2011中考数学复习经典--2010年全国各地中考试题精选(参考答案)(1)

合集下载

2011年中考数学试题含答案

2011年中考数学试题含答案

2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次). (1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号)23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由; (3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8 图9-1图9-2图9-3图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4;15.10 ; 16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)xx - 4分=22(2)x x --–2(2)xx -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分 ∵DE ∥AC ,DF ∥BC , ∴四边形DECF 为平行四边形, 5分∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,57分∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分 可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分∵23≠13,∴大双的设计方案不公平. 7分(2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1),∴1=2k1分解得k=2, 2分∴反比例函数的解析式为y=1x . 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩,5分∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分 (2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分∴ADCD CD BD =.即baa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC , 又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分∴O A O C O CO B=.又∵A(–1,0),B(9,0),∴19O CO C=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ C D =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQC D =,∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ C D =.∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3.又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0),又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G , 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3,设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G ,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。

2011全国各省市中考数学试题分类汇编

2011全国各省市中考数学试题分类汇编

阅读使人充实,会谈使人敏捷,写作使人精确。

——培根2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)三.解答题1.(2011安徽中考)18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,____),A 3(____,____),A 12(___,___);(2)写出点A n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到A 101的移动方向.2.(2011安徽中考)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点坐标;【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.3.(2011广州中考)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π)4.(2011甘肃兰州)24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例第18题图 第21题函数m y x=(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;(2(3)根据图像写出当x5.(2011广东茂名)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y (元) 、乙y (元)与印制数量x (本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由. (4分)解:6.(2011广州中考)21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。

2011年江西省中考数学试题(WORD版含答案).

2011年江西省中考数学试题(WORD版含答案).

机密★2011年6月19日江西省2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分每小题只有一个正确选项.1.下列各数中,最小的是( .A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( . A. 4.456×107人 B. 4.456×106人 C.4456×104人 D. 4.456×103人3.将两个大小完全相同的杯子(如图甲叠放在一起(如图乙,则图乙中的实物的俯视图是( .4.下列运算正确的是( .A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b 2D.3a -2a =1 5.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( .A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( . A .1 B.2 C.-2D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( . A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD=DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度,运行时间为t (分,当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( .y (度 A.(度B.度 C.度D.B.C. D.A. 第7题图甲图乙第3题二、填空题(本大题共8小题,每小题3分,共24分9.计算:-2-1=__________.10.因式分解:x3-x=______________.11.函数y=x的取值范围是.12.方程组25,7x yx y+=⎧⎨-=⎩的解是.13.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是.15.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC ②△ADG≌△ACF ③O为BC的中点④AG︰DE4,其中正确结论的序号是..三、(本大题共3小题,每小题6分,共18分17.先化简,再求值:2(11a aaa a+÷--,其中 1.a=18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD为菱形,已知A(0,4,B(-3,0.(1求点D的坐标;(2求经过点C的反比例函数解析式.A CBP第13题xy第14题AD CB EOG F第16题第15题C DC图甲DC图乙四、(本大题共2小题,每小题8分,共16分20.有一种用来画圆的工具板(如图所示,工具板长21cm,上面依次排列着大小不等的五个圆(孔,其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1直接写出其余四个圆的直径长;(2求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外.(1求∠BAC的度数;(2求△ABC面积的最大值.(参考数据:sin60=,cos30 ,tan30=五、(本大题共2小题,每小题9分,共18分22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA,提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段,O是AF的中点,桶口直径AF=34cm, AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.图丙23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1整理数据:请设计一个统计表,将以上数据填入表格中.(2描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可③从扇形统计图中,你得出什么结论?(写出一个即可2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所示.(1请直接写出抛物线c2的表达式.(2现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备用图25.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒数学思考:(1小棒能无限摆下去吗?答:.(填“能”或“不能”(2设AA1=A1A2=A2A3=1.①θ=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…,求出此时a2,a3的值,并直接写出a n(用含n的式子表示.活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考:(3若已经摆放了3根小棒,则θ1 =_________,θ2=________,θ3=________;(用含θ的式子表示(4若只能..摆放4根小棒,求θ的范围.A1A2BC图乙A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分1.D2.A3.C4.B5.D6.C7.D8.A二、填空题(本大题共8个小题,每小题3分,共24分9. 3-10.(( 11x x x+-11.1x≤12. 4,3xy=⎧⎨=-⎩13. 9014.2180 y x-=(或1902y x=+15.(0,116.①②③④说明:(1第11题中若写成“1x<”的,得2分;(2第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共3个小题,每小题各6分,共18分17.解:原式=2111111a a aaa a a a a⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a=时,原式==………………6分18.解:(1方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学=16. ………………4分甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次方法二列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学=16. ………………4分(2P (恰好选中乙同学=13. ………………6分19.解:(1 ∵(0,4,(3,0A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴(0,1D -. …………3分(2∵BC ∥AD , 5BC AB ==, ∴(3,5C --.设经过点C 的反比例函数解析式为k y x=. 把(3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. ……6分四、(本大题共2个小题,每小题8分,共16分20.解:(1其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm (4)分(2依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC中,sin BC BDC BD ∠==, ∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132⨯=答:△ABC面积的最大值是………………8分解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三角形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132⨯=.答:△ABC面积的最大值是………………8分五、(本大题共2个小题,每小题9分,共18分. 22.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分又∵17.72OB =, ………………6分∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………8分图丙CDE ∴水桶提手合格. ……………9分解法二连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分要使OG ≥OA ,只需∠OBC≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴水桶提手合格. ………………9分23.解:(12010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分(2……………6分 (3①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. .........8分③如:高中学校所数偏少等. (9)分说明:(1第①题若不求出各学段师生比不扣分;学校所数 (所在校学生数 (万人教师数(万人小学12500 440 20 初中2000 200 12 高中 450 75 5 其它10050 280 11 合计25000 995 48全省各级各类学校所数扇形统计图(2)第②、③题叙述合理即给分. (本大题共个小题,小题10分六、本大题共2个小题,每小题分,共20分)(本大题共分 24.解:(1)y = 3x 2 −3 . ………………2 分(2)①令− 3 x 2 + 3 = 0 ,得:x1 = −1, x2 = 1 ,则抛物线c1 与 x 轴的两个交点坐标为(-1,0)(1,0). ,∴A(-1-m,0),B(1-m,0). ,E(1+m,0). 同理可得:D(-1+m,0)当 AD = AE 时,如图①,1 3 ( −1+ m − ( −1 − m = ∴,分1 当 AB = AE 时,如图②,,∴m = 2 . ∴当m = y M M ………………6 分 1 或 2 时,B,D 是线段 AE 的三等分点. 2 y A D O B E x A B O D E x 图① N 图② N ………………7 分②存在. 方法一理由:连接 AN、NE、EM、MA.依题意可得:M −m, 3 , N m, − 3 . 即 M,N 关于原点 O 对称,∴ OM = ON . ∴ OA = OE , ( ( ∵ A ( −1 − m, 0 , E (1 + m, 0 ,∴A,E 关于原点 O 对称,∴四边形 ANEM 为平行四边形. ………………8 分要使平行四边形 ANEM 为矩形,必需满足 OM = OA , 即m 2 + ( 3 2 = ( −1 − m , 2 ∴m =1. ∴当 m = 1 时,以点 A,N,E,M 为顶点的四边形是矩形. …………10 分方法二理由:连接 AN、NE、EM、MA. 依题意可得:M −m, 3 , N m, − 3 . 即 M,N 关于原点 O 对称,∴ OM = ON . ∴ OA = OE , ( ( ∵ A ( −1 − m, 0 , E (1 + m, 0 ,∴A,E 关于原点 O 对称,∴四边形 ANEM 为平行四边形. ∵ AM 2 = (−m + 1 + m 2 + ( 3 2 = 4 , ME 2 = (1 + m + m 2 + ( 3 2 = 4m 2 + 4m + 4 , AE 2 = (1 + m + 1 + m 2 = 4m 2 + 8m + 4 ,………………8 分若 AM 2 + ME 2 = AE 2 ,则 4 + 4m 2 + 4m + 4 = 4m 2 + 8m + 4 ,∴ m = 1 . 此时△AME 是直角三角形,且∠AME=90°. ∴当m = 1 时,以点 A,N,E,M 为顶点的四边形是矩形. …………10 分 25.解: (1)能.………………1 分(2)① 22.5°. ………………2 分②方法一∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3= 2 ,AA3= 1 + 2 . 又∵A2A3⊥A3A4 ,∴A1A2∥A3A4. 同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,∴AA3=A3A4,AA5=A5A6∴a2=A3A4=AA3= 1 + 2 , a3=AA3+ A3A5=a2+ A3A5. ∵A3A5= 2 a2,∴a3=A5A6=AA5= a2 + 2a2 = ………………3 分( 2 +1 . 2 ………………4 分方法二∵A A1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3= 2 ,AA3= 1 + 2 . 又∵A2A3⊥A3A4 ,∴A1A2∥A3A4. 同理:A3A4∥A5A6.∴∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4 A6A5,∴△A2A3A4∽△A4A5A6,∴ a2 1 a2 = ,∴a3= 2 = ( 2 + 12 . a2 a31 ..................4 分..................5 分..................6 分 (7)分………………8 分an = ( 2 +1 n −1 (3)θ1 = 2θ θ 2 = 3θ θ3 = 4θ(4)由题意得: ∴ 18o ≤ θ <22.5o . ………………10 分。

2011中考数学试题及答案

2011中考数学试题及答案

A第7题B A DC 2011年中考数学试题及答案班级 考号 姓名一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应.....位置..上) 1.下面四个数中比-2小的数是( )A .1B .0C .-1D .-3 2.下列计算正确的是( )A .a +a =x 2B .a ·a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 3.如图所示的几何体的左视图是( )4.今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%. 数据“110亿”用科学记数可表示为( )A .1.1×1010B .11×1010C .1.1×109D .11×1095.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( )A .①②B .②③C .②④D .①④6.今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是( ) A .8,11 B .8,17 C .11,11 D .11,17 7.如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列 条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD第8题第13题8.某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( ) A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D .甲租赁公司平均每公里收到的费用比乙租赁公司少二、填空题(本大题共10小题,每小题3分,共30分.不要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.-3的倒数是___________.10.在数轴上表示-6的点到原点的距离为___________.11.函数y =1x +2中自变量的取值范围是___________.12.不等式组⎩⎨⎧>-<-21312x x 的解集是___________.13.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为___________. 14.化简:(a -2)·a 2-4a 2-4a +4=___________.15.若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可)16.如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =________°.外来务工人员专业技术状情况扇形统计图外来务工人员专业技术状情况条形统计图技术 技术技术 技术 术状况A 第18题 ABCB ’ DE P第17题ABC A 1 A 2 A 3B 1 B 2 B 3 17.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.18.矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.三、解答题(本大题共有10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)(-2)2+3×(-2) -( 14 ) -2;(2)已知x =2-1,求x 2+3x -1的值20.(本题满分8分)随着我市经济发展水平的提高和新兴产业的兴起,劳动力市场已由体力型向专业技能型转变,为了解我市外来务工人员的专业技术状况,劳动部门随机抽查了一批外来务工人员,并根据所收集的数据绘制了两幅不完整的统计:(1)本次共调查了名外来务工人员,其中有初级技术的务工人员有__________人,有中级技术的务工人员人数占抽查人数的百分比是____________;(2)若我市共有外来务工人员15 000人,试估计有专业技术的外来务工人员共有多少人?21.(本题满分8分)从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少?22.(本题满分8分)已知反比例函数y=kx的图象与二次函数y=ax2+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?A 第24题 BCBDCO23.(本题满分10分)在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=男(女)生优分人数男(女)生测试人数 ×100%,全校优分率=全校优分人数全校测试人数 ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转,试解决下列问题:(1)画出四边形ABCD 旋转后的图形; (2)求点C 旋转过程事所经过的路径长;(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值.ABE F QP25.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?26.(本题满分10分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)E图1ABC D图227.(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ABE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.28.(本题满分14分)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.。

2011年全国各地100份中考数学试卷分类汇编(含答案)

2011年全国各地100份中考数学试卷分类汇编(含答案)

方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。

2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-1

2011年全国各地100份中考数学试卷分类汇编(46专题)(含答案)-1

第11章 函数与一次函数一、选择题1. (2011重庆市潼南,8,4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是 A .y=0.05xB . y=5xC .y=100xD .y=0.05x +100【答案】B2. (2010湖北孝感,7,3分)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t (小时),航行的路程为s (千米),则s 与t 的函数图象大致是( )【答案】B3. (2011广东广州市,9,3分)当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ). A .y ≥-7 B .y ≥9 C .y >9 D .y ≤9 【答案】B4. (2011山东滨州,6,3分)关于一次函数y =-x+1的图像,下列所画正确的是( )【答案】C5. ( 2011重庆江津, 4,4分)直线y=x -1的图像经过象限是( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限【答案】D6. (2011山东日照,9,4分)在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) (A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4)【答案】B7. (2011山东泰安,13 ,3分)已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >2 【答案】D8. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个B. 2 个C.3 个D. 4个2乙甲乙甲815105 1.510.5Ox /时y/千米【答案】C9. (2011浙江杭州,7,3)一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是【答案】A 10.(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为123v v v 、、,且123v v v <<,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图像可能是()学校小亮家s ts tst t s【答案】C11.(2011浙江省,9,3分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是()A.-5B.-2C.3D. 5【答案】B12. (2011台湾台北,9)图(三)的坐标平面上,有一条通过点(-3,-2)的直线L。

2010年全国各地中考试题及答案汇总(不断更新中...)

2010年全国各地中考试题及答案汇总(不断更新中...)

2010年全国各地中考试题及答案汇总(不断更新中...)试题预览机密★启用前2010年天津市初中毕业生学业考试试卷语文(满分120分考试时间:120分钟)本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷第1页至第4页,第Ⅱ卷第5页至第10页。

试卷满分120分。

考试时间120分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

一、(本大题共11小题,共29分。

1~4小题,每题2分;5~11小题,每题3分)下列每小题给出的四个选项中,只有一项最符合题意。

1.下面各组词语中加点字的读音,完全正确的一项是A.热忱(ch&eacute;n) 干涸(kū) 相得益彰(zhāng)B.宽恕(sh&ugrave;) 天堑(qi&agrave;n) 鳞次栉比(ji&eacute;)C.拮据(jū)匀称(ch&egrave;ng) 惟妙惟肖(xi&agrave;o)D.娴熟(xi&aacute;n) 阔绰(chu&ograve;) 吹毛求疵(cī)2.下面句子横线处依次填入的词语,最恰当的一项是(1)法国的城际交通最值得提及的是铁路运输,法国被公认拥有欧洲大陆最的铁路系统。

(2)明代地理学家徐霞客曾为黄山的秀美所,发出“五岳归来不看山,黄山归来不看岳”的感叹。

(3)汉字经历了甲骨文、金文、篆书、隶书、楷书等演变过程,是世界上历史最的文字之一。

A.完善折服悠久B.完整佩服悠长C.完善佩服悠长D.完整折服悠久3.下面句子没有语病的一项是A.中国正处在城市化进程的发展快速期,建设城市的步伐不断加快。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年中考数学试题及答案第Ⅰ卷 (选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中.只有一个是正确的.请把正确的选项选出来.每小题选对得3分.选错、不选或选出的答案超过一个均记0分.) 1.下面计算正确的是( ).A.3= B3= C .=2=-2.我国以2010年11月1日零时为标准时点迸行了第六次全国人口普查.普查得到全国总人口为l370536875人,该数用科学记数法表示为( ).(保留3个有效数字)A .13.7亿B . 813.710⨯ C .91.3710⨯ 'D .91.410⨯3.如图,△ABC 中.BC=2.DE 是它的中位线.下面三个结论:(1)DE=1;(2)△ADE ∽△ABC ;(3)△ADE 的面积与△ABC 的面积之比为l :4.其中正确的有( ). A .0个 B .1个 C .2个 D .3个4.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑.得到新的图形(阴影部分),其中不是..轴对称图形的是( )5.不等式组1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( )6.某市2011年5月1日一10日十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物):61,75.70,56.81,91,92,91,75.81. 那么这组数据的极差和中位数分别是( ).A .36,78 8.36,86 C .20,78 D .20,77.37.关千x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根B ,k 为任何实数.方程都有两个不相等的实数根C .k 为任何实数.方程都有两个相等的实数根D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种8.在今年我市初中学业水平考试体育学科的女子 800米耐力测试中,某考点同时起跑的小莹和 小梅所跑的路程S(米)与所用时间t (秒) 之间的函数图象分别为线段OA 和折线OBCD, 下列说法正确的是( ).A .小莹的建速度随时间的增大而增大B .小梅的平均速度比小莹的平均逮度大C .在起跑后180秒时.两人相遇D .在起跑后50秒时.小梅在小莹的前面9.如图.半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切.则小圆扫过的阴影部分的面积为( ). A .I7πB .32πC .49πD .80π10.身高相等的四名同学甲、乙、丙,丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的).则四名同学所放的风筝中最高的是 ( ).A .甲B .乙C .丙D .丁11. 己知直角梯形ABCD 中,AD ∥BC .∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分 D .△ABF 为等腰三角形12.巳知一元二次方程20(0)ax bx c a ++=≠的两个实效根12x x 、满足12=4x x +和12=3x x ⋅,那么二次函救20(0)y ax bx c a =++=>的图象有可能是( )2011年潍坊市初中学业水平考试数 学 试 题第Ⅱ卷 (非选择题 共84分)二,填空题(本大题共5小题.共l5分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:321a a a +--=________________.14.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当0x >时.y 随x 的增大而减小,这个函数解析式为_______________ (写出一个即可)15.方程组524050x y x y --=⎧⎨+-=⎩的解是________________.16. 已知线段AB 的长为a .以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E .以AE 为边在AB 的上方作正方形AKNM .过E 作EF ⊥CD .垂足为F 点.若正方形AENM 与四边形EFDB 的面积相等.则AE 的长为________________.17.已知长方形ABCD .AB=3cm .,AD=4cm .过对角线BD 的中点O 做BD 的垂直平分线 EF ,分别交AD 、BC 于点E 、F .则AE 的长为________________. C三、解答题 (本大题共7小题.共69分。

2011年全国各地中考数学试卷试题分类汇编第3章整式与分解因式2011年全国各地中考数学试卷试题分类

2011年全国各地中考数学试卷试题分类汇编第3章整式与分解因式2011年全国各地中考数学试卷试题分类

2011年全国各地中考数学试卷试题分类汇编第3章 整式与因式分解 一、选择题1. (2011江苏无锡,3,3分)分解因式2x2 − 4x + 2的最终结果是 ( )A .2x(x − 2) B .2(x2 − 2x + 1) C .2(x − 1)2 D .(2x − 2)2【答案】C2. (2011河北,3,2分)下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+【答案】D3. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”, 图A3比图A2多出4个“树枝”, 图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”( ) A.28 B.56 C.60 D. 124【答案】C4. (2011广东广州市,7,3分)下面的计算正确的是( ).A .3x2·4x2=12x2 B .x3·x5=x15 C .x4÷x=x3 D .(x5)2=x7【答案】C5. (2011江苏扬州,2,3分)下列计算正确的是( ) A. 632a a a =• B. (a+b)(a-2b)=a2-2b2C. (ab3)2=a2b6D. 5a —2a=3【答案】C6. (2011山东日照,2,3分)下列等式一定成立的是( ) (A ) a2+a3=a5 (B )(a+b )2=a2+b2(C )(2ab2)3=6a3b6 (D )(x-a )(x-b )=x2-(a+b )x+ab 【答案】D7. (2011山东泰安,2 ,3分)下列运算正确的是( )A .3a3+4a3=7a6 B .3a2-4a2=-a2 C .3a2·4a3=12a3 D .(3a3)2÷4a3=34a2【答案】B8. (2011山东泰安,5 ,3分)下列等式不成立的是( )A.m2-16=(m-4)(m+4) B.m2+4m=m(m+4)C.m2-8m+16=(m-4)2 D.m2+3m+9=(m+3)2【答案】D9. (2011山东威海,4,3分)下列运算正确的是( )A .326a a a ⋅= B .336()x x =C .5510x x x +=D .5233()()ab ab a b -÷-=- 【答案】D10.(2011山东烟台,3,4分)下列计算正确的是( )A.a2+a3=a5 B. a6÷a3=a2 C. 4x2-3x2=1 D.(-2x2y)3=-8 x6y3【答案】D11. (2011四川南充市,1,3分)计算a+(-a)的结果是( )(A )2a (B )0 (C )-a2 (D )-2a 【答案】B12. (2011浙江杭州,9,3)若2,2a b a b +=-≥且,则( )A .b a 有最小值12B .b a 有最大值1C .a b 有最大值2D .a b 有最小值98-【答案】C13. (2011 浙江湖州,2,3)计算23a a ,正确的结果是A .62aB .52aC .6aD .5a【答案】D14. (2011宁波市,2,3分)下列计算正确的是A . (a2)3= a6B .a2+ a2= a4C .(3a)·(2a) =6aD .3a -a =3【答案】A15. (2011宁波市,12,3分)把四张形状大小完全相同的小正方形卡片(如图○1)不重叠的放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图○2)盒子底面未被卡片覆盖的部分用阴影表示,则图○2中两块阴影部分的周长和是A . 4mcm B . 4ncm C . 2(m +n)cm D . 4(m -n)cm【答案】B16. (2011浙江台州,4,4分)计算32)(a 的结果是( )A. 23a B. 32a C. 5a D. 6a【答案】D17. (2011浙江义乌,3,3分)下列计算正确的是( )A .246x x x += B .235x y xy += C .632x x x ÷=D .326()x x =【答案】D18. (2011四川重庆,2,4分)计算(a3)2的结果是( )A .aB .a5C .a6D .a9【答案】C19. (2011浙江省嘉兴,4,4分)下列计算正确的是( )(A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷【答案】A 20.(2011台湾台北,5)计算x2(3x +8)除以x3后,得商式和余式分别为何?A .商式为3,余式为8x2B .商式为3,余式为8C .商式为3x +8,余式为8x2D .商式为3x +8,余式为0【答案】B21. (2011台湾台北,7)化简41(-4x +8)-3(4-5x),可得下列哪一个结果?A .-16x -10 B .-16x -4 C .56x -40 D .14x -10【答案】D22. (2011台湾台北,13)若a :b :c =2:3:7,且a -b +3=c -2b ,则c 值为何?A .7 B .63 C .221 D .421【答案】C23. (2011台湾台北,24)下列四个多项式,哪一个是733+x 的倍式?A .49332-x B .493322+x C .x x 7332+ D .x x 14332+【答案】C24. (2011台湾全区,3)化简)23(4)32(5x x ---之后,可得下列哪一个结果?A .2x -27 B .8x -15 C .12x -15 D .18x -27【答案】D25. (2011台湾全区,8)若949)7(22+-=-bx x a x ,则b a +之值为何? A .18 B .24 C .39 D . 45【答案】D26. (2011台湾全区,10)若(a -1):7=4:5,则10a +8之值为何?A . 54 B 66 C . 74 D . 80【答案】C27. (2011台湾全区,22)计算多项式536223++-x x x 除以(x -2)2后,得余式为何?A . 1 B . 3 C . x -1 D . 3x -3【答案】D28. (2011江西,4,3分)下列运算正确的是(). 第3题图A.a+b=abB.a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=1【答案】B29. (2011湖南邵阳,2,3分)如果□×3ab=3a2b,则□内应填的代数式是()A.abB.3abC.aD.3a【答案】C30. (2011湖南益阳,4,4分)下列计算正确的是A.()222x y x y+=+B.()2222x y x xy y-=--C.()()22222x y x y x y+-=-D.()2222x y x xy y-+=-+【答案】D31. (2011广东株洲,2,3分)计算x2·4x3的结果是()A.4x3 B.4x4 C.4x5 D.4x6【答案】C32. (2011江苏连云港,2,3分)a2·a3()A.a5B. a6C.a8D. a9【答案】A33. (2011江苏连云港,3,3分)计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A.-2 B.2 C.-4 D.4【答案】D34. (2011江苏苏州,4,3分)若m·23=26,则m=A.2B.4C.6D.8【答案】D35. (2011江苏宿迁,4,3分)计算(-a3)2的结果是()A.-a5 B.a5 C.a6 D.-a6【答案】C36. (2011江苏泰州,2,3分)计算2a2·a3的结果是A.2a6 B.2a5 C.4a5 D.4a6【答案】B37. (2011山东济宁,2,3分)下列等式成立的是A .a2+a2=a5B .a2-a2=aC .a2⋅a2=a 6D .(a2)3=a6【答案】D38. (2011山东聊城,5,3分)下列运算不正确的是( ) A .5552a a a += B .()32622a a -=- C .2122a aa -⋅= D .()322221aa a a -÷=-【答案】B39. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A .5nB .5n -1C .6n -1D .2n2+1【答案】C40. (2011四川成都,5,3分)下列计算正确的是 D(A )2x x x =+ (B)x x x 2=⋅ (C)532)(x x =(D)23x x x =÷【答案】D41. (2011四川宜宾,3,3分)下列运算正确的是( )A .3a-2a=1 B .632a a a =⋅ C .2222)(b ab a b a +-=- D .222)(b a b a +=+【答案】C42. (2011江西南昌,4,3分)下列运算正确的是( ). A.a+b=ab B.a2·a3=a5 C.a2+2ab-b2=(a-b)2 D.3a-2a=1【答案】B43. (2011湖南怀化,3,3分)下列运算正确的是 A.a·a3=a3 B.(ab)3=ab3 C.a3+a3=a6 D.(a3)2=a6【答案】D44. (2011江苏南京,2,2分)下列运算正确的是 A .a2+a3=a5 B .a2•a3=a6 C .a3÷a2=a D .(a2)3=a8【答案】C45. (2011山东临沂,2,3分)下列运算中正确的是( )A .(-ab )2=2a2b2 B .(a +1)2 =a2+1 C .a6÷a2=a3 D .2a3+a3=3a3【答案】D46. (2011四川绵阳2,3)下列运算正确的是 A.a+a²=a³ B. 2a+3b= 5ab C.(a³)2 = a9 D. a3÷a2 = a 【答案】D47. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D48. (2011湖南衡阳,5,3分)下列计算,正确的是( )A .()32628x x= B .623a a a ÷= C .222326a a a ⨯= D .01303⎛⎫⨯= ⎪⎝⎭【答案】A49. (2011湖南邵阳,2,3分)如果□×3ab=3a2b ,则□内应填的代数式是( )A.ab B.3ab C.a D.3a 【答案】C50. (2011湖北襄阳,2,3分)下列运算正确的是 A.a a a =-2 B.632)(a a -=-C.236x x x =÷D.222)(y x y x +=+【答案】B51. (2011湖北襄阳,3,3分)若x ,y 为实数,且011=-++y x ,则2011)(yx 的值是A.0B.1C.-1D.-2011【答案】C52.(2011湖南永州,9,3分)下列运算正确是( )A .1)1(--=--a a B .222)(b a b a -=- C .a a =2 D .532a a a =⋅【答案】D .53. (2011江苏盐城,2,3分)下列运算正确的是 A .x2+ x3 = x5 B .x4·x2 = x6 C .x6÷x2 = x3D .( x2 )3 = x8【答案】B54. (2011江苏盐城,4,3分)已知a - b =1,则代数式2a -2b -3的值是A .-1 B .1 C .-5 D .5 【答案】A55. (2011山东东营,2,3分)下列运算正确的是( ) A 3362x x x += B .824x x x ÷= C .m n mn x x x = D .5420()x x -=【答案】D56. (20011江苏镇江,2,2分)下列计算正确的是( )A.236a a a •=B. 33y y y ÷= C.3m+3n=6mn D.()236x x =答案【D 】57. (2011内蒙古乌兰察布,2,3分)下列计算正确的是( ) A .()236a a = B.2232aa a =+ C. 623a a a =• D. 339a a a =÷【答案】A58. (2011重庆市潼南,2,4分) 计算3a ⋅2a 的结果是A .6a B .6a2 C. 5a D. 5a 2【答案】B 59.(2011广东湛江7,3分)下列计算正确的是A 235a a a =B 2a a a +=C 235()a a = D22(1)1a a a +=+ 【答案】A60. (2011河北,4,2分)下列运算中,正确的是( )A .2x-x=1B .54xx x =+C .()33x 6-x 2-=D .22x y y x =÷【答案】D61. (2011山东枣庄,9,3分)如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+6【答案】C62. (2011湖北荆州,3,3分)将代数式142-+x x 化成q p x ++2)(的形式为 A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)2(2++x 【答案】C63. (2011湖北宜昌,7,3分) 下列计算正确的是( ).A.3a -a = 3 B. 2a .a3=a6 C.(3a3)2 =2a6 D. 2a ÷a = 2 【答案】D64. (2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是( )A .x2 +1 B.x2+2x -1 C.x2+x+1 D.x2+4x+4【答案】D65. (2011山东济宁,4,3分)把代数式 322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y -D .23()x x y -【答案】D66. (2011浙江丽水,3,3分)下列各式能用完全平方式进行分解因式的是( )A .x2 +1 B.x2+2x -1 C.x2+x+1 D.x2+4x+4【答案】D67. (2011台湾全区,5)下列四个多项式,哪一个是3522-+x x 的因式?A .2x -1B .2x -3C .x -1D .x -3【答案】A68. (2011浙江省舟山,4,3分)下列计算正确的是( )(A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷【答案】A69. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D 70.二、填空题1. (2011浙江金华,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y2. (2011广东东莞,8,4分)按下面程序计算:输入x=3,则输出的答案是__ _ .【答案】263. (2011山东济宁,12,3分)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【答案】54. (2011浙江杭州,12,4)当7x =-时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为 .【答案】-65. (2011浙江省,14,3分)某计算程序编辑如图所示,当输入x= 时,输出的y=3.【答案】12或32-6. (2011浙江省,15,3分)定义新运算“⊕”如下:当a ≥b 时,a ⊕b=ab+b,当a<b 时,a ⊕b=ab-a ;若(2x-1)⊕(x+2)=0,则x= .【答案】-1或217. (2011浙江温州,15,5分)汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天 加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了 天(用含a 的代数式表示).【答案】180a8. (2011浙江丽水,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y9. (2011广东株洲,10,3分)当x=10,y=9时,代数式x2-y2的值是 .【答案】19 10.(2011江苏泰州,12,3分)多项式 与m2+m -2的和是m2-2m .【答案】-3m+211. (2011广东广州市,16,3分)定义新运算“⊗”,规定:a ⊗b=13a -4b ,则12⊗ (-1)= .【答案】812. (2011江苏淮安,9,3分)计算: a4·a2= .【答案】a613. (2011上海,7,4分)计算:23a a ⋅=__________.【答案】5a14. (2011四川乐山12,3分)体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元。

2010年中考数学试题及答案

2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。

2011全国中考数学真题(一元二次方程【附答案】)

2011全国中考数学真题(一元二次方程【附答案】)

2011全国各省市中考数学真题分类汇编- 一元二次方程(附答案)一、选择题1.(2011广东中考)一元二次方程()22x x x -=-的根是………………【 】A.-1B. 2C. 1和2D. -1和22.(2011武汉市中考)若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是( ) A.4. B.3. C.-4. D.-3.3.(2011A .2=x4.(2011A. 2210x x+= C. (1)(2)x x -+5.(2011送了2070A. (1)x x -= C. 2(1)x x +7.(2011·济宁A.-1 B.08.(2011成都市中考)已知关于的一元二次方程有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥9.(2011威海市中考)关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4±D . 0或810.(2011舟山市中考)一元二次方程0)1(=-x x 的解是( ▲ ) (A )0=x (B )1=x(C )0=x 或1=x(D )0=x 或1-=x11.(2011台湾中考)關於方程式95)2(882=-x 的兩根,下列判斷何者正確?( ) (A)一根小於1,另一根大於3 (B)一根小於-2,另一根大於2(C)兩根都小於12.(2011b 4+之值为何?((A) 2 (B) 513.(2011黄石β满足( )A. 1α<<14.(2011毕节是( )A 、1(160+C 、1(160-15.(2011泉州A. 416.(2011福州A.C.17.(2011(A )218.(2011湘潭市中考)一元二次方程0)5)(3(=--x x 的两根分别为( ) A. 3, -5 B. -3,-5 C. -3,5 D.3,5二、填空题1.(2011苏州市中考)已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于 .2.(2011德州市中考)若1x ,2x 是方程210x x +-=的两个根,则2212x x +=__________.3.(2011泰安市中考)方程03522=++x x 的解是 。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年高中阶段教育学校招生考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( )A. 4B. -4C. 14D.14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. 234265+= B. 333236⨯= C. 2733÷= D. 2(3)3-=-4. 如图1,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为( )A.180,230x yx y+=⎧⎨=+⎩B.180,230x yx y+=⎧⎨=-⎩C.90,230x yy x+=⎧⎨=-⎩D.180,230x yy x+=⎧⎨=-⎩图1资阳市数学试卷第1页(共13页)资阳市数学试卷第2页(共13页)5. 图2所示的几何体的左视图是( )6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4,在数轴上表示实数14的点可能是( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③图4图2图3图5图6资阳市数学试卷第3页(共13页)2011年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.a1 2 23 3 34 4 4 45 5 5 5 56 6 6 6 6 6 …b 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 …c 的 最大 值1 不存在 3 不存在2 5 不存在 不存在 4 7 不存在 不存在3 6 9 不存在 不存在 不存在 5 8 11 …图8 图7资阳市数学试卷第4页(共13页)三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:解这个不等式组,得:图9因此,需租用48座客车辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)资阳市数学试卷第5页(共13页)资阳市数学试卷第6页(共13页)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10资阳市数学试卷第7页(共13页)22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式 (直接写出结果即可).(2分)图11资阳市数学试卷第8页(共13页)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B 处.如图13-1,已知点A在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (参考数据:2≈1.414,3≈1.732,5≈2.236,6≈2.449)资阳市数学试卷第9页(共13页)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C 的解析式;(3分) (2) 如图14-2,若直线OA 的解析式为y =x ,将抛物线C 绕原点O 旋转180°得到抛物线C ′,求抛物线C 、C ′的解析式;(3分)(3) 在(2)的条件下,设A ′为抛物线C ′的顶点,求抛物线C 或C ′上使得PB PA '=的点P 的坐标.(4分)图14-1图14-22011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.二、填空题(每小题3分,共6个小题,满分18分):11.x1=0,x2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17.219(1)44xx x--÷++=(4)14xx+-+÷294xx-+·························································································2分=(4)14xx+-+÷(3)(3)4x xx+-+················································································4分=34xx++×4(3)(3)xx x++-······················································································5分=13x-. ······································································································6分18. (1) ∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,·····················································································1分∴∠ABD=∠CDB. ························································································2分∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD =90°.·······································3分∴△ABE≌△CDF(A.A.S.), ·············································································4分∴BE=DF.···································································································5分资阳市数学试卷第10页(共13页)资阳市数学试卷第11页(共13页)(2) 四边形MENF 是平行四边形. ···································································· 7分19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩······························································································· 4分 (注:若只列出一个正确的不等式,得1分)解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元),租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分 (2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分 ∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分)21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =m x、y =-x +b ,可求得m =3,b =4. ······················· 2分 (2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4. ∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,资阳市数学试卷第12页(共13页) ∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分 又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分 ∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°,∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9,∴CE =12-9=3. ···························································································· 3分(2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°,∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°,∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分 (注:未写x 取值范围不扣分,写出一个关系式得1分)24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分在Rt △OBA 中,由勾股定理,得AB =22600300+=3005(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:3005÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º=3002(cm) ····· 4分 ∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷20+3002÷10≈15+42.42≈57(秒). ·················································································································· 6分(3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分 ∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒), 沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分 连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).。

2011年中考数学试卷和答案

2011年中考数学试卷和答案

2011年中考数学试卷和答案初中毕业生学业考试一、选择题(每小题3分,共30分) 1.四个数-5,-0.1,21,3中为无理数的是( ) A. -5 B. -0.1 C. 21D. 32.已知□ABCD 的周长为32,AB=4,则BC=( ) A. 4 B. 121 C. 24 D. 283.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ) A. 4 B. 5 C. 6 D. 104.将点A (2,1)向左平移2个单位长度得到点A ',则点A '的坐标是( ) A. (0,1) B. (2,-1) C. (4,1) D. (2,3)5.下列函数中,当x>0时,y 值随x 值增大而减小的是( ) A.2x y = B. 1-=x y C. x y 43=D. xy 1= 6.若a<c<0<b ,则abc 与0的大小关系是( )A. abc<0B. abc=0C. abc>0D. 无法确定 7.下面的计算正确的是( )A. 2221243x x x =⋅B. 1553x x x =⋅C. 34x x x =÷ D. 725)(x x =8.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )9.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤910.如图,AB 切⊙O 于点B ,OA=23,AB=3,弦BC//OA ,则劣弧BC 的弧长为( )A.π33 B. π23 C. π D. π23 二、填空题:(每小题3分,共18分) 11.9的相反数是______12.已知α∠=260,则α∠的补角是______度。

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考答案

2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH ∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ·BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ·BC =2π,AB ·BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ·BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ·BC =1∴S △ABC =21AC ·BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =612B AD CH A B CD EDBCAMNE11.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+x∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a h a ah+=ah h a 2)( +·41≥ah h a 22)(·41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90°∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。

最新初中中考数学题库 2011陕西省中考数学试卷及答案

最新初中中考数学题库 2011陕西省中考数学试卷及答案

2011年陕西省中考数学试题及答案(word 版)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】 A 、125B 、512 C 、135 D 、1312 6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为 【 】正方体 圆锥 球 圆柱 (第二题图)9、 如图,在ABCD 中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的全等三角形有 【 】A 、2对B 、3对C 、4对D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】A 、321y y yB 、321y y yC 、312y y yD 、213y y y第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠则=∠1 .13、分解因式:=+-a ab ab 442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值 三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。

2011年数学中考真题及答案

2011年数学中考真题及答案

一、填空题(每空5分,共20分)1、因式分解:a2b+2ab+b=.2、根据里氏震级的定义,地震所释放出的相对能量E与震级n的关系为:E=10n,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是.3、如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,CE=1,DE=3,则⊙O的半径是.4、定义运算a b=a(1-b),下面给出了关于这种运算的四个结论:①2(-2)=6 ②a b=b a③若a+b=0,则(a a)+(b b)=2ab④若a b=0,则a=0.其中正确结论的序号是 (填上你认为所有正确结论的序号).二、选择题(每题4分,共20分)5、-2、0、2、-3这四个数中最大的是【】A.2 B.0 C.-2 D.-36、我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是【】A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1077、下图是五个相同的小正方体搭成的几何体,其左视图是【】8、设a =-1,a在两个相邻整数之间,则这两个整数是【】A.1和2 B.2和3 C.3和4 D.4和59、从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是【】A.事件M是不可能事件 B.事件M是必然事件C.事件M发生的概率为 D.事件M 发生的概率为10、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是【】A.7 B.9 C.10 D.1111、如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是【】. C.,,点的距离为行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的求粗加工的这种山货的质量.18、在平面直角坐标系中,一蚂蚁从原点(1)填写下列各点的坐标:A4( , )、A8( , )、A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.19、如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).20、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由.21、如图,函数y1=k1x+b的图象与函数y2=(x>0)的图象交于点A(2,1)、B,与y 轴交于点C(0,3).(1)求函数y1的表达式和点B的坐标;(2)观察图象,比较当x>0时y1与y2的大小.22、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当=°时,EP的长度最大,最大值为.五、综合题(每空?分,共?分)23、如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h2;(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12;(3)若h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.参考答案一、填空题1、;2、100;3、4、①③.二、选择题5、A6、C7、A8、C9、B10、 D11、B12、D13、B14、C三、作图题15、如下图四、简答题16、原式=.17、设粗加工的该种山货质量为xkg,根据题意,得 x+(3x+2000)=10000.解得 x=2000.答:粗加工的该种山货质量为2000kg.18、⑴A1(0,1) A3(1,0) A12(6,0)⑵A n(2n,0)⑶向上19、简答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的长约为635m.20、(1)甲组:中位数 7;乙组:平均数7,中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。

2011年中考数学考试试题答案

2011年中考数学考试试题答案

1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。

2011年全国各地100份中考数学试卷分类汇编第2章实数14页有答案

2011年全国各地100份中考数学试卷分类汇编第2章实数14页有答案

2011年全国各地100份中考数学试卷分类汇编第2章实数14页有答案2011年全国各地100份中考数学试卷分类汇编第2章实数一、选择题1. (2011福建泉州,1,3分)如在实数0,-,32-,|-2|中,最小的是().A.32- B. C.0 D.|-2|【答案】B[来源:学*科*网Z*X*X*K]2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C.12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13、sin30°,无理数的个数为( )A.1B.2C.3D.4【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是(A)0>m (B)0<n (C)0<mn (D)0>-n mm1n【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( )A.-4B.-1C. -41D.23 【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是A .-1B .1C .- 3D .3【答案】C8. (2011四川广安,2,3分)下列运算正确的是( )A .(1)1x x --+=+B .954-=C .3223-=-D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )[来源:] A.1,2 B.1,3 C.4,2D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( )A .2B .-2C .6D .10 【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是 A .56B .15C .5D .6 【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D 1223=【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( )A .-1B .1C .-3D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .+2B .-3C .+3D .+4【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6【答案】D18.(2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.9【答案】C19. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何? A .9656710 B .9356710 C .6356710D .56710[来源:学科网ZXXK]【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为[来源:学.科.网Z.X.X.K]A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( )A .2B .-2C .6D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1 C .2 D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( )A .3B .30C .1D .0 【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是A.22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何?A .9B . 27C . 279D . 407【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2C . (31)6 D . (-6)2【答案】A29. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( ) A.020111= B.819=± C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数 B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( )A.2B.0C.5D.13 答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C )3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( ) A . a < b B.a = b C. a > bD .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则ba =.②若b a <,则 b a <. ③若b a -=,则 22)(b a =-.其中正确的判断的个数是A .3B .2C .1D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x=3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= .【答案】23-;4. (2011四川南充市,11,3分)计算(π-3)0= .【答案】15. (2011江西,9,3分)计算:-2-1= .[来源:学科网ZXXK]【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:111111*********1,,,, 122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-39. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有a b=a 2-b,例如,32=32-2=7,那么21=_____________.【答案】310.(2011安徽,14,5分)定义运算a ✞b=a(1-b ),下面给出了关于这种运算的几个结论:①2✞(-2)=6 ②a ✞b= b ✞ a[来源:学,科,网Z,X,X,K]③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号)输入数 ( )2-1 ( )2+1 输出数 减去5【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】26 12.(20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;12⎛⎫- ⎪⎝⎭=______;112-⎛⎫- ⎪⎝⎭=_______.答案:12,12,1,-2 13. (2011广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”) 【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)b b a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____.【答案】112 三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:1(20111)18452-+-【解】原式=1+2322-4=03. (1) (2011福建福州,16(1),7分)计算:016|-4|+2011【答案】解:原式414=+-1=[来源:Z|xx|]4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭【答案】解:原式=332123122=23--++-+6. (2011山东菏泽,15(1),6分)计算:027(4)6cos302--π-+-解:原式=333-16+2-⨯=17. (2011山东济宁,16,5分)计算:084sin 45(3)4-︒+-π+-【答案】.解:原式222414=-⨯++5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯=1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n= ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯. 【答案】(1)111n n -+ ·························· 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ················································· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分 9. (2011 浙江湖州,17,6)计算:22sin 30)π--+【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分)计算:()232cos 45π---+︒.【答案】解:(1)原式21212=-+⨯=11. (2011浙江绍兴,17(1),4分)(1)计算:012cos 454π-+︒+(-2);[来源:Z§xx§]【答案】解:原式11224+⨯+3=32.4-12. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+-【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)12-+--;【答案】解:20(2)(2011)124123523-+--=+-=-15. (2011浙江义乌,17(1),6分)(1)计算:45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 2 16. (2011广东汕头,11,6分)计算:01(20111)18452-+-【解】原式=1+2322-4=017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)9+-【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分)=3…………………………(9分) 20.(2011湖南常德,17,5分)计算:()317223-÷-⨯ 【答案】2921. (2011湖南邵阳,17,8分)计算:20103+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
2011年中考复习经典
2010年黄石中考数学试题及答案
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
中国最大的教育门户网站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
中国最大的教育门户网站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站
合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站。

相关文档
最新文档