抛物型方程的有限差分方法

合集下载

解四阶抛物型方程高精度紧致差分格式

解四阶抛物型方程高精度紧致差分格式

7 2
大 学 数 学
第2 6卷
其 中 D , q 依次 为关 于 的一 阶偏 微分算 子 , 移算 子与一 阶 中心差分 算子 , 面建 立 中心差 分 T - 位 下 算子 和微分 算子 D 的关 系式. T yo 展开 , 得 由 a lr 可

+ 1'? : ,)
了一个 三层 隐式 差分 格式 , 是格 式 的精度 比较 低 ; [ ] 造 了一个 三层 显式 差分 格 式 , 稳定 性条 件 但 文 4构 其
和局 部截 断误 差 阶分别 为 f f 1 8和 o(Z f。 Z )) 文 [ ] < / r ( ) +(X ; X 5 构造 了一个 两层 恒稳 隐 式格 式 和 一
因此 , 文针对 四阶抛物 型方程 ( ) 本 1 的周期 初值 问题 , 造 出了一 个两 层 高精度 紧致 差分 格 式和一 个 构 三层高精 度紧致 隐格 式 , 其截 断误差 阶分别为 O(△£ + ( z 和 o(a£ +( )zz △ . ( ) z )) 5 ( ) S △£( ) +( )) X
一c<z × 0 ≤T × <C,≤f , 3 。

1 (2 “ 3+L,) t 一“( £ , 一 ∞ < < ∞ , ≤ £ T, T,) O ≤ 一o %x o. o % o

对 于这 类 四阶抛 物 型方程 的数值解 求 解 , a l e S u ’v在 文 [ ] 出 了一 类 含 权 因子 a的两 层 差 分 格 式 , 1提 当 a 一0时 为显 式格式 , 其稳定 性 条件 为 f f 1 2一 文 [ ] 造 了一族 三层 ( 殊 情况 下 为两 层 ) 含双 参 < / 。 ; 2构 r 特 、 数、 绝对 稳定 、 精度 、 对角 线型 的 隐式差 分 格 式 , 局 部 截 断误 差 为 O( z +( ) ) At△z分 高 五 其 ( ) 5 z z , , 5 别 为时 间及 空间 步长 ; 后 , 随 曾文平 针对 四阶抛 物型 方程 提 出 了一系列 的差分 格式 ]其 中文 [ ] 造 , 3构

求解抛物型方程的一种有限差分并行格式

求解抛物型方程的一种有限差分并行格式
ei l x e mett nare i eter n l i e ce (- 。 .T en m r a ep r na o geswt t oya a s . c i i hh h ys
Ke r s:p rl lc mp tt n iee t le u t n;J S i rt emeh d ;s bly;t n ainerr y wo d aal o uai ;df rni q ai e o f a o G t ai to s t i t r c t ro e v a i u o
点 (, 的值 . i )
对于给定的正整数 P 使其能整除 N一1 , L=( ( )令 N一1 /.将 整个区间分成 P个子区问 ( P )p 或
收稿 日期 : 0 0 92 . 2 1- -6 O
作者简 介:刘
播( 9 1 15 一), , 族 , 男 汉 博士 ,教授 ,从事偏 微分方 程并行算 法的研 究,E-al ib m@j .d . a m i uo :l l eu c .通讯作 者 u
李昕卓( 97 ) 1 8一 ,女 , 汉族 ,从事偏微分方程并行算 法的研究 ,E m i: i 22 @13 cn. . a l z13 6 .o l x 基金项 目:国家 自然科学基金 ( 批准号 : 0 3 1 1 J00 0 ) J70 0 ; 13 1 1 .

吉 林 大 学 学 报 ( 学 版) 理
有 限差分 法是求 解偏 微分方 程 的一种 有效 方法 ,目前 已有许 多 研究 结果 .文 献 [ -] 论 了抛 23 讨
物型 方程 的本性 并行 差分 格 式 ;文献 [ . ] 别 给 出 了抛 物 型 方 程 的 A E方 法 及其 稳 定 性 和误 差 分 45 分 G

抛物型方程的差分方法

抛物型方程的差分方法

抛物型方程的差分方法抛物型方程是描述物理现象中的薄膜振动、热传导、扩散等过程的方程,具有非常重要的应用价值。

差分方法是一种常用的数值计算方法,用于求解微分方程,对于抛物型方程的数值求解也是非常有效的方法之一、本文将介绍抛物型方程的差分方法,并具体讨论用差分方法求解抛物型方程的一些具体问题。

首先,我们来介绍一下抛物型方程的一般形式。

抛物型方程一般可以表示为:∂u/∂t=α(∂^2u/∂x^2+∂^2u/∂y^2)其中,u(x,y,t)是待求函数,t是时间,x和y是空间变量,α是常数。

这个方程描述的是物理过程中的扩散现象,如热传导过程、溶质的扩散过程等。

差分方法的基本思想是将求解区域离散化为一个个网格点,然后在每个网格点处用近似的方式来计算待求函数的值。

差分方法的求解步骤主要包括以下几个方面:1.选择适当的网格和步长。

在求解抛物型方程时,需要确定空间变量x和y所在的网格点以及步长,同时也需要确定时间变量t所在的网格点和步长。

通常,我们会选择均匀网格,步长选择合适的值。

2.建立差分格式。

差分格式是差分方法的核心部分,它包括对方程进行近似处理和离散化。

对于抛物型方程,常用的差分格式有显式差分格式和隐式差分格式等。

其中,显式差分格式的计算速度快,但是有一定的稳定性限制,而隐式差分格式的稳定性较好,但是计算量较大。

因此,在具体问题中需要根据实际情况选择适当的差分格式。

3.编写计算程序。

在建立差分格式后,需要编写计算代码来求解离散方程。

具体编写的过程包括定义初始条件、建立迭代计算过程、以及计算结果的输出等。

4.计算结果的验证与分析。

求解方程后,需要对计算结果进行验证和分析,主要包括对数值解和解析解的比较、对误差的估计和控制等。

在具体求解抛物型方程时,还会遇到一些问题,例如边界条件的处理、稳定性和收敛性的分析等。

下面将对其中一些问题进行详细讨论。

1.边界条件的处理。

边界条件对差分格式的求解结果有着重要的影响,常见的边界条件包括固定端(Dirichlet)边界条件和自由端(Neumann)边界条件等。

10_抛物型方程的有限差分方法

10_抛物型方程的有限差分方法

10_抛物型方程的有限差分方法抛物型方程是一类常见的偏微分方程,广泛应用于自然科学和工程学的领域中。

有限差分方法是一种常用的数值求解抛物型方程的方法之一、本文将介绍抛物型方程的有限差分方法(II)。

有限差分方法主要基于离散化的思想,将偏微分方程转化为差分方程,进而求解差分方程的数值解。

对于抛物型方程,其一般形式可以表示为:∂u/∂t=Δu+f(x,t)其中,u(x, t)是未知函数,表示空间位置x和时间t上的解,Δu表示Laplace算子作用于u的结果,f(x, t)是已知函数。

有限差分方法的基本思想是将空间和时间域进行离散化,将连续的空间和时间划分为有限个网格点,然后使用差分近似代替偏导数,得到差分方程。

假设空间域被划分为Nx个网格点,时间域被划分为Nt个网格点,对于每个网格点(i,j),可以表示为(x_i,t_j),其中i=0,1,...,Nx,j=0,1,...,Nt。

在有限差分方法中,我们使用中心差分近似来代替偏导数。

对于时间导数,可以使用向前差分或向后差分,这里我们使用向前差分,即:∂u/∂t≈(u_i,j+1-u_i,j)/Δt对于空间导数,可以使用中心差分,即:∂^2u/∂x^2≈(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2将上述差分近似代入抛物型方程中,可以得到差分方程的离散形式:(u_i,j+1-u_i,j)/Δt=(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2+f_i,j其中,f_i,j=f(x_i,t_j)。

重排上式,可以得到递推关系式:u_i,j+1=αu_i-1,j+(1-2α)u_i,j+αu_i+1,j+Δt*f_i,j其中,α=Δt/Δx^2通过设置初始条件和边界条件,可以利用以上递推关系式得到抛物型方程的数值解。

总结来说,抛物型方程的有限差分方法(II)是一种常用的数值求解抛物型方程的方法。

它基于离散化的思想,将偏微分方程转化为差分方程,然后利用中心差分近似代替偏导数,得到差分方程的离散形式。

抛物型方程差分法资料

抛物型方程差分法资料

1. 区域剖分(区域离散)
用两族平行线
x t
xi tk
i h,
k,
0 i m 1/h
0 k n T /
将原方程的求解区域分割成矩形一致网格。
t
t k 1 tk
t k 1
t2 t1
O x1 x2
h — 空间步长, — 时间步长,
(xi ,tk )
( xi , tk ) — 网格节点
用 uik 表 示 温 度 分 布 函 数 u( x, t ) 在 点( xi , tk ) 处 的 网 格 函 数, 相 当 于
x xi1 xi xi1
u( x, t) 在 该 点 的 近 似.
2. 原方程弱化为节点处的离散方程
连续方程
u t
a
2u x 2
f (x,
t ),
0 x 1,
0 t T
u( x,0) ( x), 0 x 1
u(0, t) (t), u(1, t) (t), 0 t T
离散方程
)
u( xi1, tk
)
误差为 O(h2 )
( xi ,tk )
将上面的式子代入离散方程,可得
u(
xi
,
tk
1
)
u(
xi
,
tk
)
a
u(
xi 1
,
tk
)
2u( xi , h2
tk
)
u(
xi
1
,
tk
)
f ( xi , tk ) O(
h2 )
0 i m, 0 k n.
u( xi ,0) ( xi ),
uk i 1
)
f

抛物方程的有限差分法

抛物方程的有限差分法

抛物方程的有限差分法作者:李娜来源:《科技视界》2014年第32期【摘要】抛物方程是描述物理现象的一类重要方程,其中差分方法和有限元方法是求其数值解的两类主要方法。

本文主要介绍有限元方法中的向前差分法,首先简单介绍向前差分法,给出稳定性和收敛性的概念,然后以一维热传导方程为例进行求解,同时给出收敛性和稳定性分析,并利用Matlab软件做出了误差分析图。

【关键词】抛物方程;有限元方法;向前差分法;误差分析0 引言由于抛物型方程与时间t有关,称为非驻定问题。

非驻定问题可用差分法,也可用有限元法求解。

热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。

热传导在三维等方向均匀介质里的传播可用方程式u■=kΔu表示,其中u■=u (t,x,y,z)表示温度,它是时间变量t与空间变量(x,y,z)的函数,■是空间中一点的温度对时间的变化率,uxx、uyy和uzz是温度对三个空间坐标轴的二次导数。

k决定于材料的热传导率、密度与热容。

求解方程时,如果考虑的介质不是整个空间,则为了得到方程唯一解,必须指定的边界条件。

如果介质是整个空间,为了得到唯一解,必须假定解的增长速度有一个指数型的上界,并且此假定与实验结果相吻合。

1 本文研究的方程本文主要研究一维热传导方程的有限差分解法,下面给出了各向同性介质中无热源的一维热传导方程及初始条件:■=a(x,t)■a>0 0<x<1,0<t<Tux,0=?覫x=sin(πx) 0<x<1u0,t=u(1,t)=0 0≤t≤T (1)在此,本文利用有限元方法中的向前差分法求解偏微分方程式(1),首先需要建立差分格式,而在建立差分格式时通常取空间步长和时间步长为常量。

下面介绍向前差分的概念以及如何利用该方法对其进行收敛性、精确性和稳定性分析。

1.1 向前差分格式有限差分法和有限元方法是求解偏微分方程的两种主要的数值方法。

一类变系数半线性抛物型方程的有限差分方法

一类变系数半线性抛物型方程的有限差分方法

定 ={i ≤ i MI ={ i n1≤ i M,≤ , 义 1 0 ≤ Q ( ,) t ≤ 0 z 0 ≤NI .
对式 ( .) 1 1 中微 分算 子利 用 中心差 商 , 我们得 到
£ 去 。X,一 ,n £ nX, = ) ( it ( + 一 (l ( ) it -) + (l +
Vo . . 18 No 3
J n.0 7 u 2 0
文 章编 号 :0 94 2 (0 7 0 —130 1 0 .8 2 2 0 )30 9 —8

类 变 系数 半 线性 抛 物 型 方 程 的有 限差 分 方 法
王 海 明
( 田学 院数学 与应用 数 学系 , 莆 福建 莆 田 3 1 0 ) 5 1 0
了一个线性化 二层格式 , 并且证 明 了在 L 和 L 范数 意义下格式 的收敛 阶为 0( . h +r)本文讨论一 般变系 数 ( a z 为 的一个函数 ) 即 () 的情形 , 即对式 ( . ) 1 1 构造一个线性 化二层格式 , 明该差 分格式解 的存在惟 一 证
{ (,) () “1£ =卢£, £ 0T , “0£ =口£, (,) () ∈(, ]
【 ( 0 ( ) . ( ,) “ ,)= z, 2 7∈ 0 1 .
(.) 11
假 设存在 正数 a , 使得对 任意的 . ∈ ( ,) 。口, 2 7 0 1 都有 0< 0 ≤ 口 .) 0 . / 0 (7 ≤ / 这样 的问题有许多重要 的应用 … . 2 对这类 半线性抛 物型方程的差分 处理 , 为得到关 于时间的 2阶收敛格式 , 常采用 非线性的差分 格式 , 作量 通 工 比较 大 . 若要构造线 性化差分格式 , 般是三层格式[ . 口 .) 口为一个 常数时 , 一 2 当 (7 三 t 2 文献 [ ] 式( .) 1对 1 1 构造

二维抛物方程的有限差分法

二维抛物方程的有限差分法

二维抛物方程的有限差分法二维抛物方程的有限差分法摘要二维抛物方程是一类有广泛应用的偏微分方程,由于大部分抛物方程都难以求得解析解,故考虑采用数值方法求解。

有限差分法是最简单又极为重要的解微分方程的数值方法。

本文介绍了二维抛物方程的有限差分法。

首先,简单介绍了抛物方程的应用背景,解抛物方程的常见数值方法,有限差分法的产生背景和发展应用。

讨论了抛物方程的有限差分法建立的基础,并介绍了有限差分方法的收敛性和稳定性。

其次,介绍了几种常用的差分格式,有古典显式格式、古典隐式格式、Crank-Nicolson隐式格式、Douglas差分格式、加权六点隐式格式、交替方向隐式格式等,重点介绍了古典显式格式和交替方向隐式格式。

进行了格式的推导,分析了格式的收敛性、稳定性。

并以热传导方程为数值算例,运用差分方法求解。

通过数值算例,得出古典显式格式计算起来较简单,但稳定性条件较苛刻;而交替方向隐式格式无条件稳定。

关键词:二维抛物方程;有限差分法;古典显式格式;交替方向隐式格式FINITE DIFFERENCE METHOD FORTWO-DIMENSIONAL PARABOLICEQUATIONAbstractTwo-dimensional parabolic equation is a widely used class of partial differential equations. Because this kind of equation is so complex, we consider numerical methods instead of obtaining analytical solutions. finite difference method is the most simple and extremely important numerical methods for differential equations. The paper introduces the finite difference method for two-dimensional parabolic equation.Firstly, this paper introduces the background and common numerical methods for Parabolic Equation, Background and development of applications. Discusses the basement for the establishment of the finite difference method for parabolic equation And describes the convergence and stability for finite difference method.Secondly, Introduces some of the more common simple differential format,for example, the classical explicit scheme, the classical implicit scheme, Crank-Nicolson implicit scheme, Douglas difference scheme, weighted six implicit scheme and the alternating direction implicit format. The paper focuses on the classical explicit scheme and the alternating direction implicit format. The paper takes discusses the derivation convergence,and stability of the format . The paper takes And the heat conduction equation for the numerical example, using the differential method to solve. Through numerical examples, the classical explicit scheme is relatively simple for calculation, with more stringent stability conditions; and alternating direction implicit scheme is unconditionally stable.Keywords:Two-dimensional Parabolic Equation; Finite-Difference Method; Eclassical Explicit Scheme; Alternating Direction Implicit Scheme1绪论1.1课题背景抛物方程是一类特殊的偏微分方程,二维抛物方程的一般形式为u Lu t ∂=∂ (1-1)其中1212((,,))((,,))(,,)(,,)(,,)u u u u u u L a x y t a x y t b x y t b x y t C x y t x x y y x y∂∂∂∂∂∂=++++∂∂∂∂∂∂ 120,0,0a a C >>≥。

一类二维抛物型方程的有限差分方法

一类二维抛物型方程的有限差分方法
第 33卷 第 3期
2013 正 5月
高 师 理 科 学 刊
Journal of Science of Teachers College and University
文章编 号 :1007—9831(2013)03—0007—02
Vo1.33 NO.3 May 2013
一 类二维抛物 型方程 的有 限差分方法
0u a U a U
_ — +’ — +‘ CU
, Y,f)∈
u(x,Y, 0)=o(x, ) 0 ,Y≤ 1 u(O,Y,f)= (y,f) 0 Y≤1: 0 t T u(1,Y,f)=rP2(Y,f) 0≤ Y 1: 0≤t T u(x, 0,f)=o)1( ,f) 0 ≤1: 0≤t T u(x, 1,f)= !( ,f) 0 ≤1: 0≤ t≤T
其中:U o= ; 最 = 一 ; :, =仍; =q; = .
2 稳定性分析
采用 Von Newmann方法up 对式 (3)进行稳定性分析. \、 ●● _、、
令 = e ‘属肌岛 + ,代人差分格式 (3),得
D ,J _
[1+2r一一l2ck 1 r、2(l , e堋)]箭 =f1_2r+_1 十_1r(
收 稿 日期 :2013--01—20 基金项 目:安徽省教育厅 自然科学基金重点项 目 (KJ2010A224);安庆师范学院青年科研基金项 目 (KJ201020) 作 者 简介 :舒 阿秀 (1977一),女 ,安徽 旌德 人 ,副教 授 ,硕 士 ,从 事偏 微分 方程 数值 解 研究 .E—marl
A finite difference method for a kind of two-dim ensional parabolic equation

有限差分法求解抛物型方程说明

有限差分法求解抛物型方程说明

有限差分法求解抛物型方程偏微分方程只是在一些特殊情况下,才能求得定解问题解的解析式,对比较复杂的问题要找到解的解析表达式是困难的,因此需采用数值方法来求解.有限差分法是一种发展较早且比较成熟的数值求解方法,只适用于几何形状规则的结构化网格.它在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值.本章主要介绍有限差分法的基本思想,并给出一些具体的数值实例.§1 差分方法的基本思想有限差分法把偏微分方程的求解区域划分为有限个网格节点组成的网格,主要采用Taylor 级数展开等方法,在每个网格节点上用有限差分近似公式代替方程中的导数,从而建立以网格节点上的函数值为未知数的代数方程组.有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式.从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式和显隐交替格式等.目前常见的差分格式,主要是上述几种格式的组合,不同的组合构成不同的差分格式.泰勒级数展开法对有限差分格式的分类和公式的建立起着十分重要的作用.下面采用泰勒展开式导出一个自变量系统的若干有限差分表达式.首先考虑单变量函数()u x ,如图1把区域x 离散为一批结点,记0()(), =0,1,2,i i u x u x ih u i =+=图1 单变量函数离散化函数()u x 在点i x 处的泰勒展开式为23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''+=++++ (1)或23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''-=-+-+ (2)式(1)和(2)重新整理可得2()()()()()2!3!i i i i i u x h u x u x u x u x h h h '''''+-'=---(3)和2()()()()()2!3!i i i i i u x u x h u x u x u x h h h '''''--'=+++(4)于是给出在点i x 处函数u 的一阶导数的两个近似公式1()()()i i i ii u x h u x u u u x h h ++--'≈= (5)1()()()i i i i i u x u x h u u u x h h----'≈= (6)因为级数被截断,这两个近似公式肯定要产生误差,此误差与h 同阶,形式分别为()(), ,2()(), .2i i i i i i hE u O h x x h hE u O h x h x ξξξξ''=-=≤≤+''==-≤≤ 若把式(3)和(4)相加并求()i u x ',可得11()()()22i i i i i u x h u x h u u u x h h+-+---'≈= (7)其截断误差与2h 同阶,形式为22()(), ,6i i i h E u O h x h x h ξξ''=-=-≤≤+若把式(3)和(4)相减并求()i u x '',可得1122()2()()2()i i i i i i i u x h u x u x h u u u u x h h +-+-+--+''≈= (8)其截断误差与2h 同阶,其形式为22()(), ,12i i i h E u O h x h x h ξξ''=-=-≤≤+我们可继续用这种方式来推导更复杂的公式,类似的公式还有很多,这里不再一一列举.公式(5)、(6)分别称为一阶向前、向后差分格式,这两种格式具有一阶计算精度,公式(7)、(8)分别称为一阶、二阶中心差分格式,这两种格式具有二阶计算精度.图2 二维区域网格剖分上面的结果可直接推广使用于导出二元函数(,)u x y 的许多有限差分近似公式.如图7.2,把求解区域进行网格剖分,使12(,)(,), ,=0,1,2,i j ij u x y u ih jh u i j ==其中x 方向的网格间距为1,h y 方向的网格间距为2,h 整数i 和j 分别表示函数(,)u x y 沿x 坐标和y 坐标的位置.二元函数(,)u x y 对x 求偏导时y 保持不变,对y 求偏导时x 保持不变,根据向前差分公式(7.5)可以给出在点(,)i j x y 处函数(,)u x y 的一阶偏导数的两个近似公式1,,1(,)i j i j i ju x y u u xh +∂-≈∂ (9),1,2(,)i j i j i ju x y u u yh +∂-≈∂ (10)相类似地,根据二阶中心差分格式(8)可以得到函数(,)u x y 的二阶偏导数的近似公式21,,1,221(,)2i j i j i j i ju x y u u u x h +-∂-+≈∂ (11)2,1,,1222(,)2i j i j i j i j u x y u u u yh+-∂-+≈∂ (12)下面我们推导函数(,)u x y 的二阶混合偏导数2ux y∂∂∂在(,)i j x y 的有限差分表达式.根据一阶中心差分格式(7),112111,11,11,11,122121221,11,1(,)(,)(,)1()21 ()()222 i j i j i j i j i j i j i j i j i j i u x y u x y u x y O h x y h y y u u u u O h O h h h h u u u +-+++--+--+++-∂∂∂⎡⎤⎡⎤∂=-+⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦--⎡⎤=-++⎢⎥⎣⎦--≈1,11,1124j i j u h h -+--+二维有限差分近似可以直接推广到三维空间或三维空间加一维时间的情形.定义1 当步长趋于零时,差分方程的截断误差趋于零,则称差分格式与微分方程是相容的.定义2 当步长趋于零时,差分方程的解收敛于微分方程的解,则称差分格式是收敛的. 定义3 当差分方程的解由于舍入误差的影响,所产生的偏差可以得到控制时,则称差分格式是稳定的.§2 抛物型方程的有限的差分法为了说明如何使用有限差分法来求解偏微分方程,本节我们给出以下几个数值实例.算例1 考虑一维非齐次热传导方程的初边值问题:2212(,), 01,01,(,0)(), 01,(0,)(), (1,)(), 0 1.u ua f x t x t t x u x q x x u t g t u t g t t ⎧∂∂=+<<<≤⎪∂∂⎪⎪=≤≤⎨⎪==<≤⎪⎪⎩(7.13),其中2,a =函数11(,)[cos()2sin()],22xf x t e t t =--+-初始条件1()sin,2xq x e =左、右边界条件分别为11()sin(),2g t t =-21()sin()2g t e t =-.该定解问题的解析解为1(,)sin(),(,)[0,1][0,1].2xu x t e t x t =-∈⨯将求解区域{(,)|,0}x t a x b t T Ω=≤≤≤≤进行网格剖分,[,]a b 作m 等分,[0,]T 作n 等分,记,,b a Th m nτ-==则 ,0,,0i k x a ih i M t k k n τ=+≤≤=≤≤对该问题建立如下向前差分格式:11122, 11, 11,k kk k k k i i i i i i u u u u u a f i m k n hτ+-+--+=+≤≤-≤≤-(14) (,0)(),1,i i u x q x i m =≤≤ (15) 12(,)(), (,)(),1.k k k k u a t g t u b t g t k n ==≤≤ (16)令2r ah τ=,差分格式(7.14)整理得111(12), 11, 1 1.k k k k k i i i i i u ru r u ru f i m k n τ+-+=+-++≤≤-≤≤- (17)显然时间在1k t +上的每个逼近值可独立地由k t 层上的值求出。

经典偏微分方程课后习题答案

经典偏微分方程课后习题答案

第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。

取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。

u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。

抛物型方程的计算方法

抛物型方程的计算方法

分类号:O241.82本科生毕业论文(设计)题目:一类抛物型方程的计算方法作者单位数学与信息科学学院作者姓名专业班级2011级数学与应用数学创新2班指导教师论文完成时间二〇一五年四月一类抛物型方程的数值计算方法(数学与信息科学学院数学与应用数学专业2011级创新2班)指导教师摘要: 抛物型方程数值求解常用方法有差分方法、有限元方法等。

差分方法是一种对方程直接进行离散化后得到的差分计算格式,有限元方法是基于抛物型方程的变分形式给出的数值计算格式。

本文首先给出抛物型方程的差分计算方法,并分析了相应差分格式的收敛性、稳定性等基本理论问题.然后,给出抛物型方程的有限元计算方法及理论分析。

关键词:差分方法,有限元方法,收敛性,稳定性Numerical computation methods for a parabolic equationYan qian(Class 2, Grade 2011,College of Mathematics and Information Science)Advisor: Nie huaAbstract:The common methods to solve parabolic equations include differential method,finite element method etc。

The main idea of differential method is to construct differential schemes by discretizing differential equations directly. Finite element scheme is based on the variational method of parabolic equations。

In this article, we give some differential schemes for a parabolic equation and analyze their convergence and stability. Moreover,the finite element method and the corresponding theoretical analysis for parabolic equation are established.Key words:differential method,finite element method, convergence,stability1 绪 论1。

有限差分法在数值计算中的应用

有限差分法在数值计算中的应用

有限差分法在数值计算中的应用有限差分法是一种常用的数值计算方法,广泛应用于各个领域,包括物理学、工程学、金融学等。

本文将介绍有限差分法的基本原理,以及其在数值计算中的应用。

一、有限差分法的基本原理有限差分法是通过近似计算导数、积分等运算的一种方法,其基本思想是将函数在某一点处展开成一个泰勒级数,然后用有限个点处的函数值来逼近原函数。

有限差分法的核心是将连续的函数转化为离散的数据点,然后通过有限个离散点之间的差分来近似原函数的性质。

有限差分法的主要步骤包括以下几个:1. 网格划分:将计算区域划分为均匀的网格,即将连续的空间划分为一系列离散的点。

2. 逼近函数:将原函数在每个网格点处做泰勒级数展开,得到对应的近似函数。

3. 差分近似:根据泰勒级数展开的结果,利用有限个网格点之间的差分,来近似计算导数、积分等运算。

4. 求解方程:根据差分结果,可以得到离散的代数方程组,通过求解这个方程组得到数值解。

二、1. 偏微分方程求解:有限差分法可以用来求解各种类型的偏微分方程,包括抛物型、椭圆型和双曲型方程。

通过将偏微分方程离散化为代数方程组,再通过求解方程组得到数值解。

2. 数值积分:有限差分法可以用来近似计算函数的积分。

通过将积分区间划分为一系列小区间,并用离散点上的函数值来近似替代原函数,可以得到积分的数值结果。

3. 非线性方程求解:有限差分法也可以用来求解非线性方程。

通过将非线性方程转化为离散的代数方程组,并利用迭代方法求解方程组,可以得到非线性方程的数值解。

4. 边值问题求解:有限差分法可以应用于求解各类边值问题,如求解热传导方程的边值问题、求解电场分布的边值问题等。

通过将边值问题离散化为代数方程组,再通过求解方程组得到边值问题的数值解。

5. 优化问题求解:有限差分法可以用来求解各种类型的优化问题。

通过将优化问题转化为非线性方程组,并利用有限差分法求解方程组,可以得到优化问题的数值解。

总结:有限差分法作为一种常用的数值计算方法,在各个领域中有着广泛的应用。

抛物型偏微分方程

抛物型偏微分方程

抛物型偏微分方程抛物型偏微分方程(Parabolic Partial Differential Equation)是数学分析中重要的一个分支,研究对象主要是关于时间和空间变量的二阶偏微分方程。

在物理、工程和经济等领域中,抛物型偏微分方程有着广泛的应用,比如热传导方程、扩散方程和波动方程等。

1. 定义和形式抛物型偏微分方程是指对于函数 u(x, t) 存在连续二阶偏导数,并满足形式如下的方程:∂u/∂t = a∇²u + bu + f(x, t)其中,a 是常数,∇²u 是 u 关于空间变量 x 的拉普拉斯算子,b 是各项异性系数,f(x, t) 是给定的源项函数。

该方程描述了函数 u 关于时间t 的演化过程,与空间变量 x 的变化有关,反映了物理现象在时间和空间上的动态发展。

2. 物理意义和应用抛物型偏微分方程在物理学领域中有着重要的应用。

其中,热传导方程是抛物型偏微分方程的典型例子,描述了物质内部温度分布随时间变化的规律。

热传导方程在热力学、材料科学和地球物理学等领域中具有广泛的应用,例如预测地球内部热流、分析塑料注塑过程中温度分布等。

此外,扩散方程也是抛物型偏微分方程的重要应用之一。

扩散过程描述了物质在空间中传播的方式,常用于研究化学反应、人口扩散和金融市场中的价格传播等问题。

波动方程则描述了波在空间中传播的规律,例如声波、电磁波和水波等。

3. 解法和数值模拟抛物型偏微分方程的解法可以通过变量分离、变换等方法获得解析解。

然而,在实际问题中,解析解往往难以求得,需要借助数值方法进行近似计算。

常用的数值方法包括有限差分法、有限元法和谱方法等。

有限差分法将方程离散化为差分格式,通过迭代求解差分方程组得到数值解。

有限元法则将求解区域划分为有限单元,通过构建矩阵方程来求解问题的数值解。

此外,谱方法基于傅里叶级数展开,通过选择适当的基函数将方程转化为代数方程组求解。

谱方法在高精度计算和边界层问题的处理上有一定优势。

解抛物型方程的一族高精度差分格式

解抛物型方程的一族高精度差分格式

A [ l + 2; 3“+ + 1 / +1 “+ + ;1 2 = [5? +(一 5 7) 7“一] , “ “ 一 + ( l “一 )2 7(n} u2) ] 口 r“ ) 4 - / / 1 —1 “ +1 ; 6 6
() 2
其 中 A, 关 于 t的 一阶 向前 差商 , 是 关 于 的 二 阶中心 差商 , ~ 是 待定 参数 . 是 6 l 6 将 () 2 中各节 点 上的 “以其 在节 点处 展开 的 T y r 数代入 , 利用方 程 ( ) al 级 o 并 1可得
均达 0( £ + △ ) 在 不增 加节 点所 在 区间宽 度 的情况 下 , . 是否 存在精 度更 高 的- , 线型 隐格 式 ?文 [ ] -x 角  ̄ 3 曾给 出 了一个 截 断 误差 为 0( + △£ ) 隐 格 式, 由于 作 者 算 错 了 一个 误 差 项【 格 式 的 精 度 仍 为 t hsp pr T el a t n ainerri O ( t ee t l u t n r r ne i ti ae . h cl r ct r A + ae o s dn o u o o s
a s l e y sa l nd c n a iy s l e o bl we p n t o b ut l t b e a a bee sl v d by d u e s e i g me h d. o o Ke r : ne d me in lp r b i q a in; i h a c a y;mpl i ifr nc c me y wo ds o — i nso a a a ol e u to h g c ur c i c i td fe e es he c
维普资讯
第 1 第 5期 8卷

偏微分方程数值解法(抛物型方程差分法)2省名师优质课赛课获奖课件市赛课一等奖课件

偏微分方程数值解法(抛物型方程差分法)2省名师优质课赛课获奖课件市赛课一等奖课件

j(H
sin 2
)
| j
|
1 jn
2(n 1)
| (ra2 ) |
(ra2 )
| n |
| 1 |
ra 2
极值点满足
ra2 1 2
1 4ra2 sin2 4ra2 sin2 n 1
2(n 1)
2(n 1)
(ra2 ) 1 2sin2
cos 1
2(n 1)
n1
显式差分格式稳定充分条件. h2 / 2a 2
4/17
无穷大范数定义 ||
uk
||
max
1 jn
|
ukj
|
双层差分格式
n
n
u (k ) k1 jm m
u (k ) k
jm m
f
k j
m1
m1
记矩阵
A(k )
(
) (k )
jm nn
B(k)
(
) (k )
jm nn
双层格式旳矩阵形式 A(k )uk1 B(k )uk f k
双层差分格式初值稳定概念:
2ra2 cos j )]1
j
n
1
]1
[1 4ra2 sin2 nj 1 ]1 1
2(n 1)
11/17
过渡矩阵旳谱半径
(
H
)
max
1 j N 1
|
j
(
H
)
|
1
max
1 jn
|
1
4ra
sin2 (
j
/
2(n
1))
|
1
1 4ra sin2( / 2(n 1)) 1

一类四阶半线性抛物型方程的有限差分方法

一类四阶半线性抛物型方程的有限差分方法

( 器) + (
cl l
一) 。 ≤ : 一]
I ×
l l l f+ △ ll l
RI ( “ +c I
6 一
=∑ l 一 l ; 6 J 1 =
I I 2 靠l ? + 一 I ll I
;I ;l 2 一 一 ~ I 。 l
第 8卷
第2 3期
20 08年 1 2月







Vo_ No 2 l8 .3
De . 2 08 c 0
17 —8 9 20 )36 2 —3 6 1 11 (0 8 2 —3 10
S in e T c n lg n n i e rn c e c e h o o y a d E gn ei g
6+ = + 6一 - L

_ , , , 一l 『 =l 2 … - ; ,
G lki v和 P h ze 讨 论 了 下 述 方 程 的 a tn a o ooav
C uh (Z , a cy / >1P>1 问题 : / ' ) 艿 = √= , , , 一 ; 。 l … - 2 ,
关键词 四阶抛物方程
中图法分类号
O 4 .2 2 18 ;
文献标志码

本文研究 文献 [ ] u= 时 的 四阶半 线 性抛 1 中“ ” 物 型方程 的初 边值 问题 。 f + l/ I, t ∈ ×( , ] zZ =I ( ) p , 0T ,
区间[ , ] -等 分 , 长 = 满 足 △ =O( ; 01作 , 步 £ h )
+ =
_ 。


0, , , 1… . ,一1 ;

第四章 抛物型方程的有限差分方法

第四章 抛物型方程的有限差分方法

2 h 称为Du Fort -Frankel格式,仍为三层显式格式.
2
a
n 1 n 1 n un ( u u ) u j 1 j j j 1
0
截断误差: T x j , tn a u x j , tn u x j , tn 2 u x j h, tn u x j , tn u x j , tn u x j h, tn h2
1 2a G , k 0
0 4a cos kh 1 2a 1 1 0 4a cos kh 1 2a 1 2a 1 2a 0 1
2
1
4a cos kh 2a 1 G , k 的特征方程: 0 1 2a 1 2a
修正 Richardson:无条件不稳定显格式
Du Fort Frankel:无条件稳定的三层显格式. 但后者的相容性是有条件的.事实上, 显格式中,无条件相容和无条件稳定是无法同时成立的.
4 三层隐式格式
先考虑
n 1 n u u 3 j j n n 1 u u 1 j j 1 n1 n1 un 2 u u j 1 j j 1
引理1.1实系数二次方程 2 b c 0的根: c 1. 模 1 b 1 c, " "设1 , 2是方程两根,且 i 1 i 1, 2 证: c b 则12 c1 2 b a a 12 c c 1 2 1 1 2 b 1 c b 1 12 1 2 1 12 1 2 1 1 1 2 0, 若 1 2 0 1 12 1 2 1 1 1 2 0, 若1 2 0 b 1 c

抛物型方程的有限差分方法

抛物型方程的有限差分方法

抛物型方程的有限差分方法一,求解问题考虑一维非齐次热传导方程的定解问题22(,),0,0(,0)(),0(0,)(),(1,)(),0u ua f x t x l t T t xu x t x l u t t u t t t T ϕαβ∂∂-=<<<≤∂∂=≤≤==<≤......(1)..................(2) (3)其中α为正长数,(,)f x t ,()t ϕ,()t α,()t β为已知函数,(0)(0),(1)(0)ϕαϕβ==,式(2)为初值条件,(3)为边值条件。

二,网格剖分取空间步长/h l M =和时间步长/T N τ=,其中M 、N 都是整数。

用两族平行直线,(0,1,,)i x x ih i M ===和(0,1,,)k t t k i N τ===将矩形域{0;0}Gx l t T =≤≤≤≤分割成矩形网格,网格结点为(,)i k x t 。

以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h h G G Γ=-是网格界点集合。

其次,用ki u 表示定义在网点(,)i k x t 的函数,11,01i Mk N ≤≤-≤≤-。

用适当的差商代替方程(1)中相应的偏微商。

三, 差分格式 1, 向前差分 向前差分格式111202()(),11,01k kk k kiii i i ii i kki i i M u u u u u af hf f x u x u u i M k N ττϕϕ++---+=+====≤≤-≤≤-以2/ra h τ=为网比。

将上式改写为便于计算的形式,则得以下向量形式111(12)()(,)11,01k k k kii i i i k u r u r u u f x t i M k N τ+-+=-+++≤≤-≤≤-上式表示第k 层的值显示表示出来。

已知第k 层的值{|1}k i u i M ≤≤,则可以直接得到第k+1的值1{|1}k i u i M +≤≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物型方程的有限差分方法一,求解问题考虑一维非齐次热传导方程的定解问题22(,),0,0(,0)(),0(0,)(),(1,)(),0u ua f x t x l t T t xu x t x l u t t u t t t T ϕαβ∂∂-=<<<≤∂∂=≤≤==<≤......(1)..................(2) (3)其中α为正长数,(,)f x t ,()t ϕ,()t α,()t β为已知函数,(0)(0),(1)(0)ϕαϕβ==,式(2)为初值条件,(3)为边值条件。

二,网格剖分取空间步长/h l M =和时间步长/T N τ=,其中M 、N 都是整数。

用两族平行直线,(0,1,,)i x x ih i M ===和(0,1,,)k t t k i N τ===将矩形域{0;0}Gx l t T =≤≤≤≤分割成矩形网格,网格结点为(,)i k x t 。

以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h h G G Γ=-是网格界点集合。

其次,用ki u 表示定义在网点(,)i k x t 的函数,11,01i Mk N ≤≤-≤≤-。

用适当的差商代替方程(1)中相应的偏微商。

三, 差分格式 1, 向前差分 向前差分格式111202()(),11,01k kk k kiii i i ii i kki i i M u u u u u af hf f x u x u u i M k N ττϕϕ++---+=+====≤≤-≤≤-以2/ra h τ=为网比。

将上式改写为便于计算的形式,则得以下向量形式111(12)()(,)11,01k k k kii i i i k u r u r u u f x t i M k N τ+-+=-+++≤≤-≤≤-上式表示第k 层的值显示表示出来。

已知第k 层的值{|1}k i u i M ≤≤,则可以直接得到第k+1的值1{|1}k i u i M +≤≤。

将上式表示成矩阵形式:1101112221222111112(,)12(,)12(,)12(,)k k kk k k k k k M k M M k k k M k M M M rr f x t ru u u r rr f x t u u rr rf x t u u r r f x t ru u u ττττ+++---+----+-=+--+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭向前Euler 格式的截断误差记22u u Lu a t t∂∂=-∂∂1112(1)2k kk k kiii i i kh i u u u u u ahL u τ++---+-=然后在k ju 进行泰勒展开从而得到1222(,)(,)2||()i k i k k ik i x t x t u u uu o t t τττ+∂∂=+++∂∂即122(,)(,)2||()i k i k k kiix t x t u u u u o t tτττ+-∂∂=++∂∂ 显然得到截断误差(1)22222()[]11()()()122()kkki h i ik i R u L u LU u O h r t O h τττ=-∂=--++∂=+2222()ki u ttu∂∂∂∂其中是在矩形111,j j k k x x x t t t -++<<<<中某点的值。

● 向前Euler 格式的稳定性估计向前Euler 格式(12)C r I rS =-+,其中,n-1I 是阶单位矩阵0110110110S ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,C 的特征值2122cos 14sin 2c jj h r r j h r πλπ=-+=-。

为使1cj M λτ≤+或214sin 12c j j h r M πλτ-≤=-≤+必须且只须 24sin 2,1,2,,12j hr M j N πτ≤+=-即42,1/2r r ≤≤。

故向前差分格式当1/2r ≤时稳定,当1/2r >时不稳定。

● 算例:应用向前Euler 格式计算定解问题2210,01,01,(,0),01,(0,),(1,),01xttu u x t txu x e x u t e u t e t +∂∂-=<<<≤∂∂=≤≤==<≤上述定解问题的精确解为(,)x tu x t e+=。

解:通过编程可求得不同步长比的数值解。

表1给出了取步长h=1/10和1/200τ=(步长比r=1/2)时计算得到的部分数值结果,数值解很好的逼近精确解。

表2给出了取步长h=1/10和1/100τ=(步长比r=1)时计算得到的部分数值解。

随着计算层数的增加,误差越来越大,数值结果无实用价值。

从图1_1取时间步长和空间步长都为10可以看到后面数值解和精确解的误差非常大,前向差分格式不稳定。

出表3给出了r=1/2时,取不同步长,数值解的最大误差11(,)max |(,)|i M k Nk i k i E h u x t u τ≤≤≤≤∞=-从表3可以看出当空间步长缩小到原来1/2,时间步长缩小到原来的1/4时,最大误差约缩小到原来的1/4.τ=数值解和精确解的误差图图1_1取h=1/10和1/102, 向后差分 ● 向后差分格式1111112002()(),11,01k kk k k i i i i i ii i k k i i i Mu u u u u a f h f f x u x u u i M k N ττϕϕ+++++---+=+====≤≤-≤≤-以2/ra h τ=为网比。

将上式改写为便于计算的形式,则得以下向量形式11111(12)(,)11,01k k k k i i i i i k ru r u ru u f x t i M k N τ++++--++-=+≤≤-≤≤-上式表示第k 层的值隐示表示出来。

已知第k 层的值{|1}k i u i M ≤≤,则可以直接得到第k+1的值1{|1}k i u i M +≤≤。

将上式表示成矩阵形式:111011122212221111112(,)12(,)12(,)12(,)k k k k k k k k k M k M M k k k M k M M M r r f x t ru u u r r r f x t u u r r r f x t u u r r f x t ru u u ττττ++++---++---⎛⎫+-⎛⎫⎛⎫+⎛⎫⎪ ⎪ ⎪ ⎪-+-⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+⎪ ⎪ ⎪ ⎪-+- ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭● 向后Euler 格式的截断误差记22u u Lu a t t∂∂=-∂∂1111112(2)2k kk k k iii ii kh iu u u u u ahL u τ+++++---+-=然后在k ju 进行泰勒展开从而得到111222(,)(,)2||()i k i k k ik i x t x t u u uu o t tτττ+++∂∂=+++∂∂即1112(,)(,)2||()i k i k k kiix t x t u u u u o t tτττ+++-∂∂=++∂∂ 显然得到截断误差(2)22222()[]11()()()122()kkki h i iki R u L u LU u O h r t O h τττ=-∂=-++∂=++2222()ki u ttu∂∂∂∂其中是在矩形111,j j k k x x x t t t -++<<<<中某点的值。

向前Euler 格式的稳定性估计向前Euler 格式1[(12)]C r I rS -=+-,其中,n-1I 是阶单位矩阵0110110110S ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 的特征值11[(12)2cos ][12(1cos )]c j r r j h r j h λππ--=+-=+-。

故对任何0r >稳定,即绝对稳定。

算例:与向前Euler 格式的算例相同。

解:通过编程可求得不同步长比的数值解。

表1给出了取步长h=1/10和1/200τ=(步长比r=1/2)时计算得到的部分数值结果,数值解很好的逼近精确解。

表2给出了取步长h=1/10和1/100τ=(步长比r=1)时计算得到的部分数值解。

后向差分格式较稳定,当h=1/10和1/10τ= 时,如图2_1的数值解和精确解的误差2.533.544.555.566.577.5图2_1其中h=1/10,1/100τ=时的数值解和精确解曲线图2_2 h=1/10,1/100τ=数值解和精确解的误差3, 加权平均差分(当1/2θ=时为C-N 格式) 加权平均差分格式向前差分和向后差分作加权平均,权重为θ,即得格式为111111112222((1))k kk k kk k k iii i i i ii i u u u u u u u u a f hhθθτ+++++-+---+-+=+-+将其改写成向量格式为:1111111(1)[12(1)](1)(12)k k k i ii kkki i i iru r u ru ru r u ru f θθθθθθ++++-+--++-+-=+-++写成便于计算的矩阵形式:111212111212(1)(1)(1)12(1)(1)(1)12(1)(1)(1)12(1)12121212k k k M k M kk M r r ur r r u r r r u r r ur r ur r r u r r ru r r θθθθθθθθθθθθθθθθθθθθ+++-+--+-----+-----+-----+---=--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭11222111(,)(,)(,)(,)k kkk M kk kM kMM f x t ruf x t f x t f x t ru uττττ+-+--+++⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭● 加权平均差分格式的截断误差 记22u u Lu a t t∂∂=-∂∂1111111122(3)22[(1)]k kk k k k k kiii ii i i i kh i u u u u u u u u a hhL u θτθ+++++-+---+-+=-+-将截断误差(3)()[]kk ki h i i R u L u LU =-于1/21/2(,)((1/2))j k k x t t k τ++=+展开,则得(3)2()[]()k k ki h i i R u L u LU O h τ=-=+● 加权平均差分格式的稳定性估计向前Euler 格式1(1)[(1)][(1)]22r r C r I S r I S θθ--=+--+,其中I 是n-1阶单位矩阵,0110110110S ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 的特征值212[(12sin][12(1)sin ],1,2,,122c j j h j hr r j N ππλθθ-=-+-=-。

相关文档
最新文档