扩散问题地偏微分方程模型,数学建模
数学建模偏微分方程
数学建模偏微分方程数学建模是数学与实际问题相结合的一种方法,它试图通过数学模型和解析技巧来解决现实生活中的问题。
在数学建模中,偏微分方程是一类非常重要的数学工具。
偏微分方程(Partial Differential Equation,简称PDE)是涉及到多个变量的函数而产生的方程。
它包含了未知函数的偏导数和自变量之间的关系,可以用来描述许多科学和工程领域中的问题。
偏微分方程广泛应用于物理学、工程学、经济学等领域,并且在实际问题的求解中具有重要作用。
偏微分方程的求解过程通常分为两个基本步骤:建立数学模型和求解方程。
建立数学模型是将现实问题抽象化为数学问题,通常涉及到对问题的描述和假设的引入。
在建立数学模型时,我们需要考虑到问题的边界条件和初始条件,并根据问题的特征选择合适的数学方程。
常见的偏微分方程包括:抛物型方程、椭圆型方程和双曲型方程。
抛物型方程主要处理与时间有关的问题,如热传导方程和扩散方程;椭圆型方程主要处理静态问题,如拉普拉斯方程和泊松方程;双曲型方程主要处理与空间和时间有关的问题,如波动方程和传热方程。
求解偏微分方程的方法有多种,常见的方法包括分离变量法、特征线法、变换法和数值方法等。
分离变量法是将多自变量的偏微分方程转化为一元变量的常微分方程,从而简化求解过程;特征线法是利用特征线的性质来求解偏微分方程;变换法通过对原方程进行合适的变换来得到新的方程,从而简化求解过程;数值方法是通过数值逼近来求解偏微分方程,常用的数值方法有有限差分法、有限元法和谱方法等。
在实际应用中,偏微分方程被广泛应用于各个领域。
在物理学中,偏微分方程可以用来描述物体的运动、传热、电磁场等现象;在工程学中,偏微分方程可以用来优化结构、分析流体力学问题等;在经济学中,偏微分方程可以用来描述市场行为、金融衍生品定价等。
通过对这些领域的建模和求解,我们可以更好地理解和预测自然界和社会的行为。
总之,偏微分方程是数学建模中的重要工具,它可以用来描述和解决现实问题。
扩散模型数学推导
扩散模型数学推导
扩散模型是描述物质扩散过程的数学模型,其基本原理是根据物质的浓度梯度,通过扩散系数来描述物质从高浓度向低浓度方向扩散的过程。
在数学上,扩散模型可以用偏微分方程来表示,常见的扩散模型包括热传导方程、扩散方程、对流扩散方程等。
对于热传导方程,其数学表达式为:
$$frac{partial u}{partial t}=k
abla^2 u$$
其中,$u$表示温度,$k$表示热传导系数,$
abla^2$表示拉普拉斯算子。
该方程描述了物质在热传导过程中的扩散行为。
类似地,对于扩散方程,其数学表达式为:
$$frac{partial u}{partial t}=D
abla^2 u$$
其中,$u$表示物质浓度,$D$表示扩散系数。
该方程描述了物质在扩散过程中的扩散行为。
而对于对流扩散方程,其数学表达式为:
$$frac{partial u}{partial t}=D
abla^2 u -
ablacdot(textbf{v}u)$$
其中,$textbf{v}$表示流体速度。
该方程描述了物质在流体中同时受到扩散和对流的影响。
除了以上三种模型,还有许多其他的扩散模型,例如非线性扩散方程、弛豫扩散方程等。
这些模型的数学推导都需要借助偏微分方程和相关数学工具来完成。
扩散模型_精品文档
扩散模型概述扩散模型是一种数学模型,用于描述物质、信息或其他现象在空间中扩散的过程。
它是一种常见的分析工具,在各个领域都有广泛应用,包括化学、生物学、物理学、经济学等。
扩散模型可以帮助我们理解和预测扩散过程的特征和行为。
基本原理在扩散模型中,我们通常将空间划分为离散的单元,如网格或格点。
每个格点上都有一定数量的物质或信息,它们可以通过相邻格点之间的转移进行扩散。
扩散速率取决于扩散现象的性质以及格点间的距离和差异。
扩散模型的基本原理可以用Fick定律来描述。
Fick定律指出,扩散通量的大小与物质浓度梯度成正比,与扩散系数成反比。
这意味着在浓度梯度较大的地方,物质的扩散速率更快;而在扩散系数较小的地方,扩散速率更慢。
数学表达在数学上,扩散模型通常使用偏微分方程来描述。
最常见的扩散模型是扩散方程,也称为热传导方程或扩散方程。
它的一般形式可以写为:∂C/∂t = D∇²C其中,C表示物质或信息的浓度,t表示时间,D表示扩散系数,∇²表示拉普拉斯算符。
这个方程说明了物质或信息浓度随时间和空间的变化情况。
解析方法扩散方程是一个非常重要的偏微分方程,它在许多问题中都有解析解。
通过求解扩散方程,我们可以得到扩散过程的精确解,进而研究其特性和行为。
对于简单的一维情况,扩散方程可以用分析方法求解。
我们可以应用变量分离、傅里叶变换等技巧,将方程化简为常微分方程,并找到相应的解析解。
数值方法然而,在许多实际问题中,扩散方程往往是复杂的,很难通过解析方法求解。
这时,我们可以使用数值方法来近似求解。
常见的数值方法包括有限差分法、有限元法和边界元法等。
这些方法将偏微分方程转化为离散的代数方程,然后通过求解代数方程组来得到数值解。
通过数值方法,我们可以模拟扩散过程的演化,研究其动态行为和稳定性。
这种基于计算机模拟的方法可以帮助我们更好地理解和预测实际问题中的扩散现象。
应用领域扩散模型在各个领域都有广泛的应用。
7.扩散模型
扩散模型是一种用于描述和预测物质或信息在空间和时间中传播过程的数学模型。
它被广泛应用于各个领域,如物理学、化学、生物学、社会学和经济学等,以研究和解释各种扩散现象和现象的传播行为。
在扩散模型中,通常假设存在某种物质或信息,具有在空间中传播的趋势。
这种传播可以是通过扩散、传导、迁移、扩张或传送等方式进行。
扩散模型的目标是理解和预测这种传播现象的过程、速率和规律。
常见的扩散模型包括:1. 扩散方程模型:基于扩散方程的模型是描述物质或信息扩散过程的常见方法。
它基于扩散方程,该方程描述了物质或信息在空间和时间上的变化。
通过解析或数值方法求解扩散方程,可以得到物质或信息的扩散行为的预测结果。
2. 随机扩散模型:有些情况下,扩散过程可能受到随机因素的影响。
随机扩散模型采用随机过程和概率方法来建模扩散现象。
例如,布朗运动模型描述微粒在液体或气体中的随机运动和扩散行为。
3. 网络扩散模型:在网络科学中,扩散模型被用于研究信息在网络中的传播。
这些模型考虑了节点之间的连接和交互,并通过模拟节点之间的信息传播来预测网络中的扩散过程。
通过使用扩散模型,研究人员可以深入了解和预测各种扩散现象,如热传导、分子扩散、疾病传播、信息传播、社会影响等。
这些模型为我们理解和干预扩散过程提供了重要的工具和框架。
在计算机领域,扩散模型有多种应用。
下面是其中几个常见的应用:1. 网络传播模型:扩散模型可以用于研究信息在计算机网络中的传播过程。
例如,在社交媒体平台上,研究人员可以使用扩散模型来模拟和预测消息、观点或病毒视频等内容在用户之间的传播路径和速度。
这有助于我们理解信息的扩散规律、病毒传播方式,以及如何优化信息传播策略和社交网络的设计。
2. 数据传输和通信:在数据传输和通信领域,扩散模型可以用于研究和优化数据的传输过程。
例如,在无线传感器网络中,扩散模型可以帮助确定最佳的数据传输路径和路由策略,以最大程度地减少能量消耗和传输延迟。
此外,在蓝牙、Wi-Fi和移动通信等领域,扩散模型可以帮助优化信号传输范围和覆盖率,提高通信效率和质量。
扩散问题的偏微分方程模型,数学建模
第七节 扩散问题的偏微分方程模型物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决.MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程.本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程.§1 抛物型方程的导出设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +∆时刻这段时间内,通过S 流入Ω的质量为2221(cos cos cos )dSd t ttSu u uM a b c t x y zαβγ+∆∂∂∂=++∂∂∂⎰⎰⎰. 由高斯公式得2222221222()d d d d t ttu u u M a b c x y z t x y z +∆Ω∂∂∂=++∂∂∂⎰⎰⎰⎰. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为22d d d d t ttM k u x y z t +∆Ω=⎰⎰⎰⎰,(2) 其中2k 是衰减系数.由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -.换一种角度看,Ω内由于深度之变化引起的质量增加为3[(,,,)(,,,)]d d d d d d d . (3)t ttM u x y z t t u x y z t x y zux y z t t Ω+∆Ω=+∆-∂=∂⎰⎰⎰⎰⎰⎰⎰显然312M M M =-,即2222222222d d d d ()d d d d .t ttt ttux y z t t u u u a b c k u x y z t x y z+∆Ω+∆Ω∂∂∂∂∂=++-∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰由,,t t ∆Ω之任意性得2222222222u u u u a b c k u t x y z∂∂∂∂=++-∂∂∂∂ (4) 方程(4)是常系数线性抛物型方程,它就是有衰减的扩散过程的数学模型,对于具体问题,尚需与相应的定解条件(初始条件与边界条件等)匹配才能求得确定情况下的解.§2 Dirac 函数物理学家Dirac 为了物理模型之需要,硬是引入了一个当时颇遭微词的,使得数学与物理学传统密切关系出现裂痕的“怪”函数:0,0,() ()1.,0,x x x dx x δδ+∞-∞≠⎧==⎨∞=⎩⎰ (5)它的背景是清晰的,以一条无穷长的杆子为例,沿杆建立了一维坐标系,点的坐标为x ,杆的线密度是()x ρ,在(,]x -∞段,杆子质量为()m x ,则有d ()(), ()d ().d x m x x x x m x xρρ-∞==⎰. (6)设此无穷长的杆子总质量为1,质量集中在0x x =点,则应有001,,()0,,x x m x x x >⎧=⎨<⎩ 或写成 0()()m x H x x =-, 其中()H x 为1,0,()0,0,x H x x >⎧=⎨<⎩ 如果沿用(6)中的算法,则在质量集中分布的这种情形有00,,(),0.x x x x ρ≠⎧=⎨∞=⎩且0()d ()xx x H x x ρ-∞=-⎰,于是得()d 1.x x ρ+∞-∞=⎰. (7)但是,从传统数学观点看,若一个函数除某点处处为零,则不论哪种意义下的积分,都必定为零,(7)式岂能成立!但是,δ函数对于物理学而言是如此之有用,以致物理学家正当地拒绝放弃它. 尽管当时数学家们大都嘲笑这种函数,但P.A.M.Dirac 及其追随者们在物理领域却收获颇丰,Dirac 于1933年获诺贝尔物理奖. 当然Dirac 也意识到()x δ不是一个通常的函数,至于找一种什么办法来阐明()x δ这一符号的合法性,那就是数学家的任务了. 1940年,法国数学家许瓦兹(L.Schwartz )严格证明了应用()x δ的正确性,把δ函数置于坚实的数学基础上;1950年,L. Schwartz 获数学界最高奖Fields 奖.δ函数的重要性质有:1)0()d 1x x x δ+∞-∞-=⎰. (8) 2)00()()d ()x x f x x f x δ+∞-∞-=⎰. (9)其中()(,)f x C ∈-∞+∞,即0()x x δ-摘出了()f x 在0x x =的值.3)00()()dH x x x x dxδ-=-. (10)4)()x δ的导数是存在的,不过要到积分号下去理解:00()()(),x x f x dx f x δ+∞-∞''-=-⎰ (11) ()()00()()(1)().n n n x x f x dx f x δ+∞-∞-=-⎰(12)事实上,由于0()x x δ-在,+∞-∞处为零,则形式地用分部积分公式000()()()()d ()()d ,x x f x x x f x xx x f x x δδδ+∞+∞-∞-∞+∞-∞'---'=-⎰⎰其中,()(,)n f x C ∈-∞+∞,于是有(11)与(12)公式.5)对于()(,)x C ϕ∈-∞+∞,有000()()()()x x x x x x ϕδϕδ-=-. (13)6)1()() (0)||bx x b b δδ=≠. (14) 7)000000(,,)()()()x x y y z z x x y y z z δδδδ---=---. (15)8)付立叶变换00[()].i x y y e λδ--=F (16) [()] 1.x δ=F (17)11221122[()()][()][()].C x x C x x C x x C x x δδδδ-+-=-+-F F F (18) 9)拉普拉斯变换00[(),[() 1.x x x e x δδδ--==F F (19) 11221122[()]()][()[()].C x x C x x C x x C x x δδδδ-+-=-+-F F F (20)从上面的定义与性质看出,Delta 函数()x δ与一般可微函数还是有重大区别的,我们说它是“广义函数. ”§3 Cauchy 问题的解设扩散源在点000(,,)x y z 处,则此扩散问题满足Cauchy 问题2222222222000, (21)(,,,0)()()(). (22)u u u u a b c k u tx y z u x y z M x x y y z z δδδ⎧∂∂∂∂=++-⎪∂∂∂∂⎨⎪=---⎩对(21)(22)进行付立叶变换,且令123ˆ(,,), (,)[(,,,)]ut u x y z t λλλλλ==F , 由于222222123222ˆˆˆ[], [], [],u u u uu u x y zλλλ∂∂∂=-=-=-∂∂∂F F F 102030000()[(,,,0)][()][()][()] ,i x y z u x y z M x x y y z z Me λλλδδδ-++=---=F F F F 故得常微分方程Cauchy 问题1020302222222123()ˆ()0,ˆ(0,).i x y z du a b c k udtu Meλλλλλλλ-++⎧++++=⎪⎨⎪=⎩ 得唯一解2222222123102030()()ˆ(,)a b c k t i x y z ut Me λλλλλλλ-+++-++=. (23)对(23)求逆变换1-F,由于212214[]a xa e λ---=F ,211021240[]()i x e aa ex x λλ----=-F , 故得12222000222ˆ(,,,)[]()()()exp 444u x y z t ux x y y z z k t a t b t c t -=⎧⎫---=----⎨⎬⎩⎭F2222000222()()().444x x y y z z k t a t b t c t ⎧⎫---=----⎨⎬⎩⎭(24) 如果认为经过了相当长时间后,扩散已经终止,物质分布处于平衡状态,则方程(4)中的0ut∂=∂,于是有线性椭圆型方程的边值问题 22222222220, (,,)(,,)(,,).D u u u a b c k u x y z D xy z u x y z x y z ϕ∂⎧∂∂∂++-=∈⎪∂∂∂⎨⎪=⎩也可以用付立叶变换求解. 当然,根据实际情况,还可以考虑第二边条件(,,)Dux y z n ∂∂=ψ∂或第三边条件[](,,)D uu x y z nαβρ∂∂+=∂等,其中D ∂是区域D 的边界,n 是外法线方向,,αβ是实常数.§4 参数估计在Cauchy 问题(21)(22)的解(23)中,有四个未知的参数,,,a b c k ,它们分别是扩散与衰减过程中的扩散系数与衰减系数的算术平方根. 至于点源的质量与位置000,(,,)M x y z 是已知的.设观测取样为:11112222(,,,), (,,,),,(,,,),n n n n x y z m x y z m x y z m 取样时刻为1t =(不然设00, t t t τ=是取样时间,则(21)变成2200t xx yy U t a U t b U =++ 2200zz t c U t k U -,对τ而言,取样时间为1,而方程形状与(21)一致),把在(,,)i i i x y z 点观测到的物质密度i m 与公式(24)都取对数,令1t =,则2222000222()()()ln (,,,1)ln []444x x y y z z u x y z abc k a b c ---=--+++. (25) 令222000222()()()111,,,,,,444x x y y z z X Y Z a b c αβγ---====-=-=-2ln abc k ε=--,则(25)写成 ln (,,,1)W u x y z X Y Z αβγε==+++, (26)而我们已观测得(,,,)1,2,,i i i i X Y Z W i n = 的数据,用三元回归分析方法求出,,,αβγε的估计值如下:ˆˆˆˆ()W X Y Z εαβγ=-++, (27) 其中11111111, , , ,n n n nk i i i k k k k W W X X Y Y Z Z n n n n ========∑∑∑∑ˆˆˆ,,αβγ满足方程组 111213102122232031323330ˆˆˆ,,ˆˆˆ,,ˆˆˆ,.l l l l l l l l l l l l αβγαβγαβγ⎧++=⎪⎪++=⎨⎪++=⎪⎩ 其中10201130122211223311112131123211()(), ()(),()(),(), (), (),()(), ()(),()(), n nk k k k k k nk k k nn nk k k k k k nnk k k k k k nk k k l W X W W l Y Y W W l Z Z W W l X X l Y Y l Z Z l X X Y Y l X X Z Z l Y Y Z Z l ==========--=--=--=-=-=-=--=--=--∑∑∑∑∑∑∑∑∑1231133223, , .l l l l l ===由ˆˆˆ,,αβγ可求得222,,a b c 的估计值,即222111ˆˆˆ, , ˆa b cαβγ=-=-=-. 又由于 2ln k abc ε=+-, (28) 由(27)式可得ˆε,再把ˆˆˆ,,a b c 代入(28)得 2ˆˆˆˆˆln kabc ε=+-. (29)至此得到参数2222,,,a b c k 的估计值2222ˆˆˆˆ,,,a b c k ,把它们代入(24)分别替代2222,,,a b c k ,则得不含未知参数的解(,,,)u x y z t 的近似表达式.§5 竞赛试题分析AMCM-90A 不可用本文的思路与方法加以解决;该试题由东华盛顿大学数学系Yves Nievergelt 提供,要求研究药物在脑中的分布,题文称:“研究脑功能失调的人员欲测试新的药物的效果,例如治疗帕金森症往脑部注射多巴胺(Dopamine )的效果,为了精确估计药物影响到的脑部区域,它们必须估计注射后药物在脑内空间分布区域的大小和形状.“研究数据包括50个圆柱体组织样本的每个样本药物含量的测定值(如图6-1),每个圆柱体长0.76mm ,直径0.66mm ,这些互相平行的圆柱体样本的中心位于网格距为1m m ×0.76×m m ×1mm 的格点上,所以圆柱体互相间在底面上接触,侧面互不接触. 注射是在最高计数的那个圆柱体的中心附近进行的. 自然在圆柱体之间以及由圆柱体样本的覆盖的区域外也有药物.“试估计受到药物影响的区域中药物的分布. ”“一个单位表示一个闪烁微粒的计数,或多巴胺的4.753×10-18克分子量,例如表6-1指出位于后排当中那个圆柱体的含药量是28353个单位. ”后方垂直截面164442 1320 414 188 480 7022 14411 5158 352 2091 23027 28353 13138 681 789 21260 20921 11731 727 213 130337651715453前方垂直截面163 324 432 243166 712 1055 6098 1048 232 2137 15531 19742 4785 330 444 11431 14960 3182 301 29420611036 258188图6-1数学模型只是实际问题的近似,要建立数学模型,一般首先要对所研究的实际问题进行必要和允许的简化与假设,而且,不同的简化与假设,又可能导致不同的数学模型,例如[2]是抛物型方程模型,而[3]则是椭圆方程模型.假设:(1)注射前大脑中的多巴胺含量可以忽略不计.(2)大脑中多巴胺注射液经历着扩散与衰减的过程,且沿,,x y z 三个方向的扩散系数分别是常数,衰减使质量之减少与深度成正比.(3)注射点在后排中央那个圆柱中心,即注射点的坐标000(,,)x y z 已知,注射量有医疗记录可查,是已知的.(4)注射瞬间完成,可视为点源delta 函数. (5)取样也是瞬间完成,取样时间已知为1t =.(6)样本区域与整个大脑相比可以忽略,样本组织远离脑之边界,不受大脑边界面的影响.在以上假设之下,显然可以用本文前面讲过的思路来建模,于是得AMCM-90A 的数学模型为Cauchy 问题(21)(22),解的表达式为(24),且用三元回归分析来估出参数,,,a b c k ,于是可以求得任意位置任意时刻药物的深度.如果所给数据认为是在平衡状态测得的,药物注射进脑后,从高深度处向低深度处扩散,与扩散同时,一部分药物进入脑细胞被吸收固定,扩散系数与吸收系数都是常数,但过一段时间,所有药物都被脑细胞所固定,达到了平衡态. 在这种假设下,[3]给出了下述的分析、建模、求解过程.设(,,,)v x y z t 是t 时刻在(,,)x y z 点处游离的药物浓度,(,,,)w x y z t 是t 时刻(,,)x y z 点处吸收固定的药物浓度,(,,)u x y z 是达到平衡态时(,,)x y z 点处吸收固定的药物浓度. 又设游离药物在各方向上有相同的扩散系数k ,吸收系数为h ,于是有vk v hv t∂=∆-∂. (30) 又whv t∂=∂,即吸收速度与游离的浓度成正比,代入(30)得 ()v k w w t h t t∂∂∂=∆-∂∂∂. (31) 对(31)关于t 从0到+∞积分得t t t k vw wh+∞+∞+∞====∆-. (32)由于最后无游离药物,故(,,,)0v x y z +∞=,又开始时(0)t =无被吸收的药物,故(,,,0)0, (,,,0)0w x y z w x y z =∆=;平衡状态在t =+∞时达到,这时(,,)u x y z =(,,,)w x y z +∞,于是由(32)得(,,,0)ku u v x y z h-∆+=, (33) 其中(,,,0)v x y z 是开始时的浓度分布,近似于注射点的点源脉冲函数. 把此注射点取为坐标原点(0,0,0),则(,,,0)(,,),v x y z L x y z L δ=是注射量,于是2k h σ⎛⎫= ⎪⎝⎭记2(,,)u u L x y z σδ-∆+=, (34)作付立叶变换得22222222ˆˆ(),ˆ,1()s u u L Lus σξησξη+++==+++ 再作反变换得u σ-=-, (35)其中C 是可计算常数.如果考虑各向不同性,设,,x y z 方向上扩散系数分别为222,,a b c ,注射点在000(,,)x y z ,则 222222000222()()()u u u a b c u L x x y y z z x y z δδδ⎛⎫∂∂∂-+++=--- ⎪∂∂∂⎝⎭, 于是解为(,,)u x y z =exp 1⎧⎪⎨⎪⎩ ,(36)(36)中的D 可计算常数.用前面类似的方法可以进行参数估计.在建模过程中,点源函数的使用显然与实况有差别;尤其是认为扩散系数与吸收系数都是常数,对于人脑这种有复杂结构的区域,这种假设与实际不会完全符合;夜间与白天(睡与醒)对这些系数有无影响?脑中各点这些系数是否有变?除时间位置应考虑外,可能还与药液浓度有关. 如此看来,脑内药液分布的数学模型很可能不是常系数线性偏微分方程,而是函数系数的线性微分方程甚至是非线性偏微分方程. 这时,其解不再能用封闭公式来表达,求解过程会变得极为复杂,所以也可以考虑是否试用其他数学模型来解,例如在平衡态的假设下,用回归分析方法建立药液的模拟分布(,,)u f x y z =.对一个实际问题,其数学模型未必唯一,各模型间孰优孰劣,没有一般的判别法,须经实践来检验.参 考 文 献[1]叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993.[2]Christopher, R. Malone, Gian Pauletto, James, I. Zoellick, Distribution of Dopamine in the Brain, The Journal of Under graduate Mathematics, and its Applications, vol. 12(1991), Special Issue: The 1991 Mathematical Contest in Modeling, pp. 211-223.[3]孙晓东,荆秦,梁俊,脑中药物分布的数学模型,数学的实践与认识,1991年No. 4,63-69. [4]中国科学院数理统计组,常用数理统计方法,科学出版社,19784.。
数学建模解偏微分方程
数学建模解偏微分方程
摘要:
1.数学建模简介
2.偏微分方程的基本概念
3.解偏微分方程的方法
4.数学建模在实际应用中的案例
5.总结与展望
正文:
数学建模是一种用数学方法解决实际问题的过程,它涉及到多个领域,如物理学、生物学、经济学等。
在这个过程中,偏微分方程是一类非常重要的数学模型,用于描述各种自然现象和工程问题。
本文将简要介绍数学建模解偏微分方程的相关知识。
首先,我们需要了解偏微分方程的基本概念。
偏微分方程是一种包含多个变量的微分方程,可以用来描述各种物理现象,如波动、热传导、电磁场等。
根据偏微分方程的性质,可以将其分为多种类型,如线性偏微分方程、非线性偏微分方程、椭圆型偏微分方程、双曲型偏微分方程等。
解偏微分方程是数学建模的关键步骤之一。
根据偏微分方程的类型和问题的具体条件,可以采用不同的方法求解。
常用的方法有分离变量法、矩方法、有限元法、有限差分法等。
这些方法各有优缺点,需要根据实际情况进行选择。
数学建模在实际应用中具有广泛的应用。
例如,在天气预报中,可以通过
数学模型预测未来的天气状况;在生物医学领域,可以通过数学模型研究病毒传播、药物代谢等问题;在经济学中,可以通过数学模型分析市场供求、价格波动等现象。
这些实际问题都可以转化为偏微分方程或相关数学模型进行求解。
总之,数学建模解偏微分方程是一种重要的数学方法,可以用来解决实际问题。
了解偏微分方程的基本概念和解法,以及数学建模在实际应用中的案例,有助于我们更好地应用数学知识解决实际问题。
扩散模型 数学原理
扩散模型数学原理扩散模型是一种数学模型,用于描述物质在空间中的传播和扩散过程。
它广泛应用于物理、化学、生物学等领域,并且在城市规划、环境保护等实际问题中也有重要的应用。
扩散模型的数学原理基于物质的扩散行为。
在空间中,物质的扩散是指物质从高浓度区域向低浓度区域的传播。
扩散过程中,物质的传播速度与浓度梯度成正比,即浓度梯度越大,传播速度越快。
扩散模型通过建立偏微分方程来描述物质的扩散过程。
在一维情况下,假设扩散物质在空间中的浓度分布函数为C(x,t),其中x表示空间坐标,t表示时间。
根据偏微分方程的原理,可以得到扩散物质浓度的变化规律:∂C/∂t = D * ∂²C/∂x²其中D是扩散系数,表示物质在单位时间内从高浓度区域向低浓度区域传播的速度。
这个方程被称为扩散方程,它描述了物质浓度随时间和空间的变化。
根据扩散方程,可以推导出物质在不同条件下的扩散行为。
例如,当初始浓度分布为高斯分布时,可以得到物质浓度随时间的变化:C(x,t) = C0 * exp(-x²/(4Dt))其中C0表示初始浓度,exp表示指数函数。
这个结果表明,初始浓度高的地方浓度下降得更快,扩散速度也更快。
扩散模型不仅可以用于理论研究,也可以用于实际问题的解决。
例如,在城市规划中,可以利用扩散模型预测城市空气污染物的传播范围和浓度变化,从而制定相应的环保措施。
在环境保护中,扩散模型可以用于评估污染物的扩散和影响范围,为环境管理提供科学依据。
除了一维情况,扩散模型还可以推广到二维和三维空间。
在二维情况下,扩散方程可以写成:∂C/∂t = D * (∂²C/∂x² + ∂²C/∂y²)在三维情况下,扩散方程可以写成:∂C/∂t = D * (∂²C/∂x² + ∂²C/∂y² + ∂²C/∂z²)这些方程描述了物质在二维和三维空间中的扩散行为,可以应用于更加复杂的问题。
扩散模型数学推导
扩散模型数学推导
扩散模型是数学中的一个重要的模型,其应用广泛。
在物理、化学、生物等领域都有着重要的应用。
扩散模型的数学推导可以从分子运动的角度出发,或者从偏微分方程的角度出发。
从分子运动的角度出发,可以将物质微粒的运动看成是一个随机过程,根据统计学的方法,可以得到物质的扩散情况。
具体而言,根据布朗运动的理论,假设物质微粒在液体中做无规则的热运动,其运动轨迹呈现为一条随机游走的路径。
那么,物质微粒在相邻的两个时间间隔内,偏离其初始位置的距离是一个随机变量,其服从正态分布。
因此,可以利用随机过程的理论,推导出物质扩散的数学模型。
另一种推导扩散模型的方法是从偏微分方程的角度出发。
偏微分方程可以描述扩散过程中物质浓度的变化。
具体而言,可以利用扩散方程来描述物质在时间和空间上的变化。
扩散方程是一个二阶偏微分方程,其通常形式为:
C/t = DC
其中C是浓度,t是时间,D是扩散系数,C是拉普拉斯算子。
该方程描述了物质浓度随时间和空间的变化。
在一维空间中,扩散方程可以简化为以下形式:
C/t = DC/x
这个方程描述了物质在一维空间中浓度的变化。
可以通过偏微分方程的求解方法,来求解物质在扩散过程中的浓度分布。
总之,扩散模型是一个重要的数学模型。
其推导可以从分子运动
的角度出发,也可以从偏微分方程的角度出发。
通过推导出的数学模型,可以对物质扩散过程中的浓度分布进行研究。
数学建模解偏微分方程
数学建模解偏微分方程是指建立数学模型,并通过一系列的数学操作,如离散化,代码实现和可视化,来求解复杂的偏微分方程问题。
这些偏微分方程问题主要包括数学物理方程、偏微分方程数值模拟等。
在解决这些问题时,有许多数学工具和方法可以使用。
首先,建立数学模型是解决偏微分方程的第一步。
这包括根据实际问题的性质,构造相应的偏微分方程,并确定其定解条件。
例如,在求解数学物理方程时,我们可以采用分离变量法,对问题进行分类,并根据具体情况选择合适的数学模型。
接下来,离散化是将偏微分方程转化为离散形式的过程,这是求解偏微分方程的关键步骤。
它通过对偏微分方程进行数值积分,把连续的偏微分方程转化为离散的方程,从而实现用计算机进行求解。
在离散化的过程中,我们可以选择有限差分方法、有限元方法和有限体积方法等不同的离散方法,其中有限差分方法是最早采用的方法,有限元方法利用变分原理和分片多项式插值,具有求解区域灵活、单元类型灵活、程序代码通用等特点。
然后,代码实现是使用计算机程序来实现我们所建立的离散化偏微分方程,以便进行高效计算。
在Python中,有许多库可用于此,如SymPy、SciPy和FEniCS等等,这使得我们可以方便地编写和调试代码。
最后,可视化是将计算结果以图像、曲线或表格等形式表示出来,以方便人们理解和分析。
在可视化的过程中,我们可以使用Matplotlib,NumPy等绘图库,生成漂亮的图像和图表,这对于理解和分析偏微分方程的解具有很大的帮助。
总之,数学建模解偏微分方程是一个复杂的过程,需要我们综合运用数学工具和方法,如建模、离散化、代码实现和可视化等。
在求解过程中,我们需要根据问题的性质和具体情况,灵活选择不同的数学模型和离散方法,以便提高计算的准确性和效率。
扩散方程 (2)
扩散方程引言扩散方程是描述物质扩散现象的方程之一。
在自然界中,扩散是一种常见的物理现象,例如气体的自由扩散、液体中的溶质扩散以及热量的传导等都可以通过扩散方程来描述。
扩散方程在物理学、化学、工程学等领域都有广泛的应用。
扩散方程的基本概念扩散是指物质由高浓度区域朝向低浓度区域的自发运动。
在数学上,扩散过程可以用扩散方程来描述。
扩散方程是一个偏微分方程,一般形式可以写为:$$ \\frac{{\\partial u}}{{\\partial t}} = D \\cdot \ abla^2 u $$其中,u是描述扩散物质浓度的函数,u是时间,u是扩散系数,uuuu2表示拉普拉斯算子。
上述方程可以解释为:物质的浓度随时间的变化率等于扩散系数和浓度分布的二阶导数之积。
扩散方程的求解方法扩散方程是一个偏微分方程,通常需要采用数值方法来求解。
以下介绍几种常见的求解方法。
有限差分法有限差分法是求解偏微分方程的常用方法之一。
基本思想是将求解区域离散化为有限个点,并通过近似求解偏微分方程的导数。
具体步骤如下:1.将求解区域网格化,并给出相应初始条件和边界条件;2.将扩散方程转化为差分格式,例如中心差分格式;3.迭代计算网格中的节点的值,直到达到收敛条件。
有限差分法的优点是简单易行,适用于一维、二维以及三维空间的扩散问题。
但是其精度较低,对网格尺寸和时间步长的选择敏感。
有限元法有限元法是一种广泛应用于求解偏微分方程的数值方法。
其基本思想是将求解区域分割为有限个单元,并在每个单元内逼近解的形式,然后通过拼接所有单元的解来得到整体的解。
具体步骤如下:1.将求解区域分割为有限个单元,并给出相应初始条件和边界条件;2.在每个单元内选择适当的插值函数形式,建立单元内的近似解;3.将各个单元的近似解拼接起来,形成整体的解;4.通过求解线性方程组得到近似解的系数。
有限元法的优点是适用于复杂几何形状的求解区域,精度较高,并且对网格尺寸的选择相对灵活。
扩散过程的数学建模
扩散过程的数学建模扩散过程是指物质、能量或信息在空间中传播和混合的过程。
数学建模是将现实世界的问题抽象化为数学形式,从而通过数学方法来解决问题。
在扩散过程的数学建模中,我们需要描述扩散物质的浓度分布、扩散速率和扩散距离等参数。
首先,扩散过程可以通过扩散方程描述。
扩散方程是一个偏微分方程,用于描述物质浓度随时间和空间的变化。
一维情况下,扩散方程可以写成以下形式:∂C/∂t=D∂²C/∂x其中,C是扩散物质的浓度,t是时间,x是空间坐标,D是扩散系数。
扩散系数D决定了扩散物质在单位浓度梯度下的扩散速率,它与扩散物质的性质、介质的性质以及环境条件等有关。
为了求解扩散方程,我们需要确定初始条件和边界条件。
初始条件是指在初始时刻t=0时的浓度分布,而边界条件是指在空间边界上的浓度分布。
常见的边界条件有固定浓度条件、固定扩散通量条件和无扩散通量条件。
针对特定问题,我们可以采用不同的数值解法来求解扩散方程。
常用的数值方法包括有限差分法、有限元法和有限体积法等。
这些方法将连续的扩散方程离散化成离散点上的代数方程组,通过迭代求解这个方程组,最终可以得到扩散物质的浓度分布。
此外,对于复杂的扩散过程,我们可能还需要考虑其他因素对扩散的影响。
例如,对流扩散方程可以考虑流体的流动对扩散过程的影响。
如果存在吸附或反应过程,可以将扩散方程与相应的吸附或反应方程耦合起来。
在实际应用中,扩散过程的数学建模广泛应用于环境科学、材料科学、化学工程等领域。
例如,研究地下水中污染物的扩散过程,可以预测污染物的传播范围和浓度分布,为环境保护提供科学依据。
另外,扩散过程的数学建模还可以应用于材料的表面处理、溶质输送以及化学反应器的设计等工程问题。
总之,扩散过程的数学建模是将扩散过程抽象化为数学形式,从而通过数学方法来解决与扩散相关的问题。
通过建立合适的扩散方程和边界条件,并选择适当的数值方法,我们可以研究和预测扩散物质的浓度分布、扩散速率和扩散距离等参数。
diffusion model介绍
一、概念介绍diffusion model(扩散模型)是指在不同领域中用于描述物质、能量、信息传播过程的数学模型,通常通过二阶偏微分方程描述。
扩散模型在物理学、生物学、化学、经济学等领域中都有广泛的应用。
它可以帮助人们理解和预测在各种条件下的扩散过程,对于解决一些现实问题具有重要的意义。
二、扩散模型的基本原理扩散模型的基本原理是描述在时间和空间上的物质传播过程。
它假设被扩散的物质以一定的速率在空间中传播,并且在不同位置上会出现浓度的差异。
扩散模型可以用数学方程来描述这种浓度的变化,通常是由一个偏微分方程来表示。
三、数学描述扩散模型最常用的数学描述是扩散方程(diffusion equation)。
在一维情况下,扩散方程通常写作:∂u/∂t = D ∂2u/∂x2其中,u是随时间和空间变化的物质浓度,t是时间,x是空间坐标,D是扩散系数。
这个方程描述的是浓度随时间和空间的变化规律,扩散系数D反映了物质扩散的速率。
四、常见的扩散模型1. Fick定律Fick定律是描述物质扩散的最基本的定律之一。
它表明了物质浓度梯度的方向和大小与物质的扩散速率成正比。
Fick定律可以用扩散方程来描述,在一维情况下可以写作:J = -D ∂u/∂x其中,J是物质的扩散通量,D是扩散系数,u是物质的浓度。
这个定律对于描述被扩散物质的传播速率和规律有着重要的意义。
2. 热传导方程热传导方程是扩散模型在热传导领域的应用。
它描述了物体内部温度分布随时间的变化规律。
热传导方程在一维情况下可以写作:∂u/∂t= α ∂2u/∂x2其中,u是物体内部的温度分布,α是热扩散系数。
热传导方程对于热能在物体内部的传播和分布规律有着重要的作用。
五、应用领域扩散模型在自然科学和社会科学的各个领域都有广泛的应用。
在物理领域,扩散模型可以用于描述物质和能量的传播规律;在生物领域,可以用于描述细胞内物质的传输过程;在化学领域,可以用于描述溶液中各种物质的扩散规律;在经济学领域,可以用于描述市场信息的传播过程等。
数学建模中的偏微分方程问题
数学建模中的偏微分方程问题在数学建模中,偏微分方程是一个非常重要的工具和理论基础。
它被广泛运用于多个领域,包括物理学、工程学、经济学和生物学等。
本文将介绍数学建模中的偏微分方程问题,并探讨其应用和意义。
一、偏微分方程的定义和基本概念偏微分方程(Partial Differential Equation,简称PDE)是包含未知函数及其偏导数的方程。
与常微分方程(Ordinary Differential Equation,简称ODE)只涉及自变量的一阶或高阶导数不同,偏微分方程涉及到多个自变量的偏导数。
偏微分方程可以分为几个基本类型,最常见的包括椭圆型、双曲型和抛物型方程。
它们的性质和解的存在性与唯一性不同,需要根据实际问题的特点来选择适当的模型和求解方法。
二、偏微分方程在数学建模中的应用1. 物理学领域偏微分方程在物理学中具有广泛的应用。
例如,波动方程可以描述光、声音和电磁波的传播行为;热传导方程可以用来研究物体的温度分布和传热现象;流体力学中的纳维-斯托克斯方程描述了流体的运动行为等。
这些方程可以帮助我们理解和预测自然现象的规律。
2. 工程学领域偏微分方程在工程学中也扮演着重要的角色。
比如,电力工程领域中的电势方程可以描述电场的分布和电势的变化;材料科学中的扩散方程可以用来研究材料的渗透性和扩散现象;土木工程中的应力-应变方程可以描述结构体的力学特性等。
这些方程可以帮助工程师们设计和优化各种工程系统和设备。
3. 经济学领域偏微分方程在经济学中的应用也越来越重要。
经济学家可以使用偏微分方程来研究市场行为、金融衍生品定价、经济增长模型等。
比如,布莱克-舒尔斯模型利用偏微分方程来计算期权的定价和风险管理。
4. 生物学领域生物学是一个涉及到复杂系统和过程的领域,偏微分方程的应用也逐渐受到重视。
生物学家使用偏微分方程来模拟和研究生物体内的化学反应、细胞的生长和扩散、神经传导等现象。
这些方程可以帮助我们更好地理解生物系统的运作机制。
扩散模型 概念
扩散模型概念“扩散模型”是用来描述和预测物质在不同介质中扩散和传播过程的数学模型。
在科学和工程领域,扩散模型被广泛用于研究大气、水体、土壤、生物体内等不同介质中物质的传输过程。
这些模型通常基于物质的质量守恒和动量守恒等基本原理,结合介质的性质和环境条件,通过数学方法描述物质在介质中的扩散、传输和分布规律。
以下是扩散模型的基本概念:1.扩散过程:扩散是指物质或信息在空间中由高浓度向低浓度传播的过程。
在扩散模型中,通常假设物质或信息的传播是由于浓度梯度的存在而产生的,即浓度梯度越大,扩散速率越快。
2.扩散方程:扩散模型通常使用扩散方程描述扩散过程。
扩散方程是一个偏微分方程,通常表示为Fick's second law,其形式为:ðC=D∇2C。
其中,C表示物质或信息的浓度,t表示时间,D是扩散ðt系数,∇2是拉普拉斯算子。
这个方程描述了浓度随时间和空间变化的关系。
3.边界条件:在解扩散方程时,需要考虑边界条件。
边界条件描述了在空间中物质或信息传播的起始和结束条件。
例如,在一个封闭的容器中,边界条件可以是容器的壁面上的浓度为零。
4.初始条件:除了边界条件外,还需要考虑初始条件。
初始条件描述了在初始时刻物质或信息的分布情况。
通常假设在初始时刻,物质或信息在空间中是均匀分布的。
5.扩散系数:扩散系数D描述了物质或信息在特定环境中扩散的速率。
扩散系数受到物质或信息本身的特性、环境条件、以及扩散过程中可能存在的障碍等因素的影响。
扩散模型在物理学、化学、生物学、环境科学等领域都有广泛的应用,例如描述气体扩散、溶质在溶液中的扩散、细胞内物质的扩散等。
通过建立适当的扩散模型,可以更好地理解和预测物质或信息在空间中的传播和分布规律。
微分方程模型——数学建模真题解析
练习题: 1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。2年后, 这个教师手中有大约多少本图书馆的书? 2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数 量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
2004C题 饮酒驾车 据报载,2003年全国道路交通事故死亡人数为 10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检 疫局2004年5月31日发布了新的《车辆驾驶人员血液、 呼气酒精含量阈值与检验》国家标准,新标准规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/ 百毫升,小于80毫克/百毫升为饮酒驾车(原标准是 小于100毫克/百毫升),血液中的酒精含量大于或 等于80毫克/百毫升为醉酒驾车(原标准是大于或等 于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒, 为了保险起见他呆到凌晨2点才驾车回家,又一次遭 遇检查时却被定为饮酒驾车,这让他既懊恼又困惑, 为什么喝同样多的酒,两次检查结果会不一样呢?
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。
(完整版)扩散问题的偏微分方程模型,数学建模
第七节 扩散问题的偏微分方程模型物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决.MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程.本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程.§1 抛物型方程的导出设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +∆时刻这段时间内,通过S 流入Ω的质量为2221(cos cos cos )dSd t ttSu u u M a b c t x y zαβγ+∆∂∂∂=++∂∂∂⎰⎰⎰. 由高斯公式得2222221222()d d d d t ttu u u M a b c x y z t x y z +∆Ω∂∂∂=++∂∂∂⎰⎰⎰⎰. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为22d d d d t ttM k u x y z t +∆Ω=⎰⎰⎰⎰, (2) 其中2k 是衰减系数.由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -.换一种角度看,Ω内由于深度之变化引起的质量增加为3[(,,,)(,,,)]d d d d d d d . (3)t ttM u x y z t t u x y z t x y zux y z t t Ω+∆Ω=+∆-∂=∂⎰⎰⎰⎰⎰⎰⎰显然312M M M =-,即2222222222d d d d ()d d d d .t ttt ttux y z t t u u u a b c k u x y z t x y z+∆Ω+∆Ω∂∂∂∂∂=++-∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰由,,t t ∆Ω之任意性得2222222222u u u u a b c k u t x y z∂∂∂∂=++-∂∂∂∂ (4) 方程(4)是常系数线性抛物型方程,它就是有衰减的扩散过程的数学模型,对于具体问题,尚需与相应的定解条件(初始条件与边界条件等)匹配才能求得确定情况下的解.§2 Dirac 函数物理学家Dirac 为了物理模型之需要,硬是引入了一个当时颇遭微词的,使得数学与物理学传统密切关系出现裂痕的“怪”函数:0,0,() ()1.,0,x x x dx x δδ+∞-∞≠⎧==⎨∞=⎩⎰ (5)它的背景是清晰的,以一条无穷长的杆子为例,沿杆建立了一维坐标系,点的坐标为x ,杆的线密度是()x ρ,在(,]x -∞段,杆子质量为()m x ,则有d ()(), ()d ().d x m x x x x m x xρρ-∞==⎰. (6)设此无穷长的杆子总质量为1,质量集中在0x x =点,则应有001,,()0,,x x m x x x >⎧=⎨<⎩ 或写成 0()()m x H x x =-,其中()H x 为1,0,()0,0,x H x x >⎧=⎨<⎩ 如果沿用(6)中的算法,则在质量集中分布的这种情形有00,,(),0.x x x x ρ≠⎧=⎨∞=⎩且0()d ()xx x H x x ρ-∞=-⎰,于是得()d 1.x x ρ+∞-∞=⎰. (7)但是,从传统数学观点看,若一个函数除某点处处为零,则不论哪种意义下的积分,都必定为零,(7)式岂能成立!但是,δ函数对于物理学而言是如此之有用,以致物理学家正当地拒绝放弃它. 尽管当时数学家们大都嘲笑这种函数,但P.A.M.Dirac 及其追随者们在物理领域却收获颇丰,Dirac 于1933年获诺贝尔物理奖. 当然Dirac 也意识到()x δ不是一个通常的函数,至于找一种什么办法来阐明()x δ这一符号的合法性,那就是数学家的任务了. 1940年,法国数学家许瓦兹(L.Schwartz )严格证明了应用()x δ的正确性,把δ函数置于坚实的数学基础上;1950年,L. Schwartz 获数学界最高奖Fields 奖.δ函数的重要性质有:1)0()d 1x x x δ+∞-∞-=⎰. (8)2)00()()d ()x x f x x f x δ+∞-∞-=⎰. (9)其中()(,)f x C ∈-∞+∞,即0()x x δ-摘出了()f x 在0x x =的值.3)00()()dH x x x x dxδ-=-. (10)4)()x δ的导数是存在的,不过要到积分号下去理解:00()()(),x x f x dx f x δ+∞-∞''-=-⎰ (11)()()00()()(1)().n n n x x f x dx f x δ+∞-∞-=-⎰(12)事实上,由于0()x x δ-在,+∞-∞处为零,则形式地用分部积分公式000()()()()d ()()d ,x x f x x x f x xx x f x x δδδ+∞+∞-∞-∞+∞-∞'---'=-⎰⎰其中,()(,)nf x C ∈-∞+∞,于是有(11)与(12)公式.5)对于()(,)x C ϕ∈-∞+∞,有000()()()()x x x x x x ϕδϕδ-=-. (13)6)1()() (0)||bx x b b δδ=≠. (14)7)000000(,,)()()()x x y y z z x x y y z z δδδδ---=---. (15)8)付立叶变换00[()].i x y y e λδ--= (16)[()] 1.x δ= (17)11221122[()()][()][()].C x x C x x C x x C x x δδδδ-+-=-+- (18)9)拉普拉斯变换00[(),[() 1.x x x e x δδδ--== (19)11221122[()]()][()[()].C x x C x x C x x C x x δδδδ-+-=-+- (20) 从上面的定义与性质看出,Delta 函数()x δ与一般可微函数还是有重大区别的,我们说它是“广义函数. ”§3 Cauchy 问题的解设扩散源在点000(,,)x y z 处,则此扩散问题满足Cauchy 问题2222222222000, (21)(,,,0)()()(). (22)u u u u a b c k u tx y z u x y z M x x y y z z δδδ⎧∂∂∂∂=++-⎪∂∂∂∂⎨⎪=---⎩对(21)(22)进行付立叶变换,且令123ˆ(,,), (,)[(,,,)]ut u x y z t λλλλλ==, 由于222222123222ˆˆˆ[], [], [],u u u uu u x y zλλλ∂∂∂=-=-=-∂∂∂ 102030000()[(,,,0)][()][()][()] ,i x y z u x y z M x x y y z z Me λλλδδδ-++=---= 故得常微分方程Cauchy 问题1020302222222123()ˆ()0,ˆ(0,).i x y z du a b c k udtu Meλλλλλλλ-++⎧++++=⎪⎨⎪=⎩ 得唯一解2222222123102030()()ˆ(,)a b c k t i x y z ut Me λλλλλλλ-+++-++=. (23)对(23)求逆变换1-,由于2122214[]a xa eλ---=, 2110221240[]()i x e aa ex x λλ----=-, 故得12222000222ˆ(,,,)[]()()()exp 444u x y z t u x x y y z z k t a t b t c t -=⎧⎫---=----⎨⎬⎩⎭2222000222()()().444x x y y z z k t a t b t c t ⎧⎫---=----⎨⎬⎩⎭(24) 如果认为经过了相当长时间后,扩散已经终止,物质分布处于平衡状态,则方程(4)中的0ut∂=∂,于是有线性椭圆型方程的边值问题 22222222220, (,,)(,,)(,,).D u u u a b c k u x y z D xy z u x y z x y z ϕ∂⎧∂∂∂++-=∈⎪∂∂∂⎨⎪=⎩也可以用付立叶变换求解. 当然,根据实际情况,还可以考虑第二边条件(,,)Dux y z n ∂∂=ψ∂或第三边条件[](,,)D uu x y z nαβρ∂∂+=∂等,其中D ∂是区域D 的边界,n 是外法线方向,,αβ是实常数.§4 参数估计在Cauchy 问题(21)(22)的解(23)中,有四个未知的参数,,,a b c k ,它们分别是扩散与衰减过程中的扩散系数与衰减系数的算术平方根. 至于点源的质量与位置000,(,,)M x y z 是已知的.设观测取样为:11112222(,,,), (,,,),,(,,,),n n n n x y z m x y z m x y z m取样时刻为1t =(不然设00, t t t τ=是取样时间,则(21)变成2200t xx yy U t a U t b U =++2200zz t c U t k U -,对τ而言,取样时间为1,而方程形状与(21)一致),把在(,,)i i i x y z 点观测到的物质密度i m 与公式(24)都取对数,令1t =,则2222000222()()()ln (,,,1)ln []444x x y y z z u x y z abc k a b c ---=--+++. (25) 令222000222()()()111,,,,,,444x x y y z z X Y Z a b c αβγ---====-=-=-2ln ln abc k ε=--,则(25)写成 ln (,,,1)W u x y z X Y Z αβγε==+++,(26) 而我们已观测得(,,,)1,2,,i i i i X Y Z W i n =的数据,用三元回归分析方法求出,,,αβγε的估计值如下:ˆˆˆˆ()W X Y Z εαβγ=-++, (27)其中11111111, , , ,n n n nk i i i k k k k W W X X Y Y Z Z n n n n ========∑∑∑∑ˆˆˆ,,αβγ满足方程组 111213102122232031323330ˆˆˆ,,ˆˆˆ,,ˆˆˆ,.l l l l l l l l l l l l αβγαβγαβγ⎧++=⎪⎪++=⎨⎪++=⎪⎩ 其中10201130122211223311112131123211()(), ()(),()(),(), (), (),()(), ()(),()(), n nk k k k k k nk k k nn nk k k k k k nnk k k k k k nk k k l W X W W l Y Y W W l Z Z W W l X X l Y Y l Z Z l X X Y Y l X X Z Z l Y Y Z Z l ==========--=--=--=-=-=-=--=--=--∑∑∑∑∑∑∑∑∑1231133223, , .l l l l l ===由ˆˆˆ,,αβγ可求得222,,a b c 的估计值,即222111ˆˆˆ, , ˆa b cαβγ=-=-=-. 又由于 2ln k abc ε=+- (28) 由(27)式可得ˆε,再把ˆˆˆ,,a b c 代入(28)得 2ˆˆˆˆˆln kabc ε=+- (29)至此得到参数2222,,,a b c k 的估计值2222ˆˆˆˆ,,,a b c k ,把它们代入(24)分别替代2222,,,a b c k ,则得不含未知参数的解(,,,)u x y z t 的近似表达式.§5 竞赛试题分析AMCM-90A 不可用本文的思路与方法加以解决;该试题由东华盛顿大学数学系Yves Nievergelt 提供,要求研究药物在脑中的分布,题文称:“研究脑功能失调的人员欲测试新的药物的效果,例如治疗帕金森症往脑部注射多巴胺(Dopamine )的效果,为了精确估计药物影响到的脑部区域,它们必须估计注射后药物在脑内空间分布区域的大小和形状.“研究数据包括50个圆柱体组织样本的每个样本药物含量的测定值(如图6-1),每个圆柱体长0.76mm ,直径0.66mm ,这些互相平行的圆柱体样本的中心位于网格距为1m m ×0.76×m m ×1mm 的格点上,所以圆柱体互相间在底面上接触,侧面互不接触. 注射是在最高计数的那个圆柱体的中心附近进行的. 自然在圆柱体之间以及由圆柱体样本的覆盖的区域外也有药物.“试估计受到药物影响的区域中药物的分布. ”“一个单位表示一个闪烁微粒的计数,或多巴胺的4.753×10-18克分子量,例如表6-1指出位于后排当中那个圆柱体的含药量是28353个单位. ”后方垂直截面164442 1320 414 188 480 7022 14411 5158 352 2091 23027 28353 13138 681 789 21260 20921 11731 727 213 130337651715453前方垂直截面163 324 432 243166 712 1055 6098 1048 232 2137 15531 19742 4785 330 444 11431 14960 3182 301 29420611036 258188图6-1数学模型只是实际问题的近似,要建立数学模型,一般首先要对所研究的实际问题进行必要和允许的简化与假设,而且,不同的简化与假设,又可能导致不同的数学模型,例如[2]是抛物型方程模型,而[3]则是椭圆方程模型.假设:(1)注射前大脑中的多巴胺含量可以忽略不计.(2)大脑中多巴胺注射液经历着扩散与衰减的过程,且沿,,x y z 三个方向的扩散系数分别是常数,衰减使质量之减少与深度成正比.(3)注射点在后排中央那个圆柱中心,即注射点的坐标000(,,)x y z 已知,注射量有医疗记录可查,是已知的.(4)注射瞬间完成,可视为点源delta 函数. (5)取样也是瞬间完成,取样时间已知为1t =.(6)样本区域与整个大脑相比可以忽略,样本组织远离脑之边界,不受大脑边界面的影响.在以上假设之下,显然可以用本文前面讲过的思路来建模,于是得AMCM-90A 的数学模型为Cauchy 问题(21)(22),解的表达式为(24),且用三元回归分析来估出参数,,,a b c k ,于是可以求得任意位置任意时刻药物的深度.如果所给数据认为是在平衡状态测得的,药物注射进脑后,从高深度处向低深度处扩散,与扩散同时,一部分药物进入脑细胞被吸收固定,扩散系数与吸收系数都是常数,但过一段时间,所有药物都被脑细胞所固定,达到了平衡态. 在这种假设下,[3]给出了下述的分析、建模、求解过程.设(,,,)v x y z t 是t 时刻在(,,)x y z 点处游离的药物浓度,(,,,)w x y z t 是t 时刻(,,)x y z 点处吸收固定的药物浓度,(,,)u x y z 是达到平衡态时(,,)x y z 点处吸收固定的药物浓度. 又设游离药物在各方向上有相同的扩散系数k ,吸收系数为h ,于是有vk v hv t∂=∆-∂. (30)又whv t∂=∂,即吸收速度与游离的浓度成正比,代入(30)得 ()v k ww t h t t∂∂∂=∆-∂∂∂. (31) 对(31)关于t 从0到+∞积分得000t t t k v w w h+∞+∞+∞====∆-. (32)由于最后无游离药物,故(,,,)0v x y z +∞=,又开始时(0)t =无被吸收的药物,故(,,,0)0, (,,,0)0w x y z w x y z =∆=;平衡状态在t =+∞时达到,这时(,,)u x y z = (,,,)w x y z +∞,于是由(32)得(,,,0)ku u v x y z h-∆+=, (33)其中(,,,0)v x y z 是开始时的浓度分布,近似于注射点的点源脉冲函数. 把此注射点取为坐标原点(0,0,0),则(,,,0)(,,),v x y z L x y z L δ=是注射量,于是2k h σ⎛⎫= ⎪⎝⎭记2(,,)u u L x y z σδ-∆+=, (34)作付立叶变换得22222222ˆˆ(),ˆ,1()s u u L Lus σξησξη+++==+++ 再作反变换得u σ-=-, (35)其中C 是可计算常数.如果考虑各向不同性,设,,x y z 方向上扩散系数分别为222,,a b c ,注射点在000(,,)x y z ,则222222000222()()()u u u a b c u L x x y y z z x y z δδδ⎛⎫∂∂∂-+++=--- ⎪∂∂∂⎝⎭, 于是解为(,,)u x y z =exp 1⎧⎪-⎨⎪⎩,(36) (36)中的D 可计算常数.用前面类似的方法可以进行参数估计.在建模过程中,点源函数的使用显然与实况有差别;尤其是认为扩散系数与吸收系数都是常数,对于人脑这种有复杂结构的区域,这种假设与实际不会完全符合;夜间与白天(睡与醒)对这些系数有无影响?脑中各点这些系数是否有变?除时间位置应考虑外,可能还与药液浓度有关. 如此看来,脑内药液分布的数学模型很可能不是常系数线性偏微分方程,而是函数系数的线性微分方程甚至是非线性偏微分方程. 这时,其解不再能用封闭公式来表达,求解过程会变得极为复杂,所以也可以考虑是否试用其他数学模型来解,例如在平衡态的假设下,用回归分析方法建立药液的模拟分布(,,)u f x y z =.对一个实际问题,其数学模型未必唯一,各模型间孰优孰劣,没有一般的判别法,须经实践来检验.参 考 文 献[1]叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993.[2]Christopher, R. Malone, Gian Pauletto, James, I. Zoellick, Distribution of Dopamine in the Brain, The Journal of Under graduate Mathematics, and its Applications, vol. 12(1991), Special Issue: The 1991 Mathematical Contest in Modeling, pp. 211-223.[3]孙晓东,荆秦,梁俊,脑中药物分布的数学模型,数学的实践与认识,1991年No. 4,63-69. [4]中国科学院数理统计组,常用数理统计方法,科学出版社,19784.。
扩散模型详解
扩散模型详解扩散模型是一种描述物质在空气或水中传播的数学模型。
它可以用于研究许多现实生活中的问题,例如空气污染、水污染、疾病传播等等。
二、扩散模型的基本原理扩散模型的基本原理是描述物质在空气或水中的传播过程,即物质从高浓度区域向低浓度区域扩散的过程。
扩散模型通常包括三个主要组成部分:扩散方程、初始条件和边界条件。
三、扩散方程扩散方程是扩散模型的核心。
它描述了物质浓度随时间和空间的变化规律。
扩散方程通常采用偏微分方程来表示,其中涉及到时间、空间和浓度等参数。
扩散方程可以用于不同的物质传播情况,如二维扩散、三维扩散等。
四、初始条件初始条件是指在初始时间点,物质在空间中的浓度分布情况。
通常情况下,初始条件是一个简单的函数形式,例如高斯分布函数或正弦函数等。
五、边界条件边界条件是指在模型边界上,物质浓度的变化情况。
根据实际情况,边界条件可以设置为不同的形式。
例如,可以设置边界为完全反射型、部分反射型或者零浓度型。
六、应用扩散模型广泛应用于许多领域,例如环境污染、气象预测、电子设备散热等。
在环境污染方面,扩散模型可以用于预测空气中有害物质的浓度分布情况,有助于制定相应的治理计划。
在气象预测方面,扩散模型可以用于预测雾、霾等天气现象的变化情况。
在电子设备散热方面,扩散模型可以用于计算电子设备中热量的传导和散热情况,有助于优化设备结构和散热设计。
七、总结扩散模型是一种重要的数学模型,可以用于描述物质在空气或水中的传播过程。
扩散模型包括扩散方程、初始条件和边界条件。
扩散模型在环境污染、气象预测、电子设备散热等领域有广泛的应用。
(完整版)扩散问题的偏微分方程模型,数学建模
第七节 扩散问题的偏微分方程模型物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决.MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程.本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程.§1 抛物型方程的导出设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +∆时刻这段时间内,通过S 流入Ω的质量为2221(cos cos cos )dSd t ttSu u u M a b c t x y zαβγ+∆∂∂∂=++∂∂∂⎰⎰⎰. 由高斯公式得2222221222()d d d d t ttu u u M a b c x y z t x y z +∆Ω∂∂∂=++∂∂∂⎰⎰⎰⎰. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为22d d d d t ttM k u x y z t +∆Ω=⎰⎰⎰⎰, (2) 其中2k 是衰减系数.由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -.换一种角度看,Ω内由于深度之变化引起的质量增加为3[(,,,)(,,,)]d d d d d d d . (3)t ttM u x y z t t u x y z t x y zux y z t t Ω+∆Ω=+∆-∂=∂⎰⎰⎰⎰⎰⎰⎰显然312M M M =-,即2222222222d d d d ()d d d d .t ttt ttux y z t t u u u a b c k u x y z t x y z+∆Ω+∆Ω∂∂∂∂∂=++-∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰由,,t t ∆Ω之任意性得2222222222u u u u a b c k u t x y z∂∂∂∂=++-∂∂∂∂ (4) 方程(4)是常系数线性抛物型方程,它就是有衰减的扩散过程的数学模型,对于具体问题,尚需与相应的定解条件(初始条件与边界条件等)匹配才能求得确定情况下的解.§2 Dirac 函数物理学家Dirac 为了物理模型之需要,硬是引入了一个当时颇遭微词的,使得数学与物理学传统密切关系出现裂痕的“怪”函数:0,0,() ()1.,0,x x x dx x δδ+∞-∞≠⎧==⎨∞=⎩⎰ (5)它的背景是清晰的,以一条无穷长的杆子为例,沿杆建立了一维坐标系,点的坐标为x ,杆的线密度是()x ρ,在(,]x -∞段,杆子质量为()m x ,则有d ()(), ()d ().d x m x x x x m x xρρ-∞==⎰. (6)设此无穷长的杆子总质量为1,质量集中在0x x =点,则应有001,,()0,,x x m x x x >⎧=⎨<⎩ 或写成 0()()m x H x x =-,其中()H x 为1,0,()0,0,x H x x >⎧=⎨<⎩ 如果沿用(6)中的算法,则在质量集中分布的这种情形有00,,(),0.x x x x ρ≠⎧=⎨∞=⎩且0()d ()xx x H x x ρ-∞=-⎰,于是得()d 1.x x ρ+∞-∞=⎰. (7)但是,从传统数学观点看,若一个函数除某点处处为零,则不论哪种意义下的积分,都必定为零,(7)式岂能成立!但是,δ函数对于物理学而言是如此之有用,以致物理学家正当地拒绝放弃它. 尽管当时数学家们大都嘲笑这种函数,但P.A.M.Dirac 及其追随者们在物理领域却收获颇丰,Dirac 于1933年获诺贝尔物理奖. 当然Dirac 也意识到()x δ不是一个通常的函数,至于找一种什么办法来阐明()x δ这一符号的合法性,那就是数学家的任务了. 1940年,法国数学家许瓦兹(L.Schwartz )严格证明了应用()x δ的正确性,把δ函数置于坚实的数学基础上;1950年,L. Schwartz 获数学界最高奖Fields 奖.δ函数的重要性质有:1)0()d 1x x x δ+∞-∞-=⎰. (8)2)00()()d ()x x f x x f x δ+∞-∞-=⎰. (9)其中()(,)f x C ∈-∞+∞,即0()x x δ-摘出了()f x 在0x x =的值.3)00()()dH x x x x dxδ-=-. (10)4)()x δ的导数是存在的,不过要到积分号下去理解:00()()(),x x f x dx f x δ+∞-∞''-=-⎰ (11)()()00()()(1)().n n n x x f x dx f x δ+∞-∞-=-⎰(12)事实上,由于0()x x δ-在,+∞-∞处为零,则形式地用分部积分公式000()()()()d ()()d ,x x f x x x f x xx x f x x δδδ+∞+∞-∞-∞+∞-∞'---'=-⎰⎰其中,()(,)nf x C ∈-∞+∞,于是有(11)与(12)公式.5)对于()(,)x C ϕ∈-∞+∞,有000()()()()x x x x x x ϕδϕδ-=-. (13)6)1()() (0)||bx x b b δδ=≠. (14)7)000000(,,)()()()x x y y z z x x y y z z δδδδ---=---. (15)8)付立叶变换00[()].i x y y e λδ--= (16)[()] 1.x δ= (17)11221122[()()][()][()].C x x C x x C x x C x x δδδδ-+-=-+- (18)9)拉普拉斯变换00[(),[() 1.x x x e x δδδ--== (19)11221122[()]()][()[()].C x x C x x C x x C x x δδδδ-+-=-+- (20) 从上面的定义与性质看出,Delta 函数()x δ与一般可微函数还是有重大区别的,我们说它是“广义函数. ”§3 Cauchy 问题的解设扩散源在点000(,,)x y z 处,则此扩散问题满足Cauchy 问题2222222222000, (21)(,,,0)()()(). (22)u u u u a b c k u tx y z u x y z M x x y y z z δδδ⎧∂∂∂∂=++-⎪∂∂∂∂⎨⎪=---⎩对(21)(22)进行付立叶变换,且令123ˆ(,,), (,)[(,,,)]ut u x y z t λλλλλ==, 由于222222123222ˆˆˆ[], [], [],u u u uu u x y zλλλ∂∂∂=-=-=-∂∂∂ 102030000()[(,,,0)][()][()][()] ,i x y z u x y z M x x y y z z Me λλλδδδ-++=---= 故得常微分方程Cauchy 问题1020302222222123()ˆ()0,ˆ(0,).i x y z du a b c k udtu Meλλλλλλλ-++⎧++++=⎪⎨⎪=⎩ 得唯一解2222222123102030()()ˆ(,)a b c k t i x y z ut Me λλλλλλλ-+++-++=. (23)对(23)求逆变换1-,由于2122214[]a xa eλ---=, 2110221240[]()i x e aa ex x λλ----=-, 故得12222000222ˆ(,,,)[]()()()exp 444u x y z t u x x y y z z k t a t b t c t -=⎧⎫---=----⎨⎬⎩⎭2222000222()()().444x x y y z z k t a t b t c t ⎧⎫---=----⎨⎬⎩⎭(24) 如果认为经过了相当长时间后,扩散已经终止,物质分布处于平衡状态,则方程(4)中的0ut∂=∂,于是有线性椭圆型方程的边值问题 22222222220, (,,)(,,)(,,).D u u u a b c k u x y z D xy z u x y z x y z ϕ∂⎧∂∂∂++-=∈⎪∂∂∂⎨⎪=⎩也可以用付立叶变换求解. 当然,根据实际情况,还可以考虑第二边条件(,,)Dux y z n ∂∂=ψ∂或第三边条件[](,,)D uu x y z nαβρ∂∂+=∂等,其中D ∂是区域D 的边界,n 是外法线方向,,αβ是实常数.§4 参数估计在Cauchy 问题(21)(22)的解(23)中,有四个未知的参数,,,a b c k ,它们分别是扩散与衰减过程中的扩散系数与衰减系数的算术平方根. 至于点源的质量与位置000,(,,)M x y z 是已知的.设观测取样为:11112222(,,,), (,,,),,(,,,),n n n n x y z m x y z m x y z m取样时刻为1t =(不然设00, t t t τ=是取样时间,则(21)变成2200t xx yy U t a U t b U =++2200zz t c U t k U -,对τ而言,取样时间为1,而方程形状与(21)一致),把在(,,)i i i x y z 点观测到的物质密度i m 与公式(24)都取对数,令1t =,则2222000222()()()ln (,,,1)ln []444x x y y z z u x y z abc k a b c ---=--+++. (25) 令222000222()()()111,,,,,,444x x y y z z X Y Z a b c αβγ---====-=-=-2ln ln abc k ε=--,则(25)写成 ln (,,,1)W u x y z X Y Z αβγε==+++,(26) 而我们已观测得(,,,)1,2,,i i i i X Y Z W i n =的数据,用三元回归分析方法求出,,,αβγε的估计值如下:ˆˆˆˆ()W X Y Z εαβγ=-++, (27)其中11111111, , , ,n n n nk i i i k k k k W W X X Y Y Z Z n n n n ========∑∑∑∑ˆˆˆ,,αβγ满足方程组 111213102122232031323330ˆˆˆ,,ˆˆˆ,,ˆˆˆ,.l l l l l l l l l l l l αβγαβγαβγ⎧++=⎪⎪++=⎨⎪++=⎪⎩ 其中10201130122211223311112131123211()(), ()(),()(),(), (), (),()(), ()(),()(), n nk k k k k k nk k k nn nk k k k k k nnk k k k k k nk k k l W X W W l Y Y W W l Z Z W W l X X l Y Y l Z Z l X X Y Y l X X Z Z l Y Y Z Z l ==========--=--=--=-=-=-=--=--=--∑∑∑∑∑∑∑∑∑1231133223, , .l l l l l ===由ˆˆˆ,,αβγ可求得222,,a b c 的估计值,即222111ˆˆˆ, , ˆa b cαβγ=-=-=-. 又由于 2ln k abc ε=+- (28) 由(27)式可得ˆε,再把ˆˆˆ,,a b c 代入(28)得 2ˆˆˆˆˆln kabc ε=+- (29)至此得到参数2222,,,a b c k 的估计值2222ˆˆˆˆ,,,a b c k ,把它们代入(24)分别替代2222,,,a b c k ,则得不含未知参数的解(,,,)u x y z t 的近似表达式.§5 竞赛试题分析AMCM-90A 不可用本文的思路与方法加以解决;该试题由东华盛顿大学数学系Yves Nievergelt 提供,要求研究药物在脑中的分布,题文称:“研究脑功能失调的人员欲测试新的药物的效果,例如治疗帕金森症往脑部注射多巴胺(Dopamine )的效果,为了精确估计药物影响到的脑部区域,它们必须估计注射后药物在脑内空间分布区域的大小和形状.“研究数据包括50个圆柱体组织样本的每个样本药物含量的测定值(如图6-1),每个圆柱体长0.76mm ,直径0.66mm ,这些互相平行的圆柱体样本的中心位于网格距为1m m ×0.76×m m ×1mm 的格点上,所以圆柱体互相间在底面上接触,侧面互不接触. 注射是在最高计数的那个圆柱体的中心附近进行的. 自然在圆柱体之间以及由圆柱体样本的覆盖的区域外也有药物.“试估计受到药物影响的区域中药物的分布. ”“一个单位表示一个闪烁微粒的计数,或多巴胺的4.753×10-18克分子量,例如表6-1指出位于后排当中那个圆柱体的含药量是28353个单位. ”后方垂直截面164442 1320 414 188 480 7022 14411 5158 352 2091 23027 28353 13138 681 789 21260 20921 11731 727 213 130337651715453前方垂直截面163 324 432 243166 712 1055 6098 1048 232 2137 15531 19742 4785 330 444 11431 14960 3182 301 29420611036 258188图6-1数学模型只是实际问题的近似,要建立数学模型,一般首先要对所研究的实际问题进行必要和允许的简化与假设,而且,不同的简化与假设,又可能导致不同的数学模型,例如[2]是抛物型方程模型,而[3]则是椭圆方程模型.假设:(1)注射前大脑中的多巴胺含量可以忽略不计.(2)大脑中多巴胺注射液经历着扩散与衰减的过程,且沿,,x y z 三个方向的扩散系数分别是常数,衰减使质量之减少与深度成正比.(3)注射点在后排中央那个圆柱中心,即注射点的坐标000(,,)x y z 已知,注射量有医疗记录可查,是已知的.(4)注射瞬间完成,可视为点源delta 函数. (5)取样也是瞬间完成,取样时间已知为1t =.(6)样本区域与整个大脑相比可以忽略,样本组织远离脑之边界,不受大脑边界面的影响.在以上假设之下,显然可以用本文前面讲过的思路来建模,于是得AMCM-90A 的数学模型为Cauchy 问题(21)(22),解的表达式为(24),且用三元回归分析来估出参数,,,a b c k ,于是可以求得任意位置任意时刻药物的深度.如果所给数据认为是在平衡状态测得的,药物注射进脑后,从高深度处向低深度处扩散,与扩散同时,一部分药物进入脑细胞被吸收固定,扩散系数与吸收系数都是常数,但过一段时间,所有药物都被脑细胞所固定,达到了平衡态. 在这种假设下,[3]给出了下述的分析、建模、求解过程.设(,,,)v x y z t 是t 时刻在(,,)x y z 点处游离的药物浓度,(,,,)w x y z t 是t 时刻(,,)x y z 点处吸收固定的药物浓度,(,,)u x y z 是达到平衡态时(,,)x y z 点处吸收固定的药物浓度. 又设游离药物在各方向上有相同的扩散系数k ,吸收系数为h ,于是有vk v hv t∂=∆-∂. (30)又whv t∂=∂,即吸收速度与游离的浓度成正比,代入(30)得 ()v k ww t h t t∂∂∂=∆-∂∂∂. (31) 对(31)关于t 从0到+∞积分得000t t t k v w w h+∞+∞+∞====∆-. (32)由于最后无游离药物,故(,,,)0v x y z +∞=,又开始时(0)t =无被吸收的药物,故(,,,0)0, (,,,0)0w x y z w x y z =∆=;平衡状态在t =+∞时达到,这时(,,)u x y z = (,,,)w x y z +∞,于是由(32)得(,,,0)ku u v x y z h-∆+=, (33)其中(,,,0)v x y z 是开始时的浓度分布,近似于注射点的点源脉冲函数. 把此注射点取为坐标原点(0,0,0),则(,,,0)(,,),v x y z L x y z L δ=是注射量,于是2k h σ⎛⎫= ⎪⎝⎭记2(,,)u u L x y z σδ-∆+=, (34)作付立叶变换得22222222ˆˆ(),ˆ,1()s u u L Lus σξησξη+++==+++ 再作反变换得u σ-=-, (35)其中C 是可计算常数.如果考虑各向不同性,设,,x y z 方向上扩散系数分别为222,,a b c ,注射点在000(,,)x y z ,则222222000222()()()u u u a b c u L x x y y z z x y z δδδ⎛⎫∂∂∂-+++=--- ⎪∂∂∂⎝⎭, 于是解为(,,)u x y z =exp 1⎧⎪-⎨⎪⎩,(36) (36)中的D 可计算常数.用前面类似的方法可以进行参数估计.在建模过程中,点源函数的使用显然与实况有差别;尤其是认为扩散系数与吸收系数都是常数,对于人脑这种有复杂结构的区域,这种假设与实际不会完全符合;夜间与白天(睡与醒)对这些系数有无影响?脑中各点这些系数是否有变?除时间位置应考虑外,可能还与药液浓度有关. 如此看来,脑内药液分布的数学模型很可能不是常系数线性偏微分方程,而是函数系数的线性微分方程甚至是非线性偏微分方程. 这时,其解不再能用封闭公式来表达,求解过程会变得极为复杂,所以也可以考虑是否试用其他数学模型来解,例如在平衡态的假设下,用回归分析方法建立药液的模拟分布(,,)u f x y z =.对一个实际问题,其数学模型未必唯一,各模型间孰优孰劣,没有一般的判别法,须经实践来检验.参 考 文 献[1]叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993.[2]Christopher, R. Malone, Gian Pauletto, James, I. Zoellick, Distribution of Dopamine in the Brain, The Journal of Under graduate Mathematics, and its Applications, vol. 12(1991), Special Issue: The 1991 Mathematical Contest in Modeling, pp. 211-223.[3]孙晓东,荆秦,梁俊,脑中药物分布的数学模型,数学的实践与认识,1991年No. 4,63-69. [4]中国科学院数理统计组,常用数理统计方法,科学出版社,19784.。
扩散过程数学建模
3
Fick 定律
(x):物质的浓度 (单位举例:摩尔每升)
J: 流量 (单位举例:摩尔每升 每秒 每平方厘米
J d dx
J D d dx
Fick 第一定律
D:扩散系数 (单位举例:????)
x (单位举例:厘米)问题4:三维空间扩散 ??? 4
三维扩散: Fick第一 定律
12
竞争者模型
互利模型
13
反应-扩散过程的稳态解
d DV / Du , S / DU
稳态解u=u0, v=v0, 满足:
同时也是ODE问题 的稳态解
14
15
图灵不稳定性1952
• “The chemical basis of morphogenesis” 提出,某些条件下,均一的平衡(稳态)解
4Dt
4Dt :
扩散长度或扩散距离
x=0
8
稳态
0,
t
20
拉普拉斯方程
扩散与产生/生成过程的偶联???
9
反应扩散方程
t DR()
2
2 x
2y
2z
10
反应扩散方程: 一维多组分
边界条件 或
11
生态系统:猎手/猎物模型
U:prey, A(U):growth, V: predator, C(V): death B(U,V): interaction
扩散过程的数学建模
问题1:如何定义扩散???
1
扩散的定义
一般定义: 扩散(diffusion):物质在空间的自发分散(spontaneous dispersion of mass)
问题2:生物学例子???
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节 扩散问题的偏微分方程模型物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决.MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程.本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程.§1 抛物型方程的导出设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +∆时刻这段时间内,通过S 流入Ω的质量为2221(cos cos cos )dSd t ttSu u u M a b c t x y zαβγ+∆∂∂∂=++∂∂∂⎰⎰⎰. 由高斯公式得2222221222()d d d d t ttu u u M a b c x y z t x y z +∆Ω∂∂∂=++∂∂∂⎰⎰⎰⎰. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为22d d d d t ttM k u x y z t +∆Ω=⎰⎰⎰⎰,(2) 其中2k 是衰减系数.由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -.换一种角度看,Ω内由于深度之变化引起的质量增加为3[(,,,)(,,,)]d d d d d d d . (3)t ttM u x y z t t u x y z t x y zux y z t t Ω+∆Ω=+∆-∂=∂⎰⎰⎰⎰⎰⎰⎰显然312M M M =-,即2222222222d d d d ()d d d d .t ttt ttux y z t t u u u a b c k u x y z t x y z+∆Ω+∆Ω∂∂∂∂∂=++-∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰由,,t t ∆Ω之任意性得2222222222u u u u a b c k u t x y z∂∂∂∂=++-∂∂∂∂ (4) 方程(4)是常系数线性抛物型方程,它就是有衰减的扩散过程的数学模型,对于具体问题,尚需与相应的定解条件(初始条件与边界条件等)匹配才能求得确定情况下的解.§2 Dirac 函数物理学家Dirac 为了物理模型之需要,硬是引入了一个当时颇遭微词的,使得数学与物理学传统密切关系出现裂痕的“怪”函数:0,0,() ()1.,0,x x x dx x δδ+∞-∞≠⎧==⎨∞=⎩⎰ (5)它的背景是清晰的,以一条无穷长的杆子为例,沿杆建立了一维坐标系,点的坐标为x ,杆的线密度是()x ρ,在(,]x -∞段,杆子质量为()m x ,则有d ()(), ()d ().d x m x x x x m x xρρ-∞==⎰. (6)设此无穷长的杆子总质量为1,质量集中在0x x =点,则应有001,,()0,,x x m x x x >⎧=⎨<⎩ 或写成 0()()m x H x x =-,其中()H x 为1,0,()0,0,x H x x >⎧=⎨<⎩ 如果沿用(6)中的算法,则在质量集中分布的这种情形有00,,(),0.x x x x ρ≠⎧=⎨∞=⎩且0()d ()xx x H x x ρ-∞=-⎰,于是得()d 1.x x ρ+∞-∞=⎰. (7)但是,从传统数学观点看,若一个函数除某点处处为零,则不论哪种意义下的积分,都必定为零,(7)式岂能成立!但是,δ函数对于物理学而言是如此之有用,以致物理学家正当地拒绝放弃它. 尽管当时数学家们大都嘲笑这种函数,但P.A.M.Dirac 及其追随者们在物理领域却收获颇丰,Dirac 于1933年获诺贝尔物理奖. 当然Dirac 也意识到()x δ不是一个通常的函数,至于找一种什么办法来阐明()x δ这一符号的合法性,那就是数学家的任务了. 1940年,法国数学家许瓦兹(L.Schwartz )严格证明了应用()x δ的正确性,把δ函数置于坚实的数学基础上;1950年,L. Schwartz 获数学界最高奖Fields 奖.δ函数的重要性质有:1)0()d 1x x x δ+∞-∞-=⎰. (8)2)00()()d ()x x f x x f x δ+∞-∞-=⎰. (9)其中()(,)f x C ∈-∞+∞,即0()x x δ-摘出了()f x 在0x x =的值.3)00()()dH x x x x dxδ-=-.(10) 4)()x δ的导数是存在的,不过要到积分号下去理解:00()()(),x x f x dx f x δ+∞-∞''-=-⎰ (11)()()00()()(1)().n n n x x f x dx f x δ+∞-∞-=-⎰(12)事实上,由于0()x x δ-在,+∞-∞处为零,则形式地用分部积分公式000()()()()d ()()d ,x x f x x x f x xx x f x x δδδ+∞+∞-∞-∞+∞-∞'---'=-⎰⎰其中,()(,)nf x C ∈-∞+∞,于是有(11)与(12)公式.5)对于()(,)x C ϕ∈-∞+∞,有000()()()()x x x x x x ϕδϕδ-=-.(13)6)1()() (0)||bx x b b δδ=≠.(14)7)000000(,,)()()()x x y y z z x x y y z z δδδδ---=---. (15)8)付立叶变换00[()].i x y y e λδ--= (16)[()] 1.x δ= (17)11221122[()()][()][()].C x x C x x C x x C x x δδδδ-+-=-+- (18)9)拉普拉斯变换00[(),[() 1.x x x e x δδδ--== (19)11221122[()]()][()[()].C x x C x x C x x C x x δδδδ-+-=-+- (20) 从上面的定义与性质看出,Delta 函数()x δ与一般可微函数还是有重大区别的,我们说它是“广义函数. ”§3 Cauchy 问题的解设扩散源在点000(,,)x y z 处,则此扩散问题满足Cauchy 问题2222222222000, (21)(,,,0)()()(). (22)u u u u a b c k u tx y z u x y z M x x y y z z δδδ⎧∂∂∂∂=++-⎪∂∂∂∂⎨⎪=---⎩对(21)(22)进行付立叶变换,且令123ˆ(,,), (,)[(,,,)]ut u x y z t λλλλλ==, 由于222222123222ˆˆˆ[], [], [],u u u uu u x y zλλλ∂∂∂=-=-=-∂∂∂ 102030000()[(,,,0)][()][()][()] ,i x y z u x y z M x x y y z z Me λλλδδδ-++=---= 故得常微分方程Cauchy 问题1020302222222123()ˆ()0,ˆ(0,).i x y z du a b c k udt u Meλλλλλλλ-++⎧++++=⎪⎨⎪=⎩ 得唯一解2222222123102030()()ˆ(,)a b c k t ix y z ut Me λλλλλλλ-+++-++=. (23)对(23)求逆变换1-,由于2122214[]a xa eλ---=, 2110221240[]()i x e aaex x λλ----=-, 故得12222000222ˆ(,,,)[]()()()exp 444u x y z t u x x y y z z k t a t b t c t -=⎧⎫---=----⎨⎬⎩⎭2222000222()()().444x x y y z z k t a t b t c t ⎧⎫---=----⎨⎬⎩⎭(24) 如果认为经过了相当长时间后,扩散已经终止,物质分布处于平衡状态,则方程(4)中的0ut∂=∂,于是有线性椭圆型方程的边值问题 22222222220, (,,)(,,)(,,).D u u u a b c k u x y z D xy z u x y z x y z ϕ∂⎧∂∂∂++-=∈⎪∂∂∂⎨⎪=⎩也可以用付立叶变换求解. 当然,根据实际情况,还可以考虑第二边条件(,,)Dux y z n ∂∂=ψ∂或第三边条件[](,,)D uu x y z nαβρ∂∂+=∂等,其中D ∂是区域D 的边界,n 是外法线方向,,αβ是实常数.§4 参数估计在Cauchy 问题(21)(22)的解(23)中,有四个未知的参数,,,a b c k ,它们分别是扩散与衰减过程中的扩散系数与衰减系数的算术平方根. 至于点源的质量与位置000,(,,)M x y z 是已知的.设观测取样为:11112222(,,,), (,,,),,(,,,),n n n n x y z m x y z m x y z m取样时刻为1t =(不然设00, t t t τ=是取样时间,则(21)变成2200t xx yy U t a U t b U =++2200zz t c U t k U -,对τ而言,取样时间为1,而方程形状与(21)一致),把在(,,)i i i x y z 点观测到的物质密度i m 与公式(24)都取对数,令1t =,则2222000222()()()ln (,,,1)ln []444x x y y z z u x y z abc k a b c ---=--+++. (25) 令222000222()()()111,,,,,,444x x y y z z X Y Z a b c αβγ---====-=-=-2ln ln abc k ε=--,则(25)写成 ln (,,,1)W u x y z X Y Z αβγε==+++,(26) 而我们已观测得(,,,)1,2,,i i i i X Y Z W i n =的数据,用三元回归分析方法求出,,,αβγε的估计值如下:ˆˆˆˆ()W X Y Z εαβγ=-++, (27)其中11111111, , , ,n n n nk i i i k k k k W W X X Y Y Z Z n n n n ========∑∑∑∑ˆˆˆ,,αβγ满足方程组 111213102122232031323330ˆˆˆ,,ˆˆˆ,,ˆˆˆ,.l l l l l l l l l l l l αβγαβγαβγ⎧++=⎪⎪++=⎨⎪++=⎪⎩其中10201130122211223311112131123211()(), ()(),()(),(), (), (),()(), ()(),()(), nnk k k k k k nk k k nn nk k k k k k nnk k k k k k nk k k l W X W W l Y Y W W l Z Z W W l X X l Y Y l Z Z l X X Y Y l X X Z Z l Y Y Z Z l ==========--=--=--=-=-=-=--=--=--∑∑∑∑∑∑∑∑∑1231133223, , .l l l l l ===由ˆˆˆ,,αβγ可求得222,,a b c 的估计值,即222111ˆˆˆ, , ˆa b cαβγ=-=-=-. 又由于2ln k abc ε=+- (28) 由(27)式可得ˆε,再把ˆˆˆ,,a b c 代入(28)得2ˆˆˆˆˆln kabc ε=+- (29)至此得到参数2222,,,a b c k 的估计值2222ˆˆˆˆ,,,a b c k ,把它们代入(24)分别替代2222,,,a b c k ,则得不含未知参数的解(,,,)u x y z t 的近似表达式.§5 竞赛试题分析AMCM-90A 不可用本文的思路与方法加以解决;该试题由东华盛顿大学数学系Yves Nievergelt 提供,要求研究药物在脑中的分布,题文称:“研究脑功能失调的人员欲测试新的药物的效果,例如治疗帕金森症往脑部注射多巴胺(Dopamine )的效果,为了精确估计药物影响到的脑部区域,它们必须估计注射后药物在脑内空间分布区域的大小和形状.“研究数据包括50个圆柱体组织样本的每个样本药物含量的测定值(如图6-1),每个圆柱体长0.76mm ,直径0.66mm ,这些互相平行的圆柱体样本的中心位于网格距为1mm ×0.76×mm ×1mm 的格点上,所以圆柱体互相间在底面上接触,侧面互不接触. 注射是在最高计数的那个圆柱体的中心附近进行的. 自然在圆柱体之间以及由圆柱体样本的覆盖的区域外也有药物.“试估计受到药物影响的区域中药物的分布. ”“一个单位表示一个闪烁微粒的计数,或多巴胺的4.753×10-18克分子量,例如表6-1指出位于后排当中那个圆柱体的含药量是28353个单位. ”后方垂直截面164 442 1320 414 188 480 7022 14411 5158 352 2091 23027 28353 13138 681 7892126020921117317272131303 3765 1715 453前方垂直截面163 324 432 243 166 712 1055 6098 1048 232 2137 15531 19742 4785 330 444 11431 14960 3182 301 29420611036 258188图6-1数学模型只是实际问题的近似,要建立数学模型,一般首先要对所研究的实际问题进行必要和允许的简化与假设,而且,不同的简化与假设,又可能导致不同的数学模型,例如[2]是抛物型方程模型,而[3]则是椭圆方程模型.假设:(1)注射前大脑中的多巴胺含量可以忽略不计.(2)大脑中多巴胺注射液经历着扩散与衰减的过程,且沿,,x y z 三个方向的扩散系数分别是常数,衰减使质量之减少与深度成正比.(3)注射点在后排中央那个圆柱中心,即注射点的坐标000(,,)x y z 已知,注射量有医疗记录可查,是已知的.(4)注射瞬间完成,可视为点源delta 函数. (5)取样也是瞬间完成,取样时间已知为1t =.(6)样本区域与整个大脑相比可以忽略,样本组织远离脑之边界,不受大脑边界面的影响.在以上假设之下,显然可以用本文前面讲过的思路来建模,于是得AMCM-90A 的数学模型为Cauchy 问题(21)(22),解的表达式为(24),且用三元回归分析来估出参数,,,a b c k ,于是可以求得任意位置任意时刻药物的深度.如果所给数据认为是在平衡状态测得的,药物注射进脑后,从高深度处向低深度处扩散,与扩散同时,一部分药物进入脑细胞被吸收固定,扩散系数与吸收系数都是常数,但过一段时间,所有药物都被脑细胞所固定,达到了平衡态. 在这种假设下,[3]给出了下述的分析、建模、求解过程.设(,,,)v x y z t 是t 时刻在(,,)x y z 点处游离的药物浓度,(,,,)w x y z t 是t 时刻(,,)x y z 点处吸收固定的药物浓度,(,,)u x y z 是达到平衡态时(,,)x y z 点处吸收固定的药物浓度. 又设游离药物在各方向上有相同的扩散系数k ,吸收系数为h ,于是有vk v hv t∂=∆-∂. (30)又whv t∂=∂,即吸收速度与游离的浓度成正比,代入(30)得 ()v k w w t h t t∂∂∂=∆-∂∂∂. (31) 对(31)关于t 从0到+∞积分得t t t k vw wh+∞+∞+∞====∆-. (32)由于最后无游离药物,故(,,,)0v x y z +∞=,又开始时(0)t =无被吸收的药物,故(,,,0)0, (,,,0)0w x y z w x y z =∆=;平衡状态在t =+∞时达到,这时(,,)u x y z =(,,,)w x y z +∞,于是由(32)得(,,,0)ku u v x y z h-∆+=, (33)其中(,,,0)v x y z 是开始时的浓度分布,近似于注射点的点源脉冲函数. 把此注射点取为坐标原点(0,0,0),则(,,,0)(,,),v x y z L x y z L δ=是注射量,于是2k h σ⎛⎫= ⎪⎝⎭记2(,,)u u L x y z σδ-∆+=, (34)作付立叶变换得22222222ˆˆ(),ˆ,1()s u u L Lus σξησξη+++==+++ 再作反变换得u σ-=-, (35)其中C 是可计算常数.如果考虑各向不同性,设,,x y z 方向上扩散系数分别为222,,a b c ,注射点在000(,,)x y z ,则222222000222()()()u u u a b c u L x x y y z z x y z δδδ⎛⎫∂∂∂-+++=--- ⎪∂∂∂⎝⎭, 于是解为(,,)u x y z =exp 1⎧⎪-⎨⎪⎩,(36) (36)中的D 可计算常数.用前面类似的方法可以进行参数估计.在建模过程中,点源函数的使用显然与实况有差别;尤其是认为扩散系数与吸收系数都是常数,对于人脑这种有复杂结构的区域,这种假设与实际不会完全符合;夜间与白天(睡与醒)对这些系数有无影响?脑中各点这些系数是否有变?除时间位置应考虑外,可能还与药液浓度有关. 如此看来,脑内药液分布的数学模型很可能不是常系数线性偏微分方程,而是函数系数的线性微分方程甚至是非线性偏微分方程. 这时,其解不再能用封闭公式来表达,求解过程会变得极为复杂,所以也可以考虑是否试用其他数学模型来解,例如在平衡态的假设下,用回归分析方法建立药液的模拟分布(,,)u f x y z =.对一个实际问题,其数学模型未必唯一,各模型间孰优孰劣,没有一般的判别法,须经实践来检验.参考文献[1]叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993.[2]Christopher, R. Malone, Gian Pauletto, James, I. Zoellick, Distribution of Dopamine in the Brain, The Journal of Under graduate Mathematics, and its Applications, vol. 12(1991), Special Issue: The 1991 Mathematical Contest in Modeling, pp. 211-223.[3]孙晓东,荆秦,梁俊,脑中药物分布的数学模型,数学的实践与认识,1991年No. 4,63-69.[4]中国科学院数理统计组,常用数理统计方法,科学出版社,19784.。