机械原理第11章 轮系
《机械原理》轮系的类型
《机械原理》轮系的类型轮系是机械原理中一个非常重要的概念,它是由多个齿轮或带轮组成的传动装置。
轮系通过齿轮或带轮之间的啮合来实现传递动力和转速的目的。
根据齿轮或带轮的不同组合方式和传动特点,轮系可以分为很多类型。
本文将详细介绍几种常见的轮系类型。
1.平行轮系平行轮系是最简单、最常见的轮系类型之一、它由两个平行安装的齿轮组成,以实现动力的传递和转速的变化。
平行轮系的传动比可以通过计算齿轮的齿数比值来确定,即传动比=齿轮B的齿数/齿轮A的齿数。
2.轴垂直平行轮系轴垂直平行轮系是由两个齿轮组成的轮系,齿轮A和齿轮B的轴线相互垂直,但都与一个平行于它们的中心轴线垂直。
这种轮系常用于传递转速的变化和动扭矩的传递。
3.交直齿圆柱齿轮轮系交直齿圆柱齿轮轮系是一种特殊的轮系,它由一个斜齿轮和一个直齿轮组成,斜齿轮的齿槽呈斜角,直齿轮的齿槽呈直角。
这种轮系可以实现轴线之间的转向,同时还可以传递动力和转速。
4.内外啮合轮系内外啮合轮系是由一个内啮合齿轮和一个外啮合齿轮组成的轮系,它们的齿轮的齿槽相互啮合。
这种轮系常用于箱式传动装置中,可以实现动力的传递和转速的变化。
5.铰链轮系铰链轮系是一种特殊的轮系,它由两个齿轮组成,它们的齿轮轴线在一定的位置处连接成一个铰链。
这种轮系可以实现平行轮系和轴垂直平行轮系的转变,常用于一些特殊场合。
6.摆线针轮轮系摆线针轮轮系是一种特殊的轮系,它由一个摆线针轮和一个齿轮组成,摆线针轮的齿轮轴线在一定的位置处连接成一个摆线。
摆线针轮轮系能够实现平行轮系和轴垂直平行轮系的转变,并且具有较高的传动效率和较小的传动误差。
以上是几种常见的轮系类型,它们在不同的应用场合下具有各自独特的优缺点和适用性。
掌握轮系的类型和特点能够帮助我们更好地理解和应用轮系在机械传动中的作用和原理。
机械原理公式
机械原理公式:第十一章:齿轮系及其设计1.行星轮系公式,齿轮数关系2.定轴轮系公式3.差动轮系求nH第七章:机械的转动及波动调节1.驱动工=阻力工公式2.最大转速公式,标能量最大3.最大盈亏工公式4.飞轮转动惯量公式第十章:齿轮机构及其设计1.基圆半径,渐开线展角,压力角,展角与压力角公式,渐开线曲率半径,向径2.齿顶圆压力角,分度园压力角,分度园压力角与啮合角关系3.四半径大小关系4.齿顶圆曲率半径公式,分度圆曲率半径公式5.齿顶圆压力角公式,展开线压力角公式6.基圆半径与分度圆半径关系公式7.分度圆齿厚公式,齿槽公式,齿距公式8.齿顶圆半径公式,齿根圆半径公式9.分度圆半径公式10.啮合角公式11.重合度公式第八章:连杆机构及其设计1.周转副条件2.双曲柄条件3.曲柄摇杆条件4.极位夹角,摆角,行程速比系数,传动比,设计四杆机构的极位夹角第五章:机械传动的效率和自锁1.总效率第九章:凸轮机构及其设计(反转发)1.作大圆小圆内切2.由大圆作压力角3.大圆小圆差值作推杆位移4.推杆相切圆作反转推杆升高s的解法1.s圆与理论轮廓线的交点2.理论基圆求转角第三章:平面机构的运动分析瞬心法:1.构件1,3瞬心为p13,若1为机架,则p13是3的绝对速度2.求杆1上的m点速度,须知杆1角速度,须知杆1与动力杆的瞬心或者杆1与机架的瞬心3.无穷远的瞬心可以平行4.计算单位矢量方程图解法1.取重合点B(B1,B2,B3)VB2=VB12.VB3=VB2+VB3B23.作图第四章:平面机构的力的分析1.判断压缩还是拉升2.与夹角变化方向相反第二章:机构的结构分析1.自由度公式。
机械原理轮系
机械原理轮系机械原理轮系是指由轮、带、链或齿轮等传动装置组成的一种机械传动系统,它通过传递动力和运动,实现不同部件之间的协调工作。
在工程和机械设计中,轮系是非常常见和重要的一种传动形式,它广泛应用于各种机械设备和工业生产中。
本文将从轮系的组成、工作原理和应用领域等方面进行介绍。
轮系的组成。
轮系通常由驱动轮和被动轮组成,驱动轮是传递动力的装置,而被动轮则是接受动力的装置。
在轮系中,驱动轮通过各种传动装置(如带、链或齿轮)将动力传递给被动轮,从而实现被动轮的运动。
轮系的组成还包括轴、轴承、支架等零部件,它们共同协作,保证轮系的正常运转。
工作原理。
轮系的工作原理是基于力的传递和转动的机械原理。
当驱动轮受到外部动力作用时,它通过传动装置将动力传递给被动轮,被动轮受到动力作用后开始运动。
在轮系中,传动装置起着至关重要的作用,它能够有效地传递动力,并根据需要进行速度和扭矩的调节。
不同类型的传动装置具有不同的特点和适用范围,工程师需要根据具体的工作要求选择合适的传动装置。
应用领域。
轮系广泛应用于各种机械设备和工业生产中,如汽车、飞机、船舶、机械加工设备等。
在汽车中,轮系通过传动装置将发动机的动力传递给车轮,从而驱动汽车行驶。
在飞机和船舶中,轮系也扮演着重要的角色,它们通过复杂的轮系传动装置,实现飞机和船舶的飞行和航行。
在机械加工设备中,轮系通过不同的传动装置,实现机械设备的各种加工运动,如旋转、升降、前进等。
总结。
机械原理轮系作为一种重要的机械传动形式,具有广泛的应用领域和重要的作用。
它通过传递动力和运动,实现不同部件之间的协调工作,为各种机械设备和工业生产提供了有效的动力支持。
在工程设计和生产实践中,工程师需要充分理解轮系的组成和工作原理,合理选择传动装置,确保轮系的正常运转,从而实现设备的高效运行和生产的顺利进行。
机械原理11-本科)-轮系
ω
H 3
ω1 i1H = = 1 + 1.875= + 2.875 ωH
ω
H 1
例 2:
在图示的周转轮系中, 在图示的周转轮系中,设已知 z1=100, z2=101, z2’=100, z3 = 99. 试求传动比 iH1。
2 2′
解: 为固定轮(即 轮3为固定轮 即n3=0) 为固定轮
n1 − nH n1 − nH i = = n3 − nH 0− nH
齿轮4对传动比没有影响, 齿轮4对传动比没有影响,但能改变从动 轮的转向,称为过轮或中介轮。 轮的转向,称为过轮或中介轮。
§11—3 周转轮系传动比的计算 一、周转轮系的分类 按周转轮系所具有的自由度数目的不同分类: 按周转轮系所具有的自由度数目的不同分类: 1) 行星轮系
F = 3× 3 − 2 × 3 − 2 = 1
i AB
从 A → B 从动轮齿数的连乘积 = 从 A → B 主动轮齿数的连乘积
二、首、末轮转向的确定 1、用“+” “-”表示
ω1 ω1 1 ω2
1
2
ω2
p
vp
转向相反
2
转向相同
i 12
ω1 = = ω2
z2 − z1 z2 + z1
外啮合 内啮合
对于平面定轴轮系, 对于平面定轴轮系,设轮系中有 m对外啮合齿轮,则末轮转向为(-1) 对外啮合齿轮,则末轮转向为 对外啮合齿轮
关键是先要把其中的周转轮系部分划分出来 。 周转轮系的找法: 周转轮系的找法: 先找出行星轮,然后找出系杆, 先找出行星轮,然后找出系杆,以及与 行星轮相啮合的所有中心轮。 行星轮相啮合的所有中心轮。 每一系杆, 每一系杆,连同系杆上的行星轮和与行星 轮相啮合的中心轮就组成一个周转轮系 在将周转轮系一一找出之后, 在将周转轮系一一找出之后,剩下的便是 定轴轮系部分。 定轴轮系部分。
2653编号机械原理习题集分析
机械原理习题集新疆大学机械设计教研室目录第1章绪论 3第2章机械的结构分析 4第3章平面机构的运动分析 6第4章平面机构的力分析 9第5章机械的效率和自锁 11第6章机械的平衡 12第7章机械的运转及其速度波动的调节 13第8章平面连杆机构及其设计 15第9章凸轮机构及其设计 17第10章齿轮机构及其设计 19 第11章轮系及其设计 21第12章其他常用机构 23第一章绪论复习思考题1、试述构件和零件的区别与联系?2、何谓机架、原动件和从动件?第2章机械的结构分析复习思考题1、两构件构成运动副的特征是什么?2、如何区别平面及空间运动副?3、何谓自由度和约束?4、转动副与移动副的运动特点有何区别与联系?5、何谓复合铰链?计算机构自由度时应如何处理?6、机构具有确定运动的条件是什么?7、什么是虚约束?习题1、画出图示平面机构的运动简图,并计算其自由度。
(a)(b) (c)2、一简易冲床的初拟设计方案如图。
设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。
试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。
3、计算图示平面机构的自由度;机构中的原动件用圆弧箭头表示。
(a) (b) (c)(d) (e) (f)第3章平面机构的运动分析复习思考题1、已知作平面相对运动两构件上两个重合点的相对速度12A A V 及12B B V 的方向,它们的相对瞬心P 12在何处?2、当两构件组成滑动兼滚动的高副时,其速度瞬心在何处?3、如何考虑机构中不组成运动副的两构件的速度瞬心?4、利用速度瞬心,在机构运动分析中可以求哪些运动参数?5、在平面机构运动分析中,哥氏加速度大小及方向如何确定?习题1、试求出下列机构中的所有速度瞬心。
(a) (b)(c) (d)2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。
机械原理答案第十一章 齿轮系及其设计
第十一章 齿轮系及其设计题11-1如图所示为一手摇提升装置,其中各轮齿数均已知,试求传动比i 15,并指出当提升重物时手柄的转向(在图中用箭头标出)。
解: 此轮系为空间定轴轮系78.5771811520524030504321543215=⨯⨯⨯⨯⨯⨯=='''z z z z z z z z i题11-2如图所示为一滚齿机工作台传动机构,工作台与涡轮5固联。
若已知z 1=z 1′=15,z 2=35,z 4′=1(右旋),z 5=40,滚刀z 6=1(左旋),z 7=28。
今要切制一个齿数z 5′=64的齿轮,应如何选配挂轮组的齿数z 2′、z 3和z 4。
解:由范成原理,滚刀6与轮坯5’的角速度比应为64655656==='''z z i ωω 转向如图。
这一角速度比由滚齿机工作台的传动系统来保证。
56242442175421155011528403515''''''=⨯=⨯⨯⨯⨯⨯==i z z z z z z z z z z z z i 转向如图可求得253252=z z 至于Z 3为惰轮,其齿数可根据中心距A 24的需要确定。
题11-3 如图所示为一千分表的示意图。
己知各轮齿数如图,模数mm m 11.0=(为非标准模数)。
若要测量杆1每移动mm 001.0时,指针尖端刚好移动一个刻度()mm s 5.1=。
问指针的长度?=R (图中齿轮5和游丝的作用是使各工作齿轮始终保持单侧接触,以消除齿轮间隙对测量精度的影响) 解:()4332-'-组成定轴轮系1001160120121632431224=⨯⨯===''z z z z i ϕϕ24100ϕϕ=∴再由轮2与测量杆组成齿轮与齿条传动知 测杆1每移动mm 001.0时,齿轮2的转角为:42221027.611.029001.022-⨯=⨯⨯===m Z h r h ϕ 此时要求指针刚好移动一刻度()mm s 5.1=,由4ϕR s =可得指针的长度为mm s sR 241027.61005.1100424=⨯⨯===-ϕϕ题11-4 如图所示为绕线机的计数器。
工学机械原理轮系课件
w H - w H=0
假想定轴轮系
指给整个周转轮系加上一个“-wH”的公共角速度,使系杆H变为相对固定后,所得到的假想的定轴轮系。
原轮系
转化轮系
转化轮系
2. 转化轮系中各构件的角速度
3. 转化轮系的传动比
可按定轴轮系传动比的方法求得:
传动比计算的一般公式:
1. 上式只适用于转化轮系首末两轮轴线平行的情况。 2. 齿数比之前要加“+”或“–”号来表示齿轮之间的转向关系(提前可以根据定轴轮系的方法用箭头判断出)。 3. 将ω1、ωn、ωH 的数值代入上式时,必须同时带“±”号。
z1=z3 , nH=n4
六、实现运动的分解
汽车后桥的差动器能根据汽车不同的行驶状态,自动将主轴的转速分解为两后轮的不同转动。
各齿廓啮合处的径向分力和行星轮公转所产生的离心惯性力得以平衡,可大大改善受力状况;
七、实现结构紧凑的大功率传动
多个行星轮共同分担载荷,可以减少齿轮尺寸;
中心轮(太阳轮1,3):轴线固定并与主轴线重合的齿轮。
行星轮(2):轮系中轴线不固定齿轮(自转与公转)。
机架:固定件
系杆
行星轮
太阳轮
1 ,3 ——中心轮(太阳轮) 2 —— 行星轮 H —— 系杆(转臂)
基本构件
2. 周转轮系的分类
a)按其自由度数分:
自由度为1
差动轮系
自由度为2
行星轮系
3K型
b)根据基本构件的组成分
有3个中心轮。 1,3,4轮
2K型
有2个中心轮, 1,3轮
既包含定轴轮系部分,又包含周转轮系部分的轮系,或是由几个周转轮系组成的轮系。
三. 复合轮系
定轴轮系
周转轮系
机械原理课后答案第11章
第11章作业11-1在给定轮系主动轮的转向后,可用什么方法来确定定轴轮系从动轮的转向?周转轮系中主、从动件的转向关系又用什么方法来确定?答:参考教材216~218页。
11-2如何划分一个复合轮系的定轴轮系部分和各基本周转轮系部分?在图示的轮系中,既然构件5作为行星架被划归在周转轮系部分中,在计算周转轮系部分的传动比时,是否应把齿轮5的齿数,Z5计入?答:划分一个复合轮系的定轴轮系部分和各基本周转轮系部分关键是要把其中的周转轮系部分划出来,周转轮糸的特点是具有行星轮和行星架,所以要先找到轮系中的行星轮,然后找出行星架。
每一行星架,连同行星架上的行星轮和与行星轮相啮合的太阳轮就组成一个基本周转轮糸。
在一个复合轮系中可能包括有几个基本周转轮系(一般每一个行星架就对应一个基本周转轮系),当将这些周转轮一一找出之后.剩下的便是定轴轮糸部分了。
在图示的轮系中.虽然构件5作为行星架被划归在周转轮系部分中,但在计算周转轮系部分的传动比时.不应把齿轮5的齿数计入。
11-3在计算行星轮系的传动比时,式i mH=1-i H mn只有在什么情况下才是正确的?答在行星轮系,设固定轮为n, 即ωn=0时, i mH=1-i H mn公式才是正确的。
11-4在计算周转轮系的传动比时,式i H mn=(n m-n H)/(n n-n H)中的i H mn是什么传动比,如何确定其大小和“±”号?答: i H mn是在根据相对运动原理,设给原周转轮系加上一个公共角速度“-ωH”。
使之绕行星架的固定轴线回转,这时各构件之间的相对运动仍将保持不变,而行星架的角速度为0,即行星架“静止不动”了.于是周转轮系转化成了定轴轮系,这个转化轮系的传动比,其大小可以用i H mn=(n m-n H)/(n n-n H)中的i H mn公式计算;方向由“±”号确定,但注意,它由在转化轮系中m. n两轮的转向关系来确定。
11-5用转化轮系法计算行星轮系效率的理论基础是什么?为什么说当行星轮系为高速时,用它来计算行星轮系的效率会带来较大的误差?答: 用转化轮系法计算行星轮系效率的理论基础是行星轮系的转化轮系和原行星轮系的差别,仅在于给整个行星轮系附加了一个公共角速度“-ωH”。
机械原理第十一章习题答案
第十一章 齿轮系及其设计习题11-11如图所示为一手摇提升装置,其中各轮齿数均已知,试求传动比15i 并指出当提升重物时手柄的转向。
解:8.5771811520524030504321543215=⨯⨯⨯⨯⨯⨯='''=z z z z z z z z i习题11-14如图所示为一装配用电动螺丝刀齿轮减速部分简图。
已知 图11-11 各轮齿数为741==z z ,3963==z z , m in /30001r n =,试求螺丝刀的转速。
解:739131311113-=-=--=z z n n n n i H H H 74611=⇒H n n 739462624246-=-=--=z z n n n n i H H H 74624=⇒H n n 由已知得:14H n n =492116746746241121=⨯=⨯=H H H n n n n n n 47.69211630004921164912=⨯==⇒n n H 图11-14习题11-16在图示的复合轮系中,设已知m in /35491r n =,又各轮齿数为361=z ,602=z ,233=z ,494=z ,315=z ,1316=z ,947=z ,368=z ,1679=z ,求H n等于多少?解:2456969245233649601431424114n n z z z z n n i =⇒=⨯⨯=== 200696913147467674746n n z z n n n n i =⇒-='-=--= 94167799779-=-=--=z z n n n n i H H H19.1243549245692006926194261947=⨯⨯⨯==∴n n H 图11-16习题11-16图a 、b 所示为两个不同结构的锥齿轮周转轮系,已知201=z ,242=z ,302='z ,403=z ,m in /2001r n =,min /1003r n -=。
孙桓《机械原理》笔记和课后习题(含考研真题)详解-第十一章至第十四章【圣才出品】
第11章齿轮系及其设计11.1复习笔记一、齿轮系及其分类1.定义由一系列的齿轮所组成的齿轮传动系统称为齿轮系,简称轮系。
2.分类根据轮系运转时各个齿轮的轴线相对于机架的位置是否固定,将轮系分为三大类:(1)定轴轮系运转时各个齿轮的轴线相对于机架的位置都是固定的轮系称为定轴轮系。
(2)周转轮系①定义如图11-1-1所示,运转时至少有一个齿轮轴线的位置不固定,而是绕着其他齿轮的固定轴线回转的轮系称为周转轮系。
图11-1-1周转轮系②基本构件在周转轮系中,一般都以太阳轮和行星架作为输入和输出构件,称为周转轮系的基本构件。
a.太阳轮轮系中绕固定轴回转的齿轮称为太阳轮。
如图11-1-1中齿轮l和内齿轮3都围绕着固定轴线OO回转,则齿轮1和内齿轮3为太阳轮;b.行星轮不仅绕自身轴线作自转,还随着行星架一起绕固定轴线做公转的齿轮称为行星轮。
如图11-1-1中齿轮2,其中构件H为行星架,又称转臂或系杆。
③分类a.根据其自由度的数目分类第一,差动轮系自由度为2的周转轮系称为差动轮系;第二,行星轮系自由度为1的周转轮系称为行星轮系。
b.根据基本构件的不同分类若轮系中的太阳轮以K表示,行星架以H表示,则如图11-1-1所示的轮系称为2K-H 型周转轮系。
(3)复合轮系既包含定轴轮系部分,又包含周转轮系部分,或者是由几部分周转轮系组成的轮系称为复合轮系。
二、定轴轮系的传动比1.轮系传动比的定义轮系的传动比是指轮系中首、末两构件的角速度之比。
2.传动比计算(1)定轴轮系的传动比等于组成该轮系的各对啮合齿轮传动比的连乘积;(2)传动比又等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即:定轴轮系的传动比=所有从动轮齿数的连乘积/所有主动轮齿数的连乘积3.首、末轮转向关系的确定(1)转向的确定①齿轮的转向可用箭头表示,箭头方向表示齿轮可见侧的圆周速度的方向;②标志一对啮合传动的齿轮转向的箭头为同时指向节点或同时背离节点;③当首、末两轮的轴线彼此平行时,两轮的转向不是相同就是相反;当两者的转向相同时,规定其传动比为“+”,反之为“-”;④若首、末两轮的轴线不平行,其间的转向关系只能在图上用箭头来表示。
机械基础教案轮系
机械基础教案:轮系一、教案背景在机械工程领域中,轮系是一种重要的机械传动装置。
它由若干个齿轮组成,通过齿轮的啮合转动,实现不同速度和转矩的传递。
轮系广泛应用于各种机械设备中,如汽车、机床、风力发电机等。
因此,对于学习机械基础的学生来说,掌握轮系的工作原理和设计方法是非常重要的。
本教案旨在帮助学生全面了解轮系的基本概念、分类、传动比计算方法等内容,以提高学生对机械基础知识的理解和应用能力。
二、教学目标1. 掌握轮系的基本概念和分类;2. 理解轮系的工作原理和传动比计算方法;3. 能够运用所学知识,解决轮系设计和传动问题;4. 培养学生分析和解决实际问题的能力。
三、教学内容1. 轮系的定义和基本概念a. 齿轮的定义和分类b. 轮系的组成和功能2. 轮系的工作原理a. 齿轮啮合的原理和条件b. 齿轮传动的基本规律3. 轮系的分类a. 按齿轮轴线排列方式分类b. 按传动比分类4. 轮系的传动比计算方法a. 单级齿轮传动的传动比计算b. 多级齿轮传动的传动比计算5. 轮系设计与传动问题求解a. 轮系设计的基本要点b. 轮系传动问题的解决方法四、教学过程1. 概念解释与例子分析a. 介绍轮系的定义和基本概念,并通过实际例子进行分析与讨论。
2. 工作原理与案例分析a. 解释轮系的工作原理,并通过案例分析说明不同传动方式的特点和应用范围。
3. 分类讲解与计算练习a. 分类讲解轮系的不同类型,并通过计算练习巩固学生对传动比计算的理解。
4. 设计与求解a. 介绍轮系设计的基本要点,并通过求解传动问题的案例,培养学生解决实际问题的能力。
五、教学评估1. 轮系概念与分类的选择题测试;2. 轮系传动比计算与设计问题的解答。
六、教学资源1. 教材:机械原理教材;2. 多媒体设备:投影仪、电脑。
七、教学拓展1. 齿轮制造和检测技术;2. 轮系故障诊断和维修技巧。
八、教学反思通过本教案的设计与实施,学生能够较好地理解轮系的概念与工作原理,掌握传动比计算和设计方法。
机械原理轮系的应用
机械原理轮系的应用一、引言机械原理是机械工程的基础学科之一,它研究机械运动和力学性能之间的关系。
轮系作为机械原理的一个重要概念,广泛应用于各种机械装置和设备中。
本文将介绍机械原理轮系的应用,包括在传动装置、提升设备和工程机械中的应用。
二、传动装置中的轮系应用1. 齿轮传动齿轮传动是一种常见的应用于传动装置中的轮系。
通过齿轮的啮合,转动一个齿轮可以带动其他齿轮同时转动,实现力的传递和速度的变换。
齿轮传动被广泛应用于汽车、机械设备和工业生产线等领域。
2. 带动装置带动装置是另一种常见的轮系应用。
通过使用带子将动力从一个轮系传递到另一个轮系,实现工作部件的运动。
带动装置广泛应用于各种机械设备中,如风扇、切割机和输送设备等。
3. 链传动链传动是一种使用链条将力传递到连接的轮系的装置。
链条通过链轮的转动来带动其他轮系同时转动。
链传动常见于自行车、摩托车和工程机械等领域。
三、提升设备中的轮系应用1. 轮系副在提升设备中,轮系副是一种关键的应用形式。
通过使用各种不同类型的齿轮和滑轮,可以实现提升设备的升降、移动和平衡等功能。
轮系副广泛应用于起重机、电梯和升降台等设备中。
2. 重力式起重装置重力式起重装置是一种利用轮系原理实现货物提升的装置。
它通过悬挂在重力绳或钢丝绳上的载荷,通过绳轮和滑轮实现货物的上升和下降。
重力式起重装置被广泛应用于建筑工地、港口和物流仓储等领域。
3. 卷扬机构卷扬机构是一种通过绳轮和滑轮组成的轮系,用于提升和维护设备。
它通常由一根绳索和一个或多个滑轮组成,通过绳索的拉紧和松弛来实现设备的升降和定位。
卷扬机构广泛应用于剧院舞台、电影摄影和船舶等领域。
四、工程机械中的轮系应用1. 轮式挖掘机轮式挖掘机是一种工程机械设备,它使用齿轮传动和轮系副来实现各种工作功能。
通过使用不同类型和尺寸的齿轮和滑轮,轮式挖掘机可以实现挖掘、装载和平移等操作,广泛应用于道路施工、土方开挖和煤矿开采等领域。
2. 轮式装载机轮式装载机是一种使用齿轮传动和轮系副来实现装载功能的工程机械设备。
机械原理轮系ppt课件
基本构件都是围绕着 同一固定轴线回转的
6
轮系的类型
根据轮系所具有的自由度不同,周转轮系 又可分为:差动轮系和行星轮系
计算图a)所示轮系自由度:
F 3 4 2 4 2 2
差动轮系:F=2
计算图b)所示机构自由度, 图中齿轮3固定
F 3 3 2 3 2 1
行星轮系:F=1
第九章
轮系
一对齿轮传动的传 动比是5—7
轮系:由一系列互相啮合的齿轮组成的传动机构,用
于原动机和执行机构之间的运动和动力传递。
1
第九章
•轮系的类型
轮系
•定轴轮系的传动比计算
•周转轮系的传动比计算 •复合轮系的传动比计算
•轮系的功用
•其他行星传动简介
2
§9.1 轮系的类型
根据轮系在运转时各齿轮的几何轴线在空间的相对位
惰轮:不改变传动比的大小,但改变轮系的转向
15
定轴轮系的传动比计算
2、定轴轮系中各轮几何轴线不都平行,但是 输入、输出轮的轴线相互平行的情况
传动比方向判断
画箭头 在传动比的前面加正、负号
16
传动比方向表示
定轴轮系的传动比计算
3、输入、输出轮的轴线不平行的情况 齿轮1的轴为输入轴, 蜗轮5的轴为输出轴,输 出轴与输入轴的转向关系
1 i15 ? 5
4 z5 i45 5 z4
1 1 2 3 4 i15 i15i12 i23 i34 i45 5 2 3 4 5
z2 z3 z4 z5 所有从动轮齿数的乘积 z1 z2 z3 z4 所有主动轮齿数的乘积
14
定轴轮系的传动比计算
二、传动比转向的确定
机械原理——轮系
机械原理——轮系机械原理,轮系轮系是机械中常见的一种传动机构,通过多个轮齿的互相啮合实现能量的传递和转换。
轮系一般由一个或多个主动轮和一个或多个被动轮组成。
主动轮通过外力的作用将动力传递给被动轮,被动轮则将动力传递给其他机械部件。
轮系的基本原理是利用轮齿的啮合来实现转动的传递。
在轮系中,两个轮齿垂直于轴线的轮称为齿轮,两个平行于轴线的轮称为平轮。
轮齿的形状和尺寸决定了轮系的传动比和转矩大小。
常见的齿轮包括圆柱齿轮、锥齿轮、斜齿轮等,而平轮通常为圆盘状。
轮系的主要功能是实现速度变换、转矩变换和传递。
其中,速度变换是指通过不同大小的齿轮组合来改变传动的速度。
传动比由齿轮的齿数比决定,齿数越大的齿轮转速越慢,齿数越小的齿轮转速越快。
通过适当选择齿数比,可以实现从高速到低速或从低速到高速的转变。
转矩变换是指通过轮系将一定转矩转换为不同大小的转矩。
转矩的大小由齿轮的半径和传动力决定,半径越大转矩越大,传动力越大转矩越小。
通过合理选择齿轮的半径,可以实现转矩的放大或减小。
轮系的传递过程中会有一定的功率损耗。
这是由于轮齿间的副动摩擦、齿轮的弹性变形和轴承摩擦等原因引起的。
为了减少功率损耗,需要选择合适的材料、润滑方式和合理的轴承布置。
轮系的应用十分广泛。
在机械工程中,轮系经常用于传动装置中,如汽车的变速器、液压泵、风力发电机等。
此外,在各类设备和仪器中,轮系也被广泛应用于地铁、电梯、空调等。
轮系作为一种传动机构,在实际应用中需要考虑的因素很多。
例如,齿轮的设计和加工精度、齿轮的材料和强度、齿轮啮合时的噪声和振动等。
为了确保轮系的正常运行和使用寿命,需要进行合理的设计和维护。
总之,轮系是机械中一种常见的传动机构,通过轮齿的啮合实现转动的传递。
它具有速度变换、转矩变换和传递的功能。
轮系在汽车、机械设备和仪器仪表等领域具有广泛的应用。
在实际应用中,需要考虑轮系的设计和加工精度、材料强度、噪声和振动等因素,以确保其正常运行和使用寿命。
机械原理的轮系图怎么看
机械原理的轮系图怎么看轮系图是机械原理中常用的图形工具,用于说明不同轮子之间的传动关系。
通过轮系图,我们可以清晰地了解各轮之间的速度比、传动方式以及主、从动关系等,从而更好地理解和分析机械装置的运行原理。
下面我将为您详细解答。
首先,轮系图可以看作是一个图形化的传动链条,通常由主动轮和从动轮组成。
主动轮为发动机、电动机等能提供动力的部件,从动轮为由主动轮传动力量的部件。
轮系图中,我们用线段来代表传动链条的每个环节,线段的位置和长度代表着相应轮的位置和大小。
在轮系图中,主动轮和从动轮之间通过不同的传动方式进行传动。
常见的传动方式包括齿轮传动、皮带传动、链条传动等。
各种传动方式都有其特点和适用范围,通过轮系图我们可以清晰地了解不同传动方式的工作原理。
其次,轮系图可以帮助我们计算不同轮之间的速度比。
速度比是指主动轮和从动轮之间的转速比值。
在轮系图中,我们可以根据轮的直径、齿数等参数来计算不同轮之间的速度比。
这对于机械设计和优化非常重要,可以帮助我们确定最佳的传动比例,以满足机械装置的运行需求。
此外,轮系图还可以帮助我们分析机械装置的主、从动关系。
在机械装置中,主动轮通常是由动力源驱动的轮子,从动轮则是由主动轮传递力量的轮子。
通过轮系图,我们可以从传动链条上清晰地了解到主、从动轮之间的联系和转动方向。
在实际应用中,轮系图对于机械设计和故障分析都非常重要。
通过轮系图,我们可以直观地了解机械装置的传动关系,从而更好地指导设计和维修工作。
此外,轮系图还可以帮助我们优化传动方案,提高机械装置的效率和性能。
总之,轮系图是机械原理中一种常用的图形工具,可以帮助我们清晰地了解不同轮之间的传动关系。
通过轮系图,我们可以计算速度比、分析主、从动关系以及优化传动方案,从而更好地理解和应用机械原理。
轮系图在机械设计和故障分析中具有重要的作用,是机械工程师必备的工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 H 1
ω1 ω2 ω3 ωH
ω = ω1 −ωH ω = ω2 −ωH ω = ω3 −ωH H ωH = ωH −ωH = 0
H 1 H 2 H 3
3 转化轮系传动比计算
H z2z3 z3 ω1 ω1 −ωH H =− =− i13 = H = ω3 ω3 −ωH z2z1 z1
2 H 1 3
z2z4 ⋅ ⋅ ⋅ zn ω1 −ωH i = =± ωn −ωH z1z3 ⋅ ⋅ ⋅ zn−1
H 1n
4 真实轮系传动比计算 1)差动轮系 差动轮系(F=2) 差动轮系
ω1 、ωn和ωH中有 个量已知,未知量可求; 中有2个量已知 未知量可求; 个量已知,
z2z4 ⋅ ⋅ ⋅ zn ω1 −ωH i = =± ωn −ωH z1z3 ⋅ ⋅ ⋅ zn−1
i16< 0,1与6转向相反。 转向相反。 , 与 转向相反
(2)封闭型复合轮系 ) 封闭型复合轮系 ●结构特点 单自由度基本轮系的首尾分别与双自由 度差动轮系的两个基本构件固连。 度差动轮系的两个基本构件固连。
●解题方法步骤 1)区分基本轮系 (1)区分基本轮系 从行星轮入手,找出所有周转轮系; 从行星轮入手,找出所有周转轮系; 其余则为定轴轮系。 其余则为定轴轮系。 (2)列传动比方程 2)列传动比方程 3)联立求解 (3)联立求解 系杆 支 承 行星轮 啮合 太阳轮
n4 4 (90)
【解】
z2z3z4 n1 − nH i = =− n4 − nH z1z2' z3'
H 14
3(30) 2 (30) 3'(20)
30⋅ 30⋅ 90 =− = −6.48 25⋅ 25⋅ 20 1− nH 1− nH = −6.48 = −6.48 2 2 nn − −−H
H
2' (25) H n1 1(25)
的转速为每分钟1转 主动轮4 【例2】 已知主动轮 的转速为每分钟 转、主动轮 】 已知主动轮1的转速为每分钟 的转速为每分2转 转向如图所示。试求输出构件H 的转速为每分 转,转向如图所示。试求输出构件 的转速和转向。 的转速和转向。 3(30) 2 (30) 3'(20)
2' (25) H n1 1(25)
i15 = +11.452
五
1.实现分路传动
轮系的功用
例 某航空传动机构附件的传动系统 2.实现大传动比 例 现实传动比i=10齿轮传动 定轴轮系 3.实现变速传动 行星轮系 4.实现换向传动 例 车床走刀丝杆的三星轮换向机构 5.实现运动合成与分解 6.实现大功率传动
汽车后轮中的传动机构
Ⅲ 动
2 3' 1 画
ω1 ω1 ω2 ω3 ω4 = • • • ω ω5 ω2 ω3 ω4 5
3
4' 5
4
各级从动轮齿数连乘积 总传动比= 总传动比= 各级主动轮齿数连乘积 惰轮的齿数不影响总传动比的大小 的齿数不影响总传动比的大小, 惰轮的齿数不影响总传动比的大小, 但影响从动轮的转向; 但影响从动轮的转向; 总传动比=各级传动比连乘积。 总传动比=各级传动比连乘积。
3.联立求解 联立求解
n1 − n5 1175 =− 44 117 − n5 − n5 9
i15 ≈ +60.14
1、5转向相同。 、 转向相同 转向相同。
已知z 【例6 】已知 1=35,z3=97, , , z3ˊ=35,z5=97,求传动比 15 。 , ,求传动比i ˊ 【解】 1.区分轮系 区分轮系 1-2-3-5 组成差动轮系; 组成差动轮系; 3′-4-5 组成定轴轮系。 ′ 组成定轴轮系。
太阳轮 啮合
【例5】已知 z1=26,z2=50, 】 , , z2'=18,z3=94, z3' =18,z4=35, 2 , , , , z5=88, 求传动比 15 。 求传动比i 【解】 1.区分轮系 区分轮系 1-2-2′-3-5(H) 组成差动轮系; ′ 组成差动轮系; 3′-4-5 组成定轴轮系。 ′ 组成定轴轮系。 1
nH ≈ 1.1.599(/ m in) in) −866(r r / m
n4 4 (90)
【例3】:已知 z1=z2=z3, 求 i1H 。 】 【解】 2
n1 − nH n1 − nH = i = − nH n3 − nH
H 13
n
=-1 -
H n1 1
H 2
H
= 1− i1H − i1H = 2
4
2
3' 5
1 3
2.列方程 列方程 定轴轮系: 定轴轮系: 4 2
n3 z5 97 i35 = = − = − L(1) n5 z3' 35
差动轮系: 差动轮系:
n1 − n5 z3 97 i = = − = − L(2) n3 − n5 z1 35
5 13
3' 5
1 3
3.联立求解 联立求解
n1 − n5 n1 − n5 i15 −1 97 = = =− 97 132 132 35 n5 − − n5 − n5 − 35 35 35
2 复合轮系传动比的计算 步骤可概括为: 步骤可概括为:
1)正确划分轮系; 正确划分轮系; 正确划分轮系 2)分别列出算式; 3)进行联立求解。 例 复合轮系传动比的计算
【例4】 计算图示轮系传动比 i16 。 】 【解】 3 1.区分轮系 区分轮系 1-2 组成定轴轮系; - 组成定轴轮系; 2′-3-4-5(h) - - - 组成周转轮系; 组成周转轮系; 5-6 组成定轴轮系。 - 组成定轴轮系。 1 2 2ˊ 5 4 h 6
z2z3 【解】 i1H = 1− i = 1− z1z2'
H 13
2 H
2′
1 101⋅ 99 = = 1− 10000 100⋅ 100
iH1 = +10000
H与1转向相同。 与 转向相同 转向相同。 若 z3=100 1 动画 H与1转向相反。 与 转向相反 转向相反。 3
iH1 = −100
三
周转轮系的传动比
先来观察和比较一下周转轮系和定轴轮系。 先来观察和比较一下周转轮系和定轴轮系。 周转轮系 可见, 可见,周转轮系的传动比就不能直接按定轴轮 系传动比的求法来计算。 系传动比的求法来计算。
1 转化轮系 给整个周转轮系施加 一个的公共角速度(一个的公共角速度 ωH)后所得到的 后所得到的 定轴轮系。 定轴轮系。 2 转化轮系角速度关系 构件 1 2 3 H 原角速度 3 转化机构角速度
2 主、从动轮转向关系的确定 1)任何定轴轮系都可用Fra bibliotek头表示 ) 2
1 1 2 右手法则 左手法则 右旋蜗杆
2 1
蜗轮蜗杆判断方法: 蜗轮蜗杆判断方法:左旋蜗杆
右手法则:右手握向与蜗杆转向一致, 右手法则:右手握向与蜗杆转向一致,拇指方向 为蜗轮啮合点的线速度方向。 为蜗轮啮合点的线速度方向。
2)平面定轴轮系还可用“+” “-”号表示, )平面定轴轮系还可用“ 号表示, 用外啮合数计算“+” “-”号 用外啮合数计算“ 规定:各齿轮角速度为代数量,某一转向为正, 规定:各齿轮角速度为代数量,某一转向为正,则 另一转向为负;传动比也为代数量。 另一转向为负;传动比也为代数量。 设轮系中有m对外啮合齿轮, 设轮系中有 对外啮合齿轮, 对外啮合齿轮 i总 = (-1)m 各级从动轮齿数的连乘积 各级主动轮齿数的连乘积
1)按自由度数目分 差动轮系(F=2) 2)按基本构件分 2K-H型和3K型 (3)复合轮系 行星轮系(F=1)
二
定轴轮系的传动比
所谓定轴轮系的传动比,是指轮系中首、末两 构件的角速度之比。 轮系的传动比包括传动比的大小和首末两构件的 转向关系两方面内容。
1.传动比大小的计算 1.传动比大小的计算 i15 = i12 • i23 • i34 • i45 z2 z3 z4 z5 = z •z •z • z 1 2 3' 4′ 结论1 结论 结论2 结论 结论3 结论
z2z4 ⋅ ⋅ ⋅ zn ω1 −ωH 5 特别注意: = 特别注意: i =± ωn −ωH z1z3 ⋅ ⋅ ⋅ zn−1
H 1n
ω1、 ωn、 ωH和i1H均为代数量,有“+”、“-”之分。 均为代数量, 、 之分。 之分
± 不可省略
【例1】已知 1=100,z2=101,z2′=100, z3=99,求iH1。 】已知z , 。
H 1n
2)行星轮系 行星轮系(F=1): 行星轮系 :
z2z4 ⋅ ⋅ ⋅ zn ω1 −ωH ω1 −ωH i = = = 1− i1H= ± − −ωH ωn −ωH z1z3 ⋅ ⋅ ⋅ zn−1
H 1n
i1H = 1− i −
H 1n
z2z4 ⋅ ⋅ ⋅ zn ) = 1− (± z1z3 ⋅ ⋅ ⋅ zn−1
5 2' 4 3'
3
2.列方程 2.列方程 差动轮系: 差动轮系:
5 2 2' 4 3' 1 3
n1 − n5 z2z3 1175 5 i13 = L(1) =− =− n3 − n5 z1z2' 117
定轴轮系: 定轴轮系:
n3 z5 44 i35 = = − = − L L L(2) L L z3' 9 n5
2.列方程 列方程
n1 z2 i12 = = − L L 1) L ( n2 z1
n2 z4 i25 = L 2) ( = 1+ n5 z2'
3 2
4 h 2ˊ
6
n5 z6 i56 = = + L L 3) L ( n6 z5
3.联立求解。 联立求解。 联立求解
5