数列的通项公式的求法(理)(教师版)

合集下载

求数列通项公式的十种方法(教师版)

求数列通项公式的十种方法(教师版)

专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

(完整版)已知数列递推公式求通项公式的几种方法

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项公式的常见求法

数列通项公式的常见求法

数列通项公式的常见求法陕西省咸阳西北工业大学启迪中学廉庚数列在高中数学中占有非常重要的地位,每年高考都会出现有关数列方面的试题,一般分为小题和大题两种题型,而数列通项公式的求法是常考的一个知识点,一般出现在大题的第一小问中,因此掌握好数列通项公式的求法不仅有利于我们掌握数列知识,更有助于我们在高考中取得好的成绩.本文将中学数学中有关数列通项公式的常见求法进行了较为系统的分析和总结。

希望能对读者有所帮助.一.数列的通项公式如果数列{an}的第n项an与n之间的函数关系可以用一个式子来表示,那么这个式子叫作这个数列的通项公式.二.常见数列通项公式的求法题型一观察法由数列的前几项求数列的通项公式例1(1)数列1,3,6,10,…的一个通项公式是()A.an=n2-(n-1) B.an=n2-1 C.an=n?n+1?2 D.an=n?n-1?2(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an=________.解析:(1)观察数列1,3,6,10,…可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…第n项为1+2+3+4+…+n=n?n+1?2.∴an=n?n+1?2.(2)数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,∴an=2n+1n2+1.思维升华:由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N+处理.题型二公式法由等差数列与等比数列通项公式直接求通项公式这种方法只需要根据首项和公差(公比)直接代入通项公式即可求出,在此不需赘述.题型三由an与Sn的关系求通项公式例2:(1)若数列{an}的前n项和Sn=23an+13,则{an}的通项公式an=________.解析:由Sn=23an+13,得当n≥2时,Sn-1=23an-1+13,两式相减,整理得an=-2an-1,又当n=1时,S1=a1=23a1+13,∴a1=1,∴{an}是首项为1,公比为-2的等比数列,故an=(-2)n-1.(2)已知下列数列{an}的前n项和Sn,求{an}的通项公式.①Sn=2n2-3n;②Sn=3n+b.解析:①当n=1时,a1=S1=2-3=-1,当n≥2时,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a1也适合此等式,∴an=4n-5.②当n=1时,a1=S1=3+b,当n≥2时,an=Sn-Sn-1=(3n+b)-(3n-1+b)=2?3n-1.当b=-1时,a1适合此等式;当b≠-1时,a1不适合此等式.∴当b=-1时,an=2?3n-1;当b≠-1时,an=3+b,n=1,2?3n-1,n≥2.思维升华:已知Sn,求an的步骤(1)当n=1时,a1=S1;(2)当n≥2时,an=Sn-Sn-1;(3)对n=1时的情况进行检验,若适合n≥2的通项则可以合并;若不适合则写成分段函数形式.这种方法可以形象的称为“三部曲”或者称为“当当当”.题型四由数列的递推关系求通项公式例3根据下列条件,确定数列{an}的通项公式.(1)a1=2,an+1=an+ln(1+1n);(2)a1=1,an+1=2nan;(3)a1=1,an+1=3an+2.解析:(1)∵an+1=an+ln(1+1n),∴an-an-1=ln(1+1n-1)=ln nn-1(n≥2),∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=lnnn-1+lnn-1n-2+…+ln 32+ln 2+2=2+ln(nn-1?n-1n-2?…?32?2)=2+ln n(n≥2).又a1=2适合上式,故an=2+ln n(n∈N+).(2)∵an+1=2nan,∴anan-1=2n-1 (n≥2),∴an=anan-1?an-1an-2?…?a2a1?a1=2n-1?2n-2?…?2?1=21+2+3+…+(n-1)=2n?n-1?2.又a1=1适合上式,故an=2n?n-1?2.(3)∵an+1=3an+2,∴an+1+1=3(an+1),又a1=1,∴a1+1=2,故数列{an+1}是首项为2,公比为3的等比数列,∴an+1=2?3n-1,故an=2?3n-1-1.思维升华:已知数列的递推关系求通项公式的典型方法(1)当出现an=an-1+m时,构造等差数列;(2)当出现an=xan-1+y时,构造等比数列;(3)当出现an=an-1+f(n)时,用累加法求解;(4)当出现anan-1=f(n)时,用累乘法求解.。

数列通项公式

数列通项公式

数列通向公式的求解1、公式法:2、累加法:3、累乘法:4、a n与S n的关系:5、构造法:(1)、待定系数法:(2)、同除+待定系数:(3)、取倒数+待定系数:(4)、取对数+待定系数:(5)、连续三项:6、无穷递推关系式:(减去前n-1项剩下最后一项)7、连续两项:8、不动点法:→不动点:方程f(x)=x的根称为函数f(x)的不动点。

数列通项公式典例分析:1、已知数列{a n}满足_________________2、已知数列{a n}满足_________________3、已知数列{a n}满足___________;___________4、已知数列{a n}满足__________________5、已知数列{a n}满足_________________6、已知数列{a n}满足_____________7、已知数列{a n}满足________________8、已知数列{a n}满足______________9、已知数列{a n}满足_________________10、已知数列{a n}满足__________11、已知数列{a n}满足__________________12、已知数列{a n}满足_________________13、已知数列{a n}满足__________________14、已知数列{a n}满足__________________15、已知数列{a n}满足_____________________16、已知数列满足,,则=________17、设是首项为1的正项数列,且(=1,2,3,…),则=________18、在数列中,,,.则=______________19、数列中,,(n≥2),则=______________20、已知数列的首项,,则=__________________21、设数列{an}满足,则=_______________22、已知数列满足且,则=___________23、设数列满足,则=______________。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n Λ ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:Q 11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-gg g g L g g g g L g ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:Q 121n n a a -=+ ∴()1112221n n n a a a --+=+=+ ∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n aQ 1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+Θ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1Θ不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列的通项公式

数列的通项公式

数列的通项公式数列是数学中一种非常基础的概念,它给我们提供了一种非常简单而有效的描述一系列数字规律的方法。

在数列中,我们可以通过数列中前若干个数字的值来预测后面的数字,从而得到数列的通项公式。

本文将详细介绍什么是数列通项公式,以及如何通过数列中的规律来求解通项公式。

一、什么是数列在数学中,数列是指一系列按照一定规律排列的数字。

比如,1,2,3,4,5就是一个从1开始,每次加1的等差数列,而1,1,2,3,5,8,13...就是一个按照斐波那契数列规律排列的数列。

数列是一种非常基础的数学概念,它们在各个数学领域中都有广泛的应用,比如在微积分和代数中都会用到数列。

数列中的元素可以是自然数、整数、有理数以及实数等各种类型的数字。

而数列中的规律可以是简单的加减乘除等基本运算,也可以是具有复杂逻辑的函数关系。

在本文中,我们重点介绍数列中的等差数列和等比数列这两类数列。

二、等差数列等差数列是指一个数列中每个元素之间相差相同的一种数列。

比如,1,3,5,7,9,11就是一个公差为2的等差数列,其中的等差就是每个元素之间的差值。

在这个例子中,每个元素之间的差值都是2。

如果我们知道一个等差数列的前n项和公差,那么我们就可以通过公式来求出数列中任意一项的值,这个公式就是等差数列通项公式。

等差数列通项公式的一般形式如下:an = a1 + (n-1)d其中,an表示数列中的第n项,a1表示数列中的第一项,d表示数列中相邻两项的差值。

通过这个公式,我们就可以求出等差数列中任意一项的值。

例如,对于一个公差为3,前5项和为45的等差数列,我们可以通过等差数列通项公式来求出数列中任意一项的值。

首先,我们需要先求出数列中的第一项a1。

由于前5项和为45,我们可以得到以下方程:a1 + (a1 + 3) + (a1 + 6) + (a1 + 9) + (a1 + 12) = 45将方程化简后,可以得到a1=3。

接下来,我们就可以通过等差数列通项公式来求出数列中任意一项的值。

求数列的通项公式(教师版)

求数列的通项公式(教师版)

求数列的通项公式(教师版)1、数列的通项公式如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.2、数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1或a n +1的关系式表示(如a n =2a n -1+1),则这个关系式就称为数列的递推公式.3、由数列的递推公式求数列的通项公式的常见方法(1)待定系数法:①形如a n +1=ka n +b 的数列求通项;②形如a n +1=ka n +r ∙b n 的数列求通项;(2)倒数法:形如a n +1=pa nqa n +r的数列求通项可用倒数法;(3)累加法:形如a n +1-a n =f (n )的数列求通项可用累加法;(4)累乘法:形如a n +1a n=f (n )的数列求通项可用累乘法;(5) “S n ”法:数列的通项a n 与前n 项和S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.;S n 与a n 的混合关系式有两个思路:①消去S n ,转化为a n 的递推关系式,再求a n ;②消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .考向一 待定系数法例1—1 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式。

解:设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t )即a n +1=2a n -t ⇒t =-3.故递推公式为a n +1+3=2(a n+3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.例1—2 在数列{a n }中,a 1=-1,a n +1=2a n +4·3n ,数列{a n }的通项公式。

数列的通项公式推导方法

数列的通项公式推导方法

数列的通项公式推导方法数列是数学中的一个重要概念,它由一系列按照特定规律排列的数字或者符号组成。

而数列的通项公式,可以通过一定的推导方法得到。

本文将介绍几种常见的数列推导方法,帮助读者更好地理解和掌握数列的通项公式的推导。

一、等差数列的通项公式推导方法等差数列是指数列中,从第二项开始,每一项都与前一项之间的差值保持相等的数列。

假设等差数列的首项为a1,公差为d,第n项为an,其中n为项数。

推导等差数列的通项公式的方法如下:1. 根据等差数列的定义,可知an = a1 + (n-1)d。

2. 利用已知条件,将an表示为a1的函数,即an = a1 + (n-1)d。

3. 进一步化简,得到通项公式an = a1 + (n-1)d。

二、等比数列的通项公式推导方法等比数列是指数列中,从第二项开始,每一项都与前一项之间的比值保持相等的数列。

假设等比数列的首项为a1,公比为q,第n项为an。

推导等比数列的通项公式的方法如下:1. 根据等比数列的定义,可知an = a1 * q^(n-1)。

2. 利用已知条件,将an表示为a1的函数,即an = a1 * q^(n-1)。

3. 进一步化简,得到通项公式an = a1 * q^(n-1)。

三、斐波那契数列的通项公式推导方法斐波那契数列是指数列中,从第三项开始,每一项都等于前两项之和的数列。

假设斐波那契数列的首项为a1,第二项为a2,第n项为an。

推导斐波那契数列的通项公式的方法如下:1. 根据斐波那契数列的定义,可知an = an-1 + an-2。

2. 利用已知条件,将an表示为a1和a2的函数,即an = an-1 + an-2。

3. 进一步化简,得到通项公式an = a1 * F(n-1) + a2 * F(n-2),其中F(n)表示第n个斐波那契数。

四、几何数列的通项公式推导方法几何数列是指数列中,从第二项开始,每一项都与前一项之间的比值保持相等的数列。

求数列的通项公式列(教案+例题+习题)

求数列的通项公式列(教案+例题+习题)

求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。

2. 学会求解数列的通项公式,并能应用于实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。

2. 教学难点:数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。

2. 利用例题,演示数列通项公式的应用过程。

3. 布置习题,巩固所学知识。

五、教学过程1. 引入数列的概念,讲解数列的基本性质。

2. 讲解数列通项公式的求法,引导学生掌握求解方法。

3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。

4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。

5. 总结本节课的重点内容,布置课后作业。

教案结束。

例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。

解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。

将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。

该数列的通项公式为an = n/2 + 1/2。

习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。

2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。

3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。

4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。

5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。

六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。

2. 学习利用函数的方法求解数列的通项公式。

3. 提升学生分析问题、解决问题的能力。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

特色专题一:数列通项的求法(讲义+典型例题+小练)(原卷版)

特色专题一:数列通项的求法(讲义+典型例题+小练)(原卷版)

特色专题一:数列通项的求法(讲义+典型例题+小练)题型一:观察法观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ; 例1:1.数列2468,,,,3579⋯的第10项是( ) A .1415B .1617C .1819D .2021举一反三1.(2022·全国·高三专题练习)数列1111,,,,57911--的通项公式可能是a n =( )A .1(1)23n n --+B .1(1)32n n --+C .(1)32nn -+D .(1)23nn -+3.写出下面各数列的一个通项公式. (1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….二,公式法等差数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()na dn a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

例2:1.在等差数列{}n a 中,已知28a =-,44a =-,则12a =( ) A .10 B .12 C .14 D .16举一反三:1.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.求公差d 及{}n a 的通项公式; 等比数列:1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.(2)符号表示:1n na q a +=(常数) 2、通项公式(1)、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. (2)、通项公式的变形:①n m n m a a q -=;②n m nma q a -=. 例3:1.已知等差数列{}n a 中,22a =,156a a +=. 求{}n a 的通项公式;举一反三:1.在等比数列{}n a 中,(1)已知13a =,2q =-,求6a ; (2)已知320a =,6160a =,求n a .三.递推公式为n S 与n a 的关系式。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

求数列的通项公式常用的几种方法

求数列的通项公式常用的几种方法

求数列的通项公式问题常常采用选择题、填空题或解答题的命题形式,具有较强的综合性,对于高中生来说具有一定的难度.本文将结合实例,介绍求数列通项公式的几种常用方法.一、累加(乘)法当数列的递推关系可以转化为a n+1-a n=f(n)的形式时,可利用累加法求数列的通项公式,即f(1)+f(2)+f(3)+…+f(n-1)=a1+(a2-a1)+(a3-a2)+(a n-an-1)=a n(n≥2,n∈N*).当递推关系可以转化为an+1an=f(n)的形式时,可利用累乘法求数列的通项公式.即f(1)·f(2)·f(3)·…·f(n-1)=a1∙a2a1∙a3a2·…·anan-1=an(n≥2,n∈N*).例1.若数列{a n}满足a n+1-a n=n2,a1=1,求数列{a n}的通项公式.解:由an+1-an=n2可得a n-a n-1=(n-1)2,an-1-an-2=(n-2)2,⋯,a3-a2=22,a2-a1=12.将上述各式等号两边的式子相加,得a n=1+12+22+…+(n-1)2=1+n(n-1)(2n-1)6.有时,题目中的条件a n+1-a n=f(n)会呈现为an+1=an+f(n)的形式,同学们要注意辨别,并将其进行合理的变形.例2.若数列{a n}满足a n+1a n=n+1n,a1=1,求数列{a n}的通项公式.解:由an+1an=n+1n可得anan-1=nn-1,an-1an-2=n-1n-2,⋯,a3a2=32,a2a1=21;将上述各式等号两边的式子相乘,得a n=1×21×32×…×n-1n-2×n n-1=n.有时题目中的条件an+1an=f(n)会呈现为an+1=an·f(n)的形式,同学们要将其进行合理的变形,灵活运用累乘法进行解题.二、倒数变换法当题目所给的递推关系形如a n+1=ankan+b时,可用采用倒数变换法来求数列的通项公式.先对等式两边的式子取倒数,可得1a n+1=ka n+b a n=k+b·1a n.当b=1时,{}1a n是等差数列;当b≠1时,可以利用待定系数法构造出一个新的等比数列,进而求得数列{a n}的通项公式.例3.若数列{a n}满足a n+1=a n a n+1,且a1=1,求数列{a n}的通项公式.解:将a n+1=anan+1变形,可得1a n+1=a n+1a n=1a n+1,即1an+1-1a n=1;所以数列{}1a n是一个公差为1、首项为1a1=1的等差数列,从而可得1a n=1+n-1=n,所以a n=1n.我们在已知递推关系式的左右同时取倒数,即可将其变形为两项之差为定值的形式.根据等差数列的定义判定该数列为等差数列,利用等差数列的通项公式求解即可.三、利用a n与前n项和S n的关系当题目中的递推关系式同时含有S n与a n时,可先令n=1,求出首项a1(若题目已知告知a1的值,则可忽略此步);然后作差,根据a n与前n项和S n的关系,可得a n=S n-S n-1;最后化简,即可求得数列{a n}的通项公式.例4.已知数列{a n}的前n项和为S n=23a n+13,求数列{a n}的通项公式.解:当n=1时,a1=S1=23a1+13,得a1=1;当n≥2时,a n=S n-S n-1=(23a n+13)-(23a n-1+13)=23a n-23a n-1,整理可得13a n=-23a n-1,即a nan-1=-2,故数列{a n}是首项为1、公比为-2的等比数列,所以an=(-2)n-1.我们利用a n与前n项和S n的关系,通过作差并化简可发现,数列{a n}为等比数列.求得其首项和公比的值后,根据等比数列的通项公式求解,即可求得a n.总之,求数列通项公式的方法有很多,本文仅探讨了三种常用的解题方法.不同的方法有不同的使用条件,同学们在解题过程中,一定要灵活变通,善于归纳总结,这样才能提高解题的效率.项目基金:国家科技支撑计划课题(2013BAK12B0803);黑龙江省自然基金(B2015019);黑龙江省省属高等学校基本科研业务费科研项目(135509122)(作者单位:齐齐哈尔大学理学院)杜韩考点透视38。

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

二、累加法)(1n f a a n n =--例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例3已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231nn n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=-例4已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.给出 与 的递推关系,要求 ,常用思路是:一是利用 ( )转化为 的递推关系,再求其通项公式;二是转化为 的递推关系,先求出 与 之间的关系,再求 .
家长建议
家长签名【变式2】:(2010广东湛江一模)已知数列 的前 项和为 ,且 , .
(1)求 , , 的值;(2)求数列 的通项公式 .
【变式3】已知数列 的首项 ,前 项和 .求数列 的通项公式.
【变式4】已知数列 的前 项和 满足 ,求数列 的通项公式.
【变式5】已知数列 前n项和 .
题型二:利用递推关系求数列的通项
(Ⅰ)形如“ ”的递推公式
解法:把原递推公式转化为 ,利用累加法(逐差相加法)求解.
即由递推关系可得:
; ; ; .
将上述各式等号两边分别相加得:
.
【例2】根据下列各个数列 的首项和递推关系,求其通项公式
(1)
解析:(1)因为 ,所以,
所以
…,…,
以上 个式相加得:
即:
(1)求 与 的关系;(2)求通项公式 .
(2)应用类型4( (其中p,q均为常数, ))的方法,上式两边同乘以 得: .
由 .于是数列 是以2为首项,2为公差的等差数列,所以
其他类型的数列通项求法
(1)递推公式为 (其中p,q均为常数).
解法一(待定系数法):先把原递推公式转化为 ,其中s,t满足
(I)证明:数列 是等比数列;(II)求数列 的通项公式;
(III)若数列 满足 证明 是等差数列
教学反思
1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一
2.由 求 时,要分 =1和 两种情况
3.数列是一种特殊函数,因此通过研究数列的函数性质(单调性)来解决数列中的“最大项”与“和最小”等问题十分有效。
4.已知数列 是递增数列,其通项公式为 ,则实数 的取值范围是
5.数列 的前 项和 ,,则
※典例精析
题型一:由数列前几项求数列的通项公式(本题型主要考查学生的观察能力,找出数列中的项与其序号之间的对应关系)
【例1】根据下列数列的前几项,分别写出它们的一个通项公式
(1)1,3,5,7, ;
(2)2,5,10,17, ;
记bn= ,求{bn}数列的前项和Sn,并证明Sn+ =1
题型三递推公式为 与 的关系式(或 )
解法:这种类型一般利用 与 消去 或与 消去 进行求解.
【例2】已知数列 的前 项和 ,分别求其通项公式.
(1)
(2)
解析:(1)当 时, ;
当 时,
又 不适合上式,故
(2) ;
当 时,
所以,
所以,
又 ,所以, ,可知 为等差数列,公差为4
教 师:
郭鹏
(高)二学生:
上课时间
2012年 月 日
阶 段:
基础(√) 提高() 强化( )
课时计划
共 次课 第 次课
教学课题:
数列的通项公式的求法
教学目标:
1.会根据数列前 项写出一个通项公式
2.了解递推公式的意义,会根据递推公式写出数列的前几项
教学重难点:
重点:通项公式和前 项和公式及运用
难点:对公式理解和掌握对性质的运用,求通项的方法的运用,以及思想方法的运用,是本章的难点.
解法二(特征根法):对于由递推公式 , 给出的数列 ,方程 ,叫做数列 的特征方程.
若 是特征方程的两个根,当 时,数列 的通项为 ,其中A,B由 决定(即把 和 ,代入 ,得到关于A、B的方程组);
当 时,数列 的通项为 ,其中A,B由 决定(即把 和 ,代入 ,得到关于A、B的方程组)。
解法一(待定系数——迭加法):
【变式3】: .
(Ⅲ)(待定系数法)形如“ ”的递推公式,可以采用构造法、换元法求得通项公式.
即由已知的递推公式得: ,其中 .再利用换元法转化为等比数列求解.
【例4】已知数列 中, , ,求 .
解法一: ,
设 ,则数列 是公比为2的等比数列,因此, .
解法二:
相减,得, .
即: 是以 为首项,以2为公比的等比数列,于是, .
【例1】已知数列 满足性质:对于 且 求 的通项公式.
【例2】已知数列 满足:对于 都有
(1)若 求 (2)若 求 (3)若 求 (4)当 取哪些值时,无穷数列 不存在?
【例3】(2005,重庆,文,22)数列 记
(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列 的通项公式及数列 的前n项和
(4)形如“ 或 ”
【变式2】若数列的递推公式为 ,则求这个数列的通项公式。
【变式3】已知数列{ }满足 时, ,求通项公式。
【变式4】已知数列 满足: ,求数列 的通项公式.
【变式5】若数列 中, , , ,求通项 .
(VI)
解法:这种类型一般是等式两边取对数后转化为 ,再利用待定系数法求解.
【例7】:已知数列{ }中, ,求数列
(I)求 、 ;(II)求 的通项公式.
(Ⅱ)形如“ ”的递推公式
解法:把原递推公式转化为 ,利用累乘法(逐商相乘法)求解.
即由递推公式可得: ; ; ; .
以上各式等号两边分别相乘得: .
【例3】已知数列 满足 , ,求 .
【变式1】:已知 , ,求 .
【变式2】已知数列 ,满足 , ,则 的通项
(2)若数列 满足 ,设 是数列 的前 项和.求证: .
(IV) (其中p,q均为常数, ).(或 ,其中p,q, r均为常数).
解法:一般地,要先在原递推公式两边同除以 ,得: 引入辅助数列 (其中 ),得: 再待定系数法解决.
【例5】:已知数列 中, , ,求 .
【变式1】:已知数列 满足 , 求 .
所以,
也适合上式,故
点拨:已知 的前 项和 求 时应注意以下三点:
(1)应重视分类讨论思想的应用,分 和 两种情况讨论;特别注意 中需 .
(2)由 推得 ,当 时,若 也适合“ ”式,则统一“合写”.
(3)由 推得 ,当 时,若 不适合“ ”式,则数列的通项公式应分段表示(“分写”).
即: .
【变式1】(2011江西)已知数列 的前 项和为 满足: ,且 ,那么 ()
【变式3】:(2009全国)在数列 中, , .
(1)设 ,求数列 的通项公式;(2)求数列 的前 项和 .
(V)形如“ ”
解法:这种类型一般是等式两边取倒数后换元转化为 .
【例6】已知数列 满足: ,求数列 的通项公式.
【变式1】(2011广东)设 ,数列 满足 ,
(1)求数列 的通项公式;(2)证明:对于一切正整数 , .
【例1】:数列 : , ,求数列 的通项公式。
【例2】:已知数列 中, , , ,求 。
【例3】已知数列 中, , , ,求
【例4】已知数列 中, 是其前 项和,并且 ,
(1)设数列 ,求证:数列 是等比数列;
(2)设数列 ,求证:数列 是等差数列;
(3)求数列 的通项公式及前 项和.
(2)
解法:这种类型一般利用待定系数法构造等比数列,即令 ,与已知递推式比较,解出 ,从而转化为 是公比为 的等比数列.
(3) , , , , , ;
(4)7,77,777,7777, ;
(5) , , , , , , ;
(6)0,1,0,1, ;
(7)1,3,3,5,5,7,7,9,9…;
(8)1,2,2,4,3,8,4,16,5, .
点拨:求数列的通项公式实际上是寻找数列的第 项与序号 之间的联系纽带.联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项.
【变式1】:(2005,江西,理,21)已知数列
(1)证明 (2)求数列 的通项公式an.
【变式2】:(2006,山东,理,22)已知 ,点 在函数 的图象上,其中 =1,2,3,…
(1)证明数列{lg(1+an)}是等比数列;
(2)设Tn=(1+a1) (1+a2) …(1+an),求Tn及数列{an}的通项;
(1)设 ,求数列 的通项公式;(2)求数列 的前 项和 .
6.(2006,全国I,理22)设数列 的前 项的和 ,
(Ⅰ)求首项 与通项 ;(Ⅱ)设 , ,证明:
7.(2006,江西,理,22)1.已知数列 满足: ,且 ,
(1)求数列 的通项公式;
(2)证明:对于一切正整数 ,不等式 .
8.已知数列 满足
把 代入上式,得:
解法三:
将上列各式相加,得:
解法四:由 ,
【变式1】(2010上海)已知数列 的前 项和为 ,且 ,
(1)证明:求数列 的通项公式;(2)求数列 的通项公式.请指出 为何值时, 取得最小值,并说明理由.
【变式2】(2012广东中山二模)已知数列 的前 项和为 ,满足 .
(1)证明:数列 是等比数列,并求数列 的通项公式;
教 学 过 程
※课前热身
1.数列1,3,6,10,…的一个通项公式为( C )
A. B. C. D.
2.在数列1,1,2,3,5,8, ,21,34,55, 中, 的值为( D )
A.10B.11C.12D.13
3.数列 的通项公式为 ,则数列各项中最小项是( B )
A.第4项B.第5项C.第6项D.第7项
【变式2】在数列 中, , ,则 ( )
A. B. C. D.
【变式3】(2010课标全国)设数列 满足 , .
(1)求数列 的通项公式;(2)令 ,求数列 的前 项和 .
【变式4】已知数列 满足 , ,求 .
相关文档
最新文档