清华大学机械原理课件——第5章轮系
合集下载
机械原理课件-轮系
2. 主 、从动轮转向关系的确定
(1)轮系中各轮几何轴线均互相平行的情况
i15 (1)3
z2 z3z5 z1z2, z3,
z2z3z5 z1z2, z3,
(2) 轮系中所有齿轮的几何轴线不都平行, 但首、尾两轮的轴线互相平行
用箭头表示各轮转向;
(3)轮系中首尾两轮几何轴线不平行的情况 其转向只能用箭头表示在图上。如图所示:
2、列出计算各基本轮系传动比的方程式; 3、找出各基本轮系之间的关系; 4、方程式联立求解,即可求得混合轮系的传动比。
§5-4 轮系的功能
一、实现分路传动:
利用轮系可以使一个 主动轴带动若干个从动轴同 时旋转,并获得不同的转速。
二、获得较大的传动比
采用周转轮系,可以在使用很 少的齿轮并且也很紧凑的条件下, 得到很大的传动比。
图5-1
§5-1 轮系的类型
2. 周转轮系:
至少有一个齿轮轴线的位置不固定,而是绕着其它定轴齿轮的轴线 做周向运动的轮系。
周转轮系举例:
图中所示为一基本型 周转轮系。它由4个活动构 件组成,它们是:两个定 轴转动的中心轮(又称太 阳轮)1和3,支承齿轮2轴 线且作定轴转动的系杆 (又称行星架或转臂)H, 轴线随系杆H而转动的行星 轮2。
五、实现换向传动:
在主轴转向不变的条件下, 可以改变从动轴的转向。
六、实现运动的分解:
差动轮系可以将一个基本构件的主 动转动按所需比例分解成另两个基本构件的不同转动。
七、实现结构紧凑的大功率传动
周转轮系常采用多个行星轮均 布的结构形式
多个行星轮共同分担载荷,可 以减少齿轮尺寸;
各齿廓啮合处的径向分力和行星 轮公转所产生的离心惯性力得以平衡, 可大大改善受力状况;
机械原理 第五章 轮系
w1 3 z 2 z3 z 4 z5 3 z 2 z3 z5 i15 1 1 w5 z1 z 2 z3 z 4 z1 z 2 z3
3
3 ´
2 ´
2
4 5
将齿数代入上式,即
300 z 2 z3 z 4 z5 3 40 80 15 1 1 w5 z1 z2 z3 z4 20 30 30
H i 13
100 n H 20 25 200 n H 30 25
nH=-100r/min
2) n1与n3 反向,即用 n1=100r/min,n3= -200r/min代入,
i
H 13
100 n H 20 25 200 n H 30 25
可得
nH=700r/min
4.实现运动的合成与分解 运动输入
5 r 4 H
运 n 动 1 输 出
2 1
3 2 H
运 n3 动 输 出
2L
§5-2 定轴轮系的传动比计算 一、轮系传动比的定义
2
3' 1 3 4 4'
w1
w5
5
(avi)
输入轴与输出轴之间
的角速度之传动比:
i15
w1 n 1 w5 n5
包含两个方面:大小与转向
H 43
3
4
联立求解得:
i14 i1H i4 H
63 1 ( ) 588 6 56
§5-3 混合轮系的传动比
3 1 2 4 H 2'
1、复合齿轮系:既含有定轴齿轮系,又含有行星齿轮系 , 或者含有多个行星齿轮系的传动。 3 H 2' OH 4 4 (1) 6 (2) 5 2 H 3 1
3
3 ´
2 ´
2
4 5
将齿数代入上式,即
300 z 2 z3 z 4 z5 3 40 80 15 1 1 w5 z1 z2 z3 z4 20 30 30
H i 13
100 n H 20 25 200 n H 30 25
nH=-100r/min
2) n1与n3 反向,即用 n1=100r/min,n3= -200r/min代入,
i
H 13
100 n H 20 25 200 n H 30 25
可得
nH=700r/min
4.实现运动的合成与分解 运动输入
5 r 4 H
运 n 动 1 输 出
2 1
3 2 H
运 n3 动 输 出
2L
§5-2 定轴轮系的传动比计算 一、轮系传动比的定义
2
3' 1 3 4 4'
w1
w5
5
(avi)
输入轴与输出轴之间
的角速度之传动比:
i15
w1 n 1 w5 n5
包含两个方面:大小与转向
H 43
3
4
联立求解得:
i14 i1H i4 H
63 1 ( ) 588 6 56
§5-3 混合轮系的传动比
3 1 2 4 H 2'
1、复合齿轮系:既含有定轴齿轮系,又含有行星齿轮系 , 或者含有多个行星齿轮系的传动。 3 H 2' OH 4 4 (1) 6 (2) 5 2 H 3 1
机械设计基础课件第五章轮系
第二节 定轴轮系及其传动
机械设计基础课件第五章轮系
第二节 定轴轮系及其传动比
一对圆锥齿轮传动时,在节点具有相同速度, 故表示转向的箭头或同时指向节点(图c),或同时 背离节点。
蜗轮的转向不仅与蜗杆 转向有关,而且与其螺旋线 方向有关。判断时可采用左 手或右手定则。
请注意蜗杆旋向的表示 方法。
机械设计基础课件第五章轮系
第六节 几种特殊的行星传动简介
• 四、活齿传动
• 随着原动机和工作机向着多样化方向的发展,对 传动装置的性能要求也日益苛刻。为了适应这一 要求,除对齿轮、蜗杆蜗轮等传统的传动装置作 大量的研究和改进外,近20多年来人们还研究出 了多种新型传动装置如谐波传动、摆线针轮传动 等。这些传动都成功地应用于许多行业的各种机 械装置中。
机械设计基础课件第五章轮系
第二节 定轴轮系及其传动比
机械设计基础课件第五章轮系
第三节 周转轮系及其传动比
周转轮系中行星轮的运动不是绕固定轴线的 简单转动(包括自转和公转),所以周转轮系各 构件间的传动比就不能直接用定轴轮系的方法来 计算了。
机械设计基础课件第五章轮系
第三节 周转轮系及其传动比
• 周转轮系和定轴轮系的根本区别在于周转轮系中 有转动着的系杆。为了解决周转轮系的传动比的 计算问题,我们应当设法将周转轮系转化成定轴 轮系。也就是说应当使系杆静止不动。
机械设计基础课件第五章轮系
第六节 几种特殊的行星传动简介
二、摆线针轮行星传动 摆线针轮行星传动与渐开线少齿差行星传动的
不同处在于齿廓曲线各异。在摆线针轮行星传动中, 轮1的内齿是带有套筒的圆柱销形针齿,行星轮2的 齿廓曲线则是短幅外摆线的等距曲线。
摆线针轮行星传动除具有传动比大、结构紧凑、 体积小、重量轻及传动效率高的优点外,还因为同时 承担载荷的齿数多,以及齿廓间为滚动摩擦,所以传 动平稳、承载能力大、轮齿磨损小、使用寿命长。
机械原理第05章 轮系
i12
ω1 = = ω2
z2 z 1
z1 ω1 z2 ω2
两轮转向相同
i12
ω1 z2 = =+ ω2 z1
z1 ω1 z2 ω2
i12
ω1 z2 = = ω2 z1
(转向如图所示) 转向如图所示) 两轮的转向只能用画箭头的办法表示
ω1 z2 i12 = = ω2 z1 ω3′ z4 i3′4 = = ω4 z3′
第五章 轮系
Chapter 5 Gear Trains
轮系: 轮系:由齿轮组成的传动系统 5.1轮系的分类 5.1轮系的分类 (types of gear train) 根据轮系在运转过程中各轮轴 线在空间的位置关系是否固定, 线在空间的位置关系是否固定, 对轮系进行分类。 对轮系进行分类。 定轴轮系( 定轴轮系(ordinary gear trains) 所有齿轮轴线的位置 在运转过程中固定不 变的轮系
= 3×4 2×4 2 = 2
根据周转轮系中基本构件的不同,周转轮系可以分为 根据周转轮系中基本构件的不同, 2K2K-H型周转轮系 K表示中心轮,H表示系杆 表示中心轮,
3K型周转轮系 3K型周转轮系
在此轮系中系杆H只 在此轮系中系杆H 起支承行星轮使其与 中心轮保持啮合的作 不起传力作用, 用,不起传力作用, 故在轮系的型号中不 含“H”。 。
的周转轮系。 的周转轮系。
单一的定轴轮系或单 计算混合轮系传动比的正确方法是: 计算混合轮系传动比的正确方法是: 一的周转轮系 (1)首先将各个基本轮系正确地区分开来 首先将各个基本轮系正确地区分开来。 (1)首先将各个基本轮系正确地区分开来。 (2)分别列出计算各基本轮系传动比的方程式。 (2)分别列出计算各基本轮系传动比的方程式。 分别列出计算各基本轮系传动比的方程式 (3)找出各基本轮系之间的联系 找出各基本轮系之间的联系。 (3)找出各基本轮系之间的联系。 (4)将各基本轮系传功比方程式联立求解.即可求得 (4)将各基本轮系传功比方程式联立求解. 将各基本轮系传功比方程式联立求解 混合轮系的传动比 正确划分各个基本轮系的方法 几何轴线位置不固定的齿轮; 几何轴线位置不固定的齿轮 (1) 先找行星轮 —几何轴线位置不固定的齿轮; 支承行星轮的构件即为系杆; 支承行星轮的构件即为系杆 (2) 然后找系杆 —支承行星轮的构件即为系杆; 几何轴线与系杆重合且直接与行星轮相 (3) 再找中心轮 —几何轴线与系杆重合且直接与行星轮相 啮合的定轴齿轮。 啮合的定轴齿轮。 这一由行星轮、系杆、中心轮所组成的轮系,就是一个 这一由行星轮、系杆、中心轮所组成的轮系, 基本的周转轮系。区分出各个基本的周转轮系后. 基本的周转轮系。区分出各个基本的周转轮系后.剩余的那 些由定轴齿轮所组成的部分就是定轴轮系。 些由定轴齿轮所组成的部分就是定轴轮系。
清华大学机械原理——轮系PPT课件
(2) 运动分解
nH
1 2
(n3
n5 )
n3 r L n5 r L
n3
r
r
L
nH
n5
r
r
L
nH
第46页/共75页
6. 实现执行机构的复杂运动
行星轮既有自转又有公转—复杂运动
例:行星搅拌机构
第47页/共75页
用于食品加工的行星搅拌机构
第48页/共75页
5.5 轮系的设计
定轴轮系的设计 基本内容 ➢选择轮系的类型 ➢确定轮系中各轮的齿数 ➢选择轮系的布置方案
缺点:中间轴较长,变 形使齿宽上的载荷分布 不均匀。
周转轮系的设计 基本内容 ➢周转轮系类型的选择 ➢确定轮系中各轮的齿数 ➢*周转轮系的均衡装置
第55页/共75页
1.周转轮系类型的选择
考虑因素:
➢传动比范围; ➢效率高低; ➢结构复杂程度; ➢外廓尺寸等。
第56页/共75页
➢当轮系主要用于传递运动时
双排2K-H 单排2K-H
假想一个中心
z1
x
z2 z2'
2) 同心条件
z2
i1H
(x 1) x 1
z1
3) 装配条件
k z1 i1H (Q Rx)
(Q, R均为正整数)
第68页/共75页
➢ 双排2K-H行星轮系(标准齿轮传动,各轮模数相等)
4) 邻接条件
(z1
z2
)
sin
180 k
z2
+2 ha*
假定z2 z2'
若 x z2 1 z2'
第34页/共75页
2. 实现减速、增速或变速运动
例1:汽车手动变速器(130)
第5章-机械设计基础-轮系1PPT课件
H z2
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )
机械设计基础----第5章轮系
太阳轮被固定。
图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。
图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)
∴
i17=
z2 z1
•
z3 z 2
•
z4 z3
•
z5 z4
•
z6 z5
•
z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。
机械原理第五章 轮系
(1) z1 44, z2 40, z2 42, z3 42 (2) z1 100 , z2 101, z2 100 , z3 99 (3) z1 100 , z2 101, z2 100, z3 100
z2
z2
H
解:(1)
i1H3
n1 n3
nH nH
(1)2
z2 z3 z1z2
(1)3
z2 z4 z6 z1 z3 z5
30 40 120 60 30 40
2
i1H
n1 nH
1 i1H6
12 3
nH
n1 3
6.5
转/分
nH与 n1 同向
例9:图示小型起重机机构,已知 z1 53, z1 44, z2 48, z2 53, z3 58, z3 44, z4 87 ,一般工作情况下,5轴不转,动力由电机M 输入,带动滚筒N 转动;
H H
3 H (1)2 z1z2 1
0 H
z2 z3
上式表明,轮3的绝对角速度为0,但相对角速度不为0。
ω2=2ωH ω3=0
z2
z3
z1
铁锹
ωH
z3
z2 H
z1
z3
H z2 ωH
z1
例5:图示圆锥齿轮组成的轮系中,已知
z1 48, z2 48, z2 18, z3 24, n1 250 r/min , n3 100 r/min
(3) i1H 1 i1H3 1101 100 /100 100 1/100
结论:系杆转100圈时,轮1反向转1圈
iH1 1/ i1H 100
讨论:(1)行星轮系用少数几个齿轮,就可以获得很大的传动比,比定轴轮系要紧凑轻便很多,但当 传 动比很大时,效率很低。因此行星轮系常用于仪表机构,用来测量高速转动或作为精密微调机构。
机械原理教程(清华大学出版社)第5章PPT课件
轮系的传动比,是指轮系中输入轴的角速度 (或转速)与输出轴的角速度(或转速)之比。 包括大小和方向。
一、定轴轮系的传动比
1. 传动比大小的计算
i12
1 2
z2 ; z1
i23
ω2 ω3
z3 z2
;
i34
ω3 ω4
ω3 ω4
z4 z3
;
i45
4 5
4 5
z5 z4
8
i1i2 2 i3 3 4 i4 5 ω ω 2 1ω ω 2 3ω ω 4 3ω ω 5 4 ω ω 5 1 z z 1 2 z z 2 3 z z 3 4 z z 4 5 z z 1 3 z z 3 4 z z 4 5
(1)各齿轮的几何轴线相互平行
内啮合的圆柱齿轮转向相同,外啮合的圆柱齿轮转向相反。
若用m来表示轮系中外啮 合的对数,则可用(-1)m来确 定轮系传动比的正负号。若 计算为正,则说明主动轮、 从动轮转向相同,若结果为 负,则说明主动轮、从动轮 转向相反。
轮系传动比的正负号也可 以用画箭头的方法来确定。
❖2K-H型:2个中心轮,一个系杆。 ❖3K型:3个中心轮。系杆只起支承作用,不起传 力作用。
2K-H 型周转 轮系
3K型 周转轮
系
6
3. 混合轮系
又叫复合轮系。既包含定轴轮系部分,又包含周转 轮系部分,或包含几个周转轮系部分的复杂轮系。
含一个定轴轮系和一个周转轮系
含两个周转轮系
7
5.2 轮系的传动比
z3 z1
1nH 903 1nH 30
1 n H3 3 n H
1
nH
2
i1H
n1 nH
2
(负号表明二者的转向相反)
一、定轴轮系的传动比
1. 传动比大小的计算
i12
1 2
z2 ; z1
i23
ω2 ω3
z3 z2
;
i34
ω3 ω4
ω3 ω4
z4 z3
;
i45
4 5
4 5
z5 z4
8
i1i2 2 i3 3 4 i4 5 ω ω 2 1ω ω 2 3ω ω 4 3ω ω 5 4 ω ω 5 1 z z 1 2 z z 2 3 z z 3 4 z z 4 5 z z 1 3 z z 3 4 z z 4 5
(1)各齿轮的几何轴线相互平行
内啮合的圆柱齿轮转向相同,外啮合的圆柱齿轮转向相反。
若用m来表示轮系中外啮 合的对数,则可用(-1)m来确 定轮系传动比的正负号。若 计算为正,则说明主动轮、 从动轮转向相同,若结果为 负,则说明主动轮、从动轮 转向相反。
轮系传动比的正负号也可 以用画箭头的方法来确定。
❖2K-H型:2个中心轮,一个系杆。 ❖3K型:3个中心轮。系杆只起支承作用,不起传 力作用。
2K-H 型周转 轮系
3K型 周转轮
系
6
3. 混合轮系
又叫复合轮系。既包含定轴轮系部分,又包含周转 轮系部分,或包含几个周转轮系部分的复杂轮系。
含一个定轴轮系和一个周转轮系
含两个周转轮系
7
5.2 轮系的传动比
z3 z1
1nH 903 1nH 30
1 n H3 3 n H
1
nH
2
i1H
n1 nH
2
(负号表明二者的转向相反)
机械原理课件-轮系
i1K
n1 nK
轮1至轮K间所有从动轮齿数的乘积 轮1至轮K间所有主动轮齿数的乘积
(5 1)
如右图所
示轮系由7
个齿轮组
成,形成4
对齿轮啮
合。已知
各轮齿数,
传 动 比 i15 为:
i15
n1 n5
i12i23i3'4i4'5
n1 n2
n2 n3
n3' n4
n4' n5
轮系传动比————轮系中首、末两构件的角速度之比。计算时,要 确定其传动比的大小和首末两构件的转向关系。
定轴轮系各轮的相对转向用画箭头方法在图中表示,箭头方向表 明齿轮可见齿面圆周速度方向,如图所示。
定轴轮系的传动比等于该轮系中各齿轮副传动比的连乘积;也等 于各对啮合齿轮中从动轮齿数的连乘积与各对啮合齿轮中主动轮 齿数的连乘积之比。即
n1 nH
1 z2z3 z1 z2'
1 101 99 100 100
1 10000
iH1
1 i1H
10000
传动比iH1为正,表示行星架H与齿轮1转向相同。 该例说明行星轮系可以用少数几个齿轮获得很大的传动比。但要 注意,这种类型的行星轮系传动,减速比愈大,其机械效率 愈低。一般不宜用来传递大功率。如将其用作增速传动(即齿 轮1低速输入,行星架H高速输出),则可能产生自锁。
§5-3 周转轮系及其传动比
一、周转轮系的组成
如图所示为一常见的周转轮系,它由中心轮(太阳轮)1、3、 行星轮2和行星架(又称系杆或转臂)H组成。
周转轮系中,中心轮1、3和行星架H均绕固定轴线转动,称
清华大学机械原理课件--第5章轮系机构
1
1
2
3
32
SK360普通车床
4
4
走刀丝杠的三星轮换向机构
平面定轴轮系(各齿轮轴线相互平行)
第5章 轮系
i12
1 2
z2 z1
i34 4 3zz3 4
i2'3
2 3
z3 z2'
i45 5 4z z5 4
i15 15 (1)3
z2z3z5
z1z2'z3'
z2 z3 z5 z1 z2' z3'
第5章 轮系
1. 将混合轮系分解为几个基本轮系; 2. 分别计算各基本轮系的传动比; 3. 寻找各基本轮系之间的关系; 4. 联立求解。
行星轮 系杆
中心轮
周转轮系 定轴轮系
第5章 轮系
例3:z1=20,z2=30, z2’=20, z3=40, z4=45, z4’=44,
z5=81, z6=80 求: i16
z2z3 z1z2
18701.875 2824
1 H 1.875 0H
i1H H 1 11.8752.875
第5章 轮系
H 3
H 1
周转轮系传动比计算方法
周转轮系
- H
转化机构:假想的定轴轮系
第5章 轮系
上角标 H 正负号问题
i1Hn 1 n H i1 n
计算转化机构的传动比 计算周转轮系传动比
i1H n
SK360普通车床
国产红旗轿车自动变速机构
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
第5章 轮系
5.3.4 在机构尺寸和重量较小的条件下,实现大功率传动
轮系课件ppt
算需要考虑齿轮的材料、热处理方式、使用环境以及设计强度等因素。
02
齿数计算
齿数是齿轮的基本参数之一,它决定了齿轮的传动比和结构尺寸。齿数
的计算需要根据传动比需求、齿轮转速、齿轮箱空间等因素来确定。
03
压力角计算
压力角是决定齿轮传动性能的重要参数。压力角的计算需要考虑齿轮的
强度、传动效率以及噪音等因素。常用的压力角有14.5°和20°两种。
04 轮系的维护与故障排除
齿轮的维护与保养
01
02
03
齿轮的润滑
定期检查齿轮的润滑情况 ,保持适当的润滑以减少 磨损和防止锈蚀。
齿面检查
定期检查齿轮的齿面,确 保没有剥落、裂纹或严重 磨损等现象。
紧固件
确保齿轮的紧固件(如螺 栓、螺母)紧固,防止松 动造成齿轮移位或振动。
轴系的维护与保养
轴的清洁
可能是由于齿面磨损、润滑不良或异物进入等原因造成。应检查 齿轮的齿面和润滑情况,清理异物。
轴承发热
可能是由于润滑不良、轴承损坏或轴向间隙过小等原因造成。应检 查轴承的润滑和磨损情况,调整轴向间隙。
轴系振动
可能是由于轴承损坏、轴弯曲或不平衡等原因造成。应检查轴和轴 承的工作状态,进行平衡检测和调整。
05 轮系的发展趋势与展望
定期清洁轴系,去除油污 和杂质,以减少磨损和防 止锈蚀。
轴承的检查与更换
定期检查轴承的工作状态 ,如有损坏或磨损严重应 及时更换。
紧固件
确保轴系紧固件的紧固, 如发现松动应及时紧固或 更换。
轴承的维护与保养
润滑
定期为轴承添加润滑脂或润滑油 ,以减少摩擦和磨损。
清洁
定期清洁轴承,去除灰尘和杂质, 保持轴承的清洁度。
机械原理轮系ppt课件
基本构件都是围绕着 同一固定轴线回转的
6
轮系的类型
根据轮系所具有的自由度不同,周转轮系 又可分为:差动轮系和行星轮系
计算图a)所示轮系自由度:
F 3 4 2 4 2 2
差动轮系:F=2
计算图b)所示机构自由度, 图中齿轮3固定
F 3 3 2 3 2 1
行星轮系:F=1
第九章
轮系
一对齿轮传动的传 动比是5—7
轮系:由一系列互相啮合的齿轮组成的传动机构,用
于原动机和执行机构之间的运动和动力传递。
1
第九章
•轮系的类型
轮系
•定轴轮系的传动比计算
•周转轮系的传动比计算 •复合轮系的传动比计算
•轮系的功用
•其他行星传动简介
2
§9.1 轮系的类型
根据轮系在运转时各齿轮的几何轴线在空间的相对位
惰轮:不改变传动比的大小,但改变轮系的转向
15
定轴轮系的传动比计算
2、定轴轮系中各轮几何轴线不都平行,但是 输入、输出轮的轴线相互平行的情况
传动比方向判断
画箭头 在传动比的前面加正、负号
16
传动比方向表示
定轴轮系的传动比计算
3、输入、输出轮的轴线不平行的情况 齿轮1的轴为输入轴, 蜗轮5的轴为输出轴,输 出轴与输入轴的转向关系
1 i15 ? 5
4 z5 i45 5 z4
1 1 2 3 4 i15 i15i12 i23 i34 i45 5 2 3 4 5
z2 z3 z4 z5 所有从动轮齿数的乘积 z1 z2 z3 z4 所有主动轮齿数的乘积
14
定轴轮系的传动比计算
二、传动比转向的确定
第5章轮系.ppt1-5
三、典型实例分析
⑵ 设n3转向为正,则
200 60 1 n3 60
n3=-80r/min 负号表示齿轮3和齿轮1转向相反。 注意: 由于本题齿轮2的轴线与中心轮1、3和转臂H的轴线不平 行,所以不能简单地用“± ”号判断转向 。
四、复习题
1. 问答题
⑴ 为什么要应用轮系?试举出几个应用的实例。 ⑵ 定轴轮系和周转轮系的主要区别在哪里?何谓差动轮系和 行星轮系?行星轮系与差动轮系的区别是什么? ⑶ 平面定轴轮系与空间定轴轮系的传动比如何确定?
H i2 4
n2 nH n z 1 2 4 4 0 nH nH z2
n2 1 4 5 nH
i2 H
(2)
4
(1)式(2)式联立求解得
i1H i12i2 H (2) 5 10
三、典型实例分析
例10-1 在 图10-2的轮系中, 已知: z1= 30, z2= 40, z3= 20,
图10-4
图10-5
四、复习题
(3)如图10-6所示,已知各轮齿 数Z1=Z2=Z4=Z5=20、Z3=40、 Z6=60,求i1H的大小和方向。 答案: i1H =8 ⑷ 在图10-7的工作台进给机构 中,运动经手柄输入,由丝杠传给 工作台。已知丝杠螺距 P = 5mm, z1=z2=19,z3=18,z4=20,试求手柄 转一周时工作台的进给量。 答案:工作台的进给量0.5mm 。 齿轮1固定:n1=0 图10-7 图10-6
由一系列相互啮合的齿轮所组成的
传动系统称为轮系
一、轮系的应用 1.可以作较远距离的传动 2.可以获得很大的传动比 3.可以实现变速 4.合成运动和分解运动
二、轮系的分类 在传动时,所有齿轮的几何轴线位置都是固定的轮系 称为定轴轮系。 在传动时,至少有一个齿轮的几何轴线是绕另一个齿轮 的几何轴线转动的轮系称为周转轮系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密仪器与机械学系 设计工程研究所
精密仪器与机械学系 设计工程研究所
周转轮系
转化轮系
精密仪器与机械学系 设计工程研究所
i1H3
H 1
H 3
1 H 3 H
z3 z1
精密仪器与机械学系 设计工程研究所
一般公式
i1H n n1 H H
z2...zn z1...zn-1
转化轮系传动比 “+”—正号机构 “-”—负号机构
精密仪器与机械学系 设计工程研究所
第5章 轮系(Gear Train)
➢ 轮系的类型 ➢ 轮系的传动比 ➢ 轮系的功能 ➢ 轮系的设计
精密仪器与机械学系 设计工程研究所
第5章 轮系(Gear Train)
5.1 轮系的类型
精密仪器与机械学系 设计工程研究所
由一系列齿轮组成的传动系统—轮系
定 轴 轮 系
5.2 轮系的传动比
传动比
iio
in out
nin nout
5.2.1 定轴轮系的传动比
精密仪器与机械学系 设计工程研究所
i12
1 2
z2 z1
i3'4
3 4
z4 z3
i2'3
2 3
z3 z2'
i45
4 5
z5 z4
i1 5
1 5
?
i12i2'3i34i451 2 3 41 2 3 4 5 5
的轮系—周转轮系(动轴轮系) 组成: 行星轮
太阳轮(中心轮)
太阳轮(中心轮) 系杆
精密仪器与机械学系 设计工程研究所
➢ 中心轮1,3和系杆H 的回转轴线的位置均固定且
重合 ➢ 运动的输入或输出构件—周转轮系的基本构件
周转轮系
精密仪器与机械学系 设计工程研究所
行星轮系(F=1) 差动轮系(F=2)
i3H1
n3 nH n1 nH
z1 z3
1
如:n1 0 n3 0
古代指南车
z 3 z 2 z 1
精密仪器与机械学系 设计工程研究所
指南车:据传说西周时就已发 明,但最早的确切记载在三国 时期。
指南针:是利用了磁铁或磁石在地球磁场中的南北指极性 而制成的指向仪器。
指南车:是车上装有一套差动齿轮装置。 现代军事上的坦克、装甲车是钢铁外壳,行驶时又震 动很大,磁性罗盘在车内难以正常工作,就要借 助这种机械指向工具。
z2z3z5 z1 z 2 ' z 3
齿轮4: 惰轮
精密仪器与机械学系 设计工程研究所
➢首尾两轮几何轴线平行
i14
1 4
z2z3z4 z1z2'z3'
精密仪器与机械学系 设计工程研究所
➢首尾两轮几何轴线不平行
精密仪器与机械学系 设计工程研究所
5.2.2 周转轮系的传动比
周转轮系
转化轮系
精密仪器与机械学系 设计工程研究所
例1 已知:z 1 2 8 , z 2 1 8 , z 2 ' 2 4 , z 3 7 0 ,
试求传动比 i 1 H
i1 H 31 3 H Hz z1 2 z z2 3 ' 1 2 8 8 7 2 0 4 1 .8 7 5
3 0
i1H
1 H
11.8752.875
自由度 F =?
行星轮系
(两个中心轮之一固定)
F 3 3 2 3 2 1
精密仪器与机械学系 设计工程研究所
自由度 F =?
自由度: F 3 4 2 4 2 2
Hale Waihona Puke 差动轮系运 动 复 合 两 个 主 动 , 一 个 从 动 运 动 分 解 一 个 主 动 , 两 个 从 动
精密仪器与机械学系 设计工程研究所
*5.3 轮系的效率 5.4 轮系的功能
1. 获得大的传动比 一对齿轮传动,一般i≤5—7
获得大的传动比
定轴轮系(多级传动) 周转轮系和混和轮系
系杆H?
周转轮系:
i1H3nn13 nnH H
z2 z1
z3 z2'
定轴轮系:
系杆H
2
2' 4
1
3'
3
i3'5zz3 4'
z5z5 z4 z3'
n3' n3 nH n5
精密仪器与机械学系 设计工程研究所
区分定、动轴轮系 混合轮系求解对周转轮系进行简化
寻找两种轮系的联系
例3:z1= z2 =z3
分类
周
转
轮
系
混
合
轮
系
精密仪器与机械学系 设计工程研究所
5.1.1 定轴轮系(Ordinary Gear Train)
运转中所有齿轮的轴心线不动的轮系—定轴 轮系(普通轮系)
精密仪器与机械学系 设计工程研究所
5.1.2 周转轮系(Planetary Gear Train)
至少有一个齿轮的轴线绕另一齿轮的轴心线回转
精密仪器与机械学系 设计工程研究所
轮系的类型??
定轴轮系
精密仪器与机械学系 设计工程研究所
按周转轮系中基本构件的不同分类 ➢2K-H型
单排
双排
2K-H型周转轮系
➢3K型
精密仪器与机械学系 设计工程研究所
基本构件是3个中心轮,系杆H只起支承作用
精密仪器与机械学系 设计工程研究所
5.1.3 混合轮系(Composite Gear Train) 定轴轮系 + 周转轮系
系杆H与中心轮1转向相同
精密仪器与机械学系 设计工程研究所
例2 已知:z148, z248, z2' 18, z324,
n1250r/m in, n3100r/m in,
转向如图所示。试求 n H 大小和方向。
i1H 3 nn13H H
n1nH n3nH
z2z3 z1z2'
4824 4 4818 3
中心轮1、3
行星轮2
差动轮系
系杆H
(F =2)
3’— 3 1’— 1
封闭
(F =1)
封闭差动轮系
周转轮系1
精密仪器与机械学系 设计工程研究所
周转轮系2
周转轮系1 + 周转轮系2
混合轮系
精密仪器与机械学系 设计工程研究所
轮系类型??
精密仪器与机械学系 设计工程研究所
周转轮系
混和轮系
定轴轮系
精密仪器与机械学系 设计工程研究所
n 1 2 5 0 r /m in , n 3 1 0 0 r /m in ,
nH375050 r/min
系杆H的转向与齿轮1相同,与齿轮3相反。
精密仪器与机械学系 设计工程研究所
注意
➢ 计算过程的正负号; ➢ 空间轮系的问题。
精密仪器与机械学系 设计工程研究所
5.2.3 混合轮系的传动比
i15i12 i2'3 i34 i45zz12zz23'zz43zz54
精密仪器与机械学系 设计工程研究所
i1k 1 k (1)m所 所 有 有 从 主 动 动 齿 齿 轮 轮 齿 齿 数 数 连 连 乘 乘 积 积
m外 啮 合 齿 轮 对 数
齿轮转向?
i15
z2 z3 z4 z5 z1z2' z3 z4