF
B
(2)∠BAD=
=

(3)∠AFB=
=90°;
(4)SΔABC=
.
知识点三:三角形中的线段
变式练习:
1.在ΔABC中,CD是中线,已知BC-AC=5cm, ΔDBC的周长为25cm,求ΔADC的周长.
A
D
B
C
知识点三:三角形中的线段
变式练习:
1.在ΔABC中,CD是中线,已知BC-AC=5cm,
知识点一:三角形的三边关系
变式练习: 1.若三角形三边长为2,4,m,则m的值不可以是(D) A.3 B.4 C.5 D.6 2.若等腰三角形的两边长是3cm和5cm,则它的周长是( C ) A.11cm B.13cm C.11cm或13cm D.无法确定 3.若等腰三角形的两边长是3cm和6cm,则它的周长是( B ) A.12cm B.15cm C.12cm或15cm D.无法确定 4.若三角形的两边长是3cm和6cm,若第三边为奇数,则它的周长 可能是( C ) A.12cm B.13cm C. 14cm D.15cm
如图1,∠BAD=∠CAD,则线段AD是△ABC的一条角 平分线.
在三角形中,连接一个顶点与它的对边中点的线段叫作 三角形的中线.
如图2,BE=EC,则线段AE是△ABC的BC边上的中线.
知识点三:三角形中的线段
例1.如图,在ΔABC中,AE是中线,AD是角
A
平分线,AF是高。填空:
(1)BE=
=
《三角形》复习用课件
知识点一:三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边;
知识点一:三角形的三边关系

人教版11章《三角形》全章复习(共25张PPT)

人教版11章《三角形》全章复习(共25张PPT)

例5 如图,在锐角△ABC中,CD、BE 分别是AB、AC边上的高,且CD、BE 交于一点P,若∠A=50°,则∠BPC的 度数是(B)
A.150° B.130° C.120° D.100°
例6 如图所示,BE与CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线。 (1)试探求∠F与∠B、∠D间有何等量关系。
(2)根据你的猜想,当n=4时说明∠BO3C的 度数成立.
解:当n=4时,代入所猜想的公式得 ∠BO3C=(1/4)×180°+(3/4)×∠A。
另外,在△BO3C中由三角形内角和定理 得:
∠BO[3]C=180°-(∠O3BC+∠O3CB) =180°-(3/4)(∠ABC+∠ACB) =180°-(3/4)(180°-∠A) =(1/4)×180°+(3/4)∠A
解:(1)∠D+∠B=2∠F ∵EF平分∠BED,CF平分∠BCD ∴∠DEF=(1/2)DEB,∠FCD=(1/2)∠BCD 而∠EMC=∠D+(1/2)∠BED,
∠EMC=∠F+(1/2)∠BCD ∴∠D+(1/2)∠BED=∠F+(1/2)∠BCD ① 同理可得: ∠B+(1/2)∠BCD=∠F+(1/2)∠BED ②
11章《三角形》 章末复习
R·八年级上册
知识框架
回顾思考
1.本章的主要内容是: 三角形的概念, 三角形的三边关系定理, 三角形的三条重要线段(高、中线和角平分线), 三角形内角和定理。
三角形的外角,多边形的内、外角和定理,简单 的平面镶嵌。
三角形的稳定性和四边形的不稳定性。
2.经历三角形内角和等于180°的验证与证明过 程,初步体验对一个规律的发展到发现确认艰 辛历程。体会证明的重要性,初步接触辅助线 在几何研究中不 可或缺的作用。

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为

• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60

90O

• 3.小明绕五边形各边走一圈,他共转了 度

(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )

第十一章 三角形复习课件 2024—2025学年人教版数学八年级上册

第十一章 三角形复习课件  2024—2025学年人教版数学八年级上册

1 2
__B_C__,
③AF是△ABC的高线,则∠__A_F_B_=∠_A__F_C_=90°.
考点三 有关三角形内、外角的计算
例5 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足 下列条件,求∠A,∠B,∠C中未知角的度数.
(1)∠A-∠B=16°,∠C=54°; (2)∠A:∠B:∠C=2:3:4.
解:(1)由∠C=54°知∠A+∠B=180°-54°=126°① 又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55° (2)设∠A=2x,∠B=3x,∠C=4x
则2x + 3x + 4x = 180° ,解得 x=20° ∴∠A=40°,∠B=60°,∠C=80°
考点四 多边形的内角和与外角和
例2 等腰三角形的周长为16,其一边长为6,求另 两边长.
解:由于题中没有指明边长为6的边是底还是腰, ∴分两种情况讨论:
当6为底边长时,腰长为(16-6)÷2=5,这时另两 边长分别为5,5; 当6为腰长时,底边长为16-6-6=4,这时另两边长 分别为6,4. 综上所述,另两边长为5,5或6∠A+∠B+∠C+∠D+∠E+∠F
+∠G的度数.
A
解析:连接CD便转化为求五边形
的内角和问题.
BG
E F
解:连接CD,由“8字型”可知 C
D
∠FCD+∠GDC=∠F+∠G
所以∠A+∠B+∠C+∠D+∠E+∠F+∠G
=(5-2) ×180 °=540 °
A字型 A
E
D
内角和:(n-2) ×180 ° 外角和:360 °
正多边形
内角= (n
2) 180 n
;外角=
360 n

人教版八年级数学上册第十一章 三角形复习课【优秀】

人教版八年级数学上册第十一章 三角形复习课【优秀】

人教版八年级数学上册第十一章三角形复习课【优秀】(文档可以直接使用,也可根据实际需要修订后使用,可编辑推荐下载)第十一章复习课复习目标:1形等的概念,会画三角形的中线、高、角平分线。

2、知道三角形及多边形的外角和内角的性质,并能简单应用。

3、知道平面镶嵌的意义,能运用简单图形进行镶嵌设计。

4、重点:能熟练应用三角形的边、角的有关知识解决问题。

一、【预习导学】◆体系构建请你完成本章的知识网络图。

◆核心梳理1、由不在的三条线段相连接所组成的图形叫作三角形。

2、三角形两边的和第三边,三角形两边的差第三边。

3、三角形的内角和等于,三角形的一个外角等于,一个外角与它不相邻的任何一个内角。

4、直角三角形两锐角,有两个角的三角形是直角三角形。

5、n边形从一个顶点出发可以作条对角线,将n边形分成个三角形,n边形共有对角线。

6、各个角都,各条边都的多边形叫作正多边形。

7、n边形的内角和等于,任意多边形的外角和等于。

8、平面镶嵌的条件是拼接在同一个点的各个角的和等于。

二、【合作探究】专题一与三角形有关的线段1、如图,E、F、G分别是AB、BC、AC边上的中点,则S△ABC = S△2、三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形的个数为()A、1B、3C、5 D 、无数[变式训练]等腰三角形的周长为30cm,一边长为12cm,则底边长或。

【方法归纳交流】已知三角形的两边,则已知两边的<三角形的第三边<已知两边的。

专题二三角形及多边形的内外角和3、正多边形的一个内角等于1440,则该多边形是正()边形。

A、8B、9C、10D、114、已知在△ABC中,∠A=400,∠B-∠C=400,则∠B= ,∠C= 。

[变式训练]如果三角形的一个角等于其他两个角的差,则这个三角形是三角形。

5、一个多边形的内角和比它的外角和的2倍还大1800少?6、如图所示,在△ABC中,∠A:∠ABC:∠ACB=3:4:5,BD、CEAB上的高,BD、CE相交于H,求△ABC各内角的度数及∠BHC的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档