清华大学一元微积分期中考题答案
2022-2023学年北京市海淀区清华大学附属中学九年级上学期期中考数学试卷带讲解
B.先向左平移1个单位,再向下平移2个单位
C.先向右平移1个单位,再向上平移2个单位
D.先向右平移1个单位,再向下平移2个单位
【答案】D
【解析】
【详解】解:将抛物线y=-3x2平移,先向右平移1个单位得到抛物线y=-3(x-1)2,再向下平移2个单位得到抛物线y=-3(x-1)2-2.
∴点B的坐标为(2,﹣3),
故答案为:(2,﹣3).
【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.
10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式_______.
【答案】y=x2+1.
【解析】
【详解】此题答案不唯一,只要二次项系数大于0,经过点(0,1)即可,如y=x2+1,y=x2+2x+1等.
2022-2023学年北京市海淀区清华附中
九年级(上)期中数学试卷
一、选择题(共16分,每题2分)
1.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGoi进行围棋人机大战截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()
【详解】解:连接OM、ON,AM如图,∵MC⊥AB、ND⊥AB,
∴∠OCM=∠ODN=90°,
∵ ,
∴∠CMN+∠MCD=180°,
∴∠CMN=90°,
∴四边形CMND是矩形,
∴CM=DN,
在Rt△OMC和Rt△OND中, ,
∴Rt△OMC≌Rt△OND(HL),
∴OC=OD,∠COM=∠DON,
∴ ,
A. B. C. D.
【答案】A
清华大学一元微积分
x→+∞
x→+∞
∃M > 0 ,使得 x ≥ M 之后 f (x) ≥ a / 2 ,从而 ∀K > M
∫ ∫ +∞ |
f
(x) | dx
≥
K
|
f
(x) | dx
≥
a
(K
−
M)
2
0
M
+∞
∫ 而 K > M 的任意性与 f (x)dx 绝对收敛矛盾。这说明只有 lim f (x) = 0 。 x→+∞ 0
+∞
∫ 证明:由已知 f ′(x)dx 绝对收敛,从而收敛,所以
0
A
+∞
∫ ∫ lim f (A) = f (0) + lim f '(x)dx = f (0) + f '(x)dx 存在。
A→+∞
A→+∞
0
0
如果 lim f (x) ≠ 0 ,不妨令 lim f (x) = a > 0 ,则由极限保序性
0
0 ⎝2⎠
2.计算上半心形线:
⎧x
⎨ ⎩ ) cosθ = a(1 + cosθ ) sinθ
,0
≤θ
≤
π
,绕
x
轴旋转一周所得到的旋转体的体积V
。
解: dx = −a[(1 + cosθ )sinθ + cosθ sinθ ]dθ
π
π
∫ ∫ 所以 V =| πy 2 (θ )dx(θ ) |= πa3 | (1 + cosθ )2 sin 2 θ (1 + 2 cosθ )d (cosθ ) |
清华大学微积分A(1)期中考试样题
一元微积分期中考试答案 一.填空题(每空3分,共15题) 1. e 1 2。
21 3. 31 4。
34 5. 1 6.第一类间断点 7。
()dx x x x ln 1+ 8。
22sin(1)2cos(1)x x x e++ 9。
0 10。
11−⎟⎠⎞⎜⎝⎛+x e x 11.x x ne xe + 12。
13 13。
0 14。
)1(223+−=x y 15. 13y x =+二. 计算题1. 解:,)(lim ,0)(lim 00b x f x f x x ==+−→→故0=b 。
…………………3分a xf x f f x =−=′−→−)0()(lim )0(0 …………………3分 1)0()(lim )0(0=−=′+→+xf x f f x …………………3分 1=a 故当1=a ,0=b 时,)(x f 在),(+∞−∞内可导。
…………………1分2. 解:=−+∞→])arctan ln[(lim ln /12x x x πx x x ln )arctan ln(lim 2−+∞→π = xx x x /1arctan )1/(1lim 22−+−+∞→π …………罗比达法则…………4分 =xx x x arctan )1/(lim 22+−++∞→π = )1/(1)1/()1(lim 2222x x x x ++−+∞→ = 2211lim x x x +−+∞→ = 1− ………………………4分所以,原极限=1−e ………………………………………………………………………2分3. 解:)'1)((''y y x f y ++= ,故 1)('11)('1)(''−+−=+−+=y x f y x f y x f y ;……4分 32)]('1[)('')]('1[)'1)((''''y x f y x f y x f y y x f y +−+=+−++=…………………………………………6分4.解:⎩⎨⎧≥+−<+−−=020)2()(2323x xx x x x x x x f 记x x x x g +−=232)(,则143)(2+−=′x x x g ,46)(−=′′x x g , 1,0,02)(2123===+−=x x x x x x g1,31,0143)(432===+−=′x x x x x g 32,046)(52==−=′′x x x g 故)(x f 在)0,(−∞及⎟⎠⎞⎜⎝⎛1,31单调减,在⎟⎠⎞⎜⎝⎛31,0及),1(+∞单调增; …………………2分 在)0,(−∞及⎟⎠⎞⎜⎝⎛+∞,32下凸,在⎟⎠⎞⎜⎝⎛32,0上凸; …………………2分 极大值点为31=x ,极小值点为1,0=x 。
清华微积分答案
清华微积分答案a=? f是向量值函数,可以观察,e与a平行时,f的方向导数最大,且大小a.e=||a||,称a是f的梯度场向量值函数的切平面、微分、偏导f(x)=(f1(x),f2(x),…,fm(x)),若所有fi在x0处可微,则称f在x0处可微,即f(x)=f(x0)+a(x-x0)+o(||x-x0||),其中a=(aij)m*n=?f/?x=?(f1,f2,…,fm)/?(x1,x2,…,xn)=j(f(x0)))称为f在x0处的jacobian (f的jacobian的第i行是f的fi分量的梯度,aij := ?fi/?xj)f的全微分df=adx当m=n时,f有散度div(f)和旋度curl(f)div(f) = ?.f=?f1/?x1 +…+?fm/?xm复合函数求导一阶偏导:若g=g(x)在x0可微,f=f(u) (u=g(x))在g(x0)可微,则f○g在x0处可微,j(f○g) = j(f(u)) j(g(x))具体地,对于多元函数f(u)=f(u1,…,um),其中u=g(x)即ui=g(x1,…,xn)?f/?xj= ?f/?u * ?u/?xj= sum[?f/?ui * ?ui/?xj]{for each ui in u}高阶偏导:不要忘记偏导数还是复合函数例:f(u):=f(u1,u2), u(x):=(u1(x1,x2),u2(x1,x2))?2f/(?x1)2 = 数学分析教程p151隐函数、隐向量值函数由f(x,y)=0确定的函数y=f(x)称为隐函数隐函数:1. 存在定理:若n+1元函数f(x,y)在零点(x0,y0)处导数连续,且?(f)/?(y)(x0,y0)0,则存在(x0,y0)附近的超圆柱体b=b(x0)*b(y0),使得b(x0)上的任意一点x可以确定一个y使得f(x,y)=0,即函数f 在b内确定了一个隐函数y=f(x),而且这个隐函数的一阶偏导数也连续注:如果?(f)/?(y)=0,那么在x=x0超平面上,y在x0处取得了极值,那么沿曲面被x=x0截的曲线从x0处向任意方向走,y都会减小,所以y是双值函数,不是函数,??)处,2.偏导公式:在b内的(??????????/??????=???或者说????????/????=?????不正式的证明:f(x,y)≡0, 所以?f/?xi=0,即sum[?f/?xj* ?xj/?xi]=0 (把y记做xn+1)由于x的各分量都是自变量,?xj/?xi=0 (ij)所以?f/?xi + ?f/?y * ?y/?xi=0于是立即可得上述公式隐向量值函数:1.存在定理:若x∈rn,y∈rm,m维n+m元向量值函数f(x,y)=0,在p0=(x0,y0)点的某个邻域b(p0,r)内是c(1)类函数,f(p0)=0,且?f/?y可逆,则存在p0的邻域b(x0)*b(y0),使得对于在b(x0)内的任意x,存在唯一y∈b(y0)满足f(x,y)=0,即f在b内确定了一个连续可微隐函数y=f(x)2.偏导公式:j(f) :=?(y1,…,ym)/?(x1,…,xn) :=?y/?x= -[?f/?y]-1*?f/?x注:1.求逆矩阵用伴随矩阵的方法,a-1=a*/|a|,a*是a的余子矩阵的转置2.如果只求j(f)中的一列,?(y)/?(xi)=-[?(f)/?(y)]-1* [?(f)/?(xi)]3.如果只求j(f)中的一行或者一个元素,问题退化成隐函数偏导的问题4.计算?f/?x时,忽略y是x的函数,将y当作自变量计算(从证明中可以看出原因,因为?y/?x的成分被移到了等式左侧j(f)里面),而不用偏导公式,采取对f(x,y)=0左右同时对xi求偏导的方法时,y要看做xi的函数)3.隐向量值函数的反函数:函数y=f(x)将rn映射至rm,如果j(f)= ?f/?x可逆,那么存在f的反函数x=f-1(y),且j(f-1)=[j(f)]-1注:1.求逆矩阵用伴随矩阵的方法,a-1=a*/|a|,a*是a的余子矩阵的转置2.|j(f-1)|=|j(f)|-1用参数形式给出的隐函数若有x=x(u,v),y=y(u,v),z=z(u,v),则需要列方程求曲面和曲线的切平面、法线、法向量三维空间下,函数f(x,y,z)=0确定了一个曲面。
北京清华大学附属中学2023-2024学年九年级上学期期中数学试题及参考答案
2023~2024学年度第一学期九年级期中练习数学一、选择题(每题2分,共16分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.2. 如图,点A ,B ,C 均在⊙O 上,∠BOC =100°,则∠BAC 的度数为( ).A. 70°B. 60°C. 50°D. 40°3. 将抛物线212y x =向左平移1个单位长度,得到的抛物线是( ) A. 2112yx =+ B. 2112yx =− C. 21(1)2yx =+ D. 21(1)2y x =− 4. 将一元二次方程28100x x −+=通过配方转化为()2x a b +=的形式,下列结果中正确的是( ) A. ()246x −=B. ()286x −=C. ()246x −=−D. ()2854x −=5. 一元二次方程2630kx x −+=有两个不相等的实数根,则k 的取值范围是( ) A. 3k <B. 3k <且0k ≠C. 3k ≤D. 3k ≤且0k ≠6. 如果点()12,M y −,()22,N y 在抛物线22y x x =−+上,那么下列结论正确的是( )A. 12y y <B. 12y y >C. 12y y =D. 无法确定7. 如图,在同一坐标系中,二次函数2y ax c =+与一次函数y ax c =+的图象大致是( )A. B. C. D.8. 使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系2y ax bx c ++(a ≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A. 18°B. 36°C. 41°D. 58°二、填空题(每题2分,共16分)9. 点M (2,-4)关于原点对称的点的坐标是______.10. 写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.11. 若二次函数22y x x k =−+图象与x 轴只有一个公共点,则k =__________.12. 如图,AB 是O 的直径,弦CD AB ⊥,垂足为E ,如果20AB =,6OE =,那么弦CD 的长为______.13. 如图所示,在O 中,已知100AOB ∠=°,则ACB =∠______°.14.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为的211040y x =−+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF =________.15. 如图,在平面直角坐标系xOy 中,△CDE 可以看作是△AOB 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB 得到△CDE 的过程:__________.16. 某快餐店价目表如下: 菜品 价格 汉堡(个) 21元 薯条(份) 9元汽水(杯)12元 1个汉堡+1份薯条(A 套餐) 28元 1个汉堡+1杯汽水(B 套餐)30元1个汉堡+1份薯条+1杯汽水(C 套餐) 38元小明和同学们一共需要10个汉堡,5份薯条,6杯汽水,那么最低需要________元.三、解答题(17题8分,18题3分,19至23题每题5分,24至26题每题6分,27至28题的每题7分)17. 解方程: (1)x 2﹣4x ﹣5=0; (2)2x 2﹣2x ﹣1=0.18. 已知1x =是关于x 的方程2223x ax a ++=的一个根,求代数式()215a a a a −++的值.19. 已知二次函数243y x x =−+.(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象; x…123 4 …y…31−…(2)写出该函数顶点坐标______.(3)根据图象回答:当03x ≤<时,y 的取值范围是______.20. 如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE ,连接CD ,BE ,DE ,(1)依题意补全图形(2)求证:AEB ADC △≌△;(3)若105ADC ∠=°,求BED ∠的度数.21. 已知关于x 的一元二次方程2(2)(3)0x m x m +−+−=. (1)求证:方程总有两个实数根;(2)若此方程有一个负数根,求m 的取值范围.22. 如图,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC 、BC .(1)求证:CAO BCD ∠=∠.(2)若3BE =,8CD =,求O 的直径.23. 如图,二次函数21y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为(3,0)−,点C 的坐标为(0,3)−,一次函数2y mx n =+的图象过点A 、C .(1)求二次函数的解析式;(2)直接写出二次函数的图象与x 轴的另一个交点B 的坐标; (3)根据图象,直接写出21y y <时,x 的取值范围.24. 如图,当90ACB ∠=°时,求作直线l 上一点P ,使45APB ∠=°。
北京市清华大学附属中学数学一元一次方程单元测试卷(含答案解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。
清华大学微积分-PART1
1
微积分
讲课教师 陆小援
Tel: 62782327
E-mail: xylu@
2019/8/14
2
参考书目:
1. 《微积分教程》 韩云瑞等
清华大学出版社
2. 《一元微积分》 萧树铁 主编
高教出版社
3. 《微积分学习指导》韩云瑞等
清华大学出版社
f 1 的 值 域 是f 的 定 义 域D.
2019/8/14
30
[例2] 设 y f ( x) sin x 则 f :[ , ] [1, 1] 严格单调
22 有反函数
x f 1( y) arcsin y y [1, 1]
[例3] y e x (, ) (0, )
在函数定义中,要求函数是单值的,即
x1 x2 f ( x1 ) f ( x2 ) 但 是, x1 x2 , 不 一定 有 f ( x1 ) f ( x2 )
如果 x1 x2 f ( x1 ) f ( x2 )
则 在 定 义 域D与 值 域 f (D) 之 间 就 有 如下 关 系
有 理 数c". 2019/8/14
13
二、函数概念
存在
唯一
定义: 设 D R为 非 空 数 集.
如 果 x D , 按 确 定 的 规 则f , !实 数
y 与 之 对 应, 记 作 y f ( x).则 称 f 为 定 义
在D上 的 一 个 函 数.
或记 f : D R
x —自变量, y —因变量, D —定义域.
可以确定一个函数y f (g( x)),则称
这个函数为由f 与g 构成的复合函数.
清华学子中考数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. √-12. 已知等差数列{an}中,a1=3,d=2,则a10=()A. 15B. 17C. 19D. 213. 在△ABC中,若∠A=30°,∠B=45°,则sinC=()A. √2/2B. √3/2C. 1/2D. 1/√24. 下列函数中,定义域为全体实数的是()A. y=1/xB. y=√xC. y=x^2D. y=lgx5. 已知函数f(x)=x^3-3x,则f(x)的对称中心是()A. (0,0)B. (1,0)C. (2,0)D. (-1,0)6. 下列不等式中,正确的是()A. x^2 > 0B. x^2 ≥ 0C. |x| > 0D. |x| ≥ 07. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,3)D. (3,-2)8. 若等比数列{an}中,a1=2,q=3,则S5=()A. 162B. 128C. 81D. 549. 在△ABC中,若∠A=60°,∠B=45°,则△ABC的面积是()A. 1/2B. √3/2C. √2/2D. 110. 下列命题中,正确的是()A. 对称轴是图形的对称轴B. 对称中心是图形的对称中心C. 对称轴和对称中心是图形的对称轴和对称中心D. 对称轴和对称中心是图形的对称元素二、填空题(每题5分,共50分)11. 若等差数列{an}中,a1=1,d=2,则an=______。
12. 在△ABC中,若∠A=90°,∠B=30°,则sinC=______。
13. 函数f(x)=2x-1的图像是______。
14. 已知函数f(x)=|x|+1,则f(-2)=______。
15. 在平面直角坐标系中,点P(3,4)关于原点的对称点为______。
微积分习题集带参考答案(2)
微积分习题集带参考答案一、填空题(每小题4分,本题共20分) ⒈函数x x x f -++=4)2ln(1)(的定义域是]4,1()1,2(-⋃--.⒉若24sin lim0=→kxxx ,则=k 2 .⒊曲线xy e =在点)1,0(处的切线方程是1+=x y . ⒋=+⎰e 12d )1ln(d d x x x 0.⒌微分方程1)0(,=='y y y 的特解为xy e =.6函数24)2(2-+=+x x x f ,则=)(x f 62-x .7.当→x 0时,xx x f 1sin)(=为无穷小量. 8.若y = x (x – 1)(x – 2)(x – 3),则y '(1) = 2-. 9.=+-⎰-x x x d )135(1132.10.微分方程1)0(,=='y y y 的特解为xy e =.11.函数x x x f 2)1(2+=+,则=)(x f 12-x .1⒉=∞→xx x 1sinlim 1 . 1⒊曲线x y =在点)1,1(处的切线方程是2121+=x y . 1⒋若⎰+=c x x x f 2sin d )(,则=')(x f in2x 4s -.1⒌微分方程x y xyy cos 4)(7)5(3=+''的阶数为 5 .16.函数74)2(2++=+x x x f ,则=)(x f 32+x .17.若函数⎩⎨⎧=≠+=0,,2)(2x k x x x f ,在0=x 处连续,则=k 2 .18.函数2)1(2+=x y 的单调增加区间是).1[∞+-. 19.=⎰∞-dx e x 0221. 20.微分方程x y xy y sin 4)(5)4(3=+''的阶数为 4 .21.设函数54)2(2++=+x x x f ,则=)(x f 12+x .22.设函数⎪⎩⎪⎨⎧=-≠+=0,10,2sin )(x x k xx x f 在x = 0处连续,则k =1-.23.曲线1e )(+=xx f 在)2,0(点的斜率是 1 . 24.=+-⎰-x x x d )235(113 4 .25.微分方程0)(42=+'+'''y y y x 的阶数是 3 .26.函数)2ln(1)(-=x x f 的定义域是 答案:2>x 且3≠x .27.函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃-- 28.函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f29.若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k 30.函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f31.函数1322+--=x x x y 的间断点是 .答案:1-=x32.=∞→xx x 1sin lim .答案:133.若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 34.曲线1)(+=x x f 在)2,1(点的切斜率是 答案:2135.曲线xx f e )(=在)1,0(点的切线方程是 .答案:e x y +=36.已知x x x f 3)(3+=,则)3(f '= .答案:3ln 33)(2xx x f +=', )3(f '=27()3ln 1+37.已知x x f ln )(=,则)(x f ''= .答案:x x f 1)(=',)(x f ''=21x - 38.若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(,='')0(f 2-39.函数的单调增加区间是 .答案:),1(+∞40.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a 二、单项选择题(每小题4分,本题共20分) ⒈设函数x x y sin =,则该函数是( A ).A .偶函数B .奇函数C .非奇非偶函数D .既奇又偶函数⒉当=k ( C )时,函数⎩⎨⎧=≠+=0,,2)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .3 ⒊下列结论中( C )正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .函数的极值点一定发生在其驻点上.C .)(x f 在0x x =处不连续,则一定在0x 处不可导.D .函数的极值点一定发生在不可导点上.⒋下列等式中正确的是( D ).A . )cos d(d sin x x x = B. )1d(d ln xx x = C. )d(d xxa x a = D.)d(2d 1x x x=⒌微分方程x y y x y sin 4)(53='''+''的阶数为( B ) A. 2; B. 3; C. 4; D. 5 6.数)1ln(1)(-=x x f 的定义域是( C ).A .),1(+∞B .),1()1,0(+∞⋃C .),2()2,1(+∞⋃D .),2()2,0(+∞⋃ 7.曲线1e2+=xy 在2=x 处切线的斜率是(D ).A .2B .2e C .4e D .42e 8.下列结论正确的有( B ). A .若f '(x 0) = 0,则x 0必是f (x )的极值点B .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0C .x 0是f (x )的极值点,则x 0必是f (x )的驻点D .使)(x f '不存在的点x 0,一定是f (x )的极值点 9.下列无穷积分收敛的是(A ). A .⎰∞+-02d ex xB . ⎰∞+1d 1x xC .⎰∞+1d 1x xD . ⎰∞+0d in x x s10.微分方程x y x y y ln cos )(2)4(3=+''的阶数为(D46lim 222----→x x x x 4523lim )2)(2()2)(3(lim 22=--=+-+-=-→-→x x x x x x x x ). A. 1; B. 2; C. 3; D. 411.设函数x x y sin 2=,则该函数是( D ).A .非奇非偶函数B .既奇又偶函数C .偶函数D .奇函数 12.当0→x 时,下列变量中为无穷小量的是( C ). A .x 1 B .x x sin C .)1ln(x + D .2xx 13.下列函数在指定区间上单调减少的是( B ).A .x cosB .x -5C .2x D . x21⒋ 设c x xx x f +=⎰ln d )(,则=)(x f ( C ). A. x ln ln B. x x ln C. 2ln 1xx - D. x 2ln 1⒌下列微分方程中,(A )是线性微分方程.A .x y y x y xln e sin ='-''B .xxy y y e 2=+'C .yy x y e ='+''D . y y yx '=+ln 216.设函数x x y sin =,则该函数是(B ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 17.当+∞→x 时,下列变量为无穷小量的是( A ).A .xxsin B .)1ln(x + C .x x 1sin D . x x +118.若函数f (x )在点x 0处可导,则( D )是错误的.A .函数f (x )在点x 0处有定义B .函数f (x )在点x 0处连续C .函数f (x )在点x 0处可微D .A x f x x =→)(lim 0,但)(0x f A ≠19.若)0()(>+=x x x x f ,则='⎰x x f d )(( C ).A. c x x ++23223 B. c x x ++2C. c x x ++D. c x x ++232322120.下列微分方程中为可分离变量方程的是(B )A.)(ln d d y x x y ⋅=; B. x y x y+=e d d ; C. y x x y e e d d +=; D. )ln(d d y x xy += 21.函数x x y ln 41+-=的定义域为(D ). A .0>x B .4≠x C .0>x 且1≠x D .0>x 且4≠x 22.曲线x x f ln )(=在e =x 对应点处的切线方程是( C ).A. x y e 1=B. 1e 1-=x yC. 1e 1+=x yD. 1e e1+-=x y23.下列等式中正确的是(D ).A . )cos d(d sin x x x = B. )1d(d ln xx x = C. )d(d xx a x a = D. )d(2d 1x x x=24.下列等式成立的是(A ). A .)(d )(d dx f x x f x =⎰B .)(d )(x f x x f ='⎰C .)(d )(d x f x x f =⎰D .)()(d x f x f =⎰ 25.下列微分方程中为可分离变量方程的是(B )A.y x x y +=d d ; B. y xy x y +=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy += 26.设函数2e e xx y +=-,则该函数是(B ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数27.下列函数中为奇函数是(C).A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +28.函数)5ln(4+++=x x xy 的定义域为( D ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 29.设1)1(2-=+x x f ,则=)(x f (C )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x30.当=k (D )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .331.当=k (B )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1-32.函数233)(2+--=x x x x f 的间断点是(A )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点33.若x x f xcos e )(-=,则)0(f '=( C ).A. 2B. 1C. -1D. -234.设,则( B ).A .B .C .D .35.设)(x f y =是可微函数,则=)2(cos d x f (D ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '-36.若3sin )(a x x f +=,其中a 是常数,则='')(x f (C ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos37.函数2)1(+=x y 在区间)2,2(-是( D )A .单调增加B .单调减少C .先增后减D .先减后增 38.满足方程0)(='x f 的点一定是函数)(x f y =的(C ). A .极值点 B .最值点 C .驻点 D . 间断点 39.下列结论中( A )不正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点可能发生在不可导点上. 40.下列函数在指定区间上单调增加的是(B).A .x sinB .xe C .2x D .x -3三、计算题(本题共44分,每小题11分)⒈计算极限2386lim 222+-+-→x x x x x .原式214lim )1)(2()2)(4(lim22-=--=----=→→x x x x x x x x⒉设x x y 3cos ln +=,求y d .)sin (cos 312x x x y -+=' x x x xy d )cos sin 31(d 2-=⒊计算不定积分x x d )12(10⎰-x x d )12(10⎰-= c x x x +-=--⎰1110)12(221)12(d )12(21 ⒋计算定积分x x d ln 2e 1⎰x x d ln 2e 1⎰-=21ln e x x 1e 1e e 2d 222e 12+=+-=⎰x xx5.计算极限46lim 222----→x x x x . 6.设x x y 3cos 5sin +=,求y d .)sin (cos 35cos 52x x x y -+='x x x 2cos sin 35cos 5-=x x x x y d )cos sin 35cos 5(d 2-= 7.计算不定积分⎰+-x xxx x d sin 33 ⎰+-x x x x x d sin 33= c x x x +--cos 32ln 3238.计算定积分⎰π0d sin 2x x x⎰πd sin 2x x x 2sin 212d cos 21cos 21000πππππ=+=+-=⎰x x x x x 9.计算极限623lim 222-++-→x x x x x .原式5131lim )3)(2()2)(1(lim22=+-=+---=→→x x x x x x x x 10.设xx y 2cos +=,求y d .2ln 221sin x xxy +-='x xxy x d )2sin 2ln 2(d -=11.计算不定积分x x d )12(10⎰-x x d )12(10⎰-= c x x x +-=--⎰1110)12(221)12(d )12(2112.计算定积分⎰π20d sin x x x⎰20d sin πx x x +-=20cos πx x 1sin d cos 2020==⎰ππx x x13.计算极限234lim 222+--→x x x x .原式412lim )1)(2()2)(2(lim22=-+=---+=→→x x x x x x x x 14.设x y xcos 2+=,求y dxx y x 21sin 2ln 2⋅-=' .x xxy x d )2sin 2ln 2(d -=15.计算不定积分x x x d e ⎰-解:x xe x d ⎰-= ce xe x e xe x x x x +--=+-----⎰d16.计算定积分x x x d ln 113e 1⎰+ 解:x x x d ln 113e 1⎰+2ln 12)ln 1d(ln 113311=+=++=⎰e e xx x17. 计算极限423lim 222-+-→x x x x解:原式41)2)(2()2)(1(lim2=+---=→x x x x x 18. 计算不定积分x xx d )1(2⎰+解:x xx d )1(2⎰+= c x x x ++=++⎰32)(132)d(1)1(219.计算极限932lim 223---→x x x x . 解:原式32)3)(3()1)(3(lim3=+-+-=→x x x x x 20.设xy x 1e1+=+,求y '. 解: 2111(21e x x y x -+='+21.计算不定积分x x x d e 112⎰解:c x x x x x x +-=-=⎰⎰1112e 1d e d e 122.计算定积分x x x d cos 2⎰π解:x x x d cos 20⎰π=20sin πx x -x x d sin 20⎰π=20cos 2ππx +=12-π23.423lim 222-+-→x x x x .解:4121lim )2)(2()1)(2(lim 423lim22222=+-=+---=-+-→→→x x x x x x x x x x x x 24.329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x 25.4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x 26.计算极限x x x 11lim0--→.解:)11(11lim)11()11)(11(lim 11lim 000+---=+-+---=--→→→x x x x x x x x x x x x 21)11(1lim 0-=+--=→x x 27.计算极限x x x 4sin 11lim0--→解:x x x 4sin 11lim 0--→)11(4sin 11lim)11(4sin )11)(11(lim 00+---=+-+---=→→x x x x x x x x x 81)11(4sin 44lim )11(4sin lim 00-=+--=+--=→→x x x x x x x x 28.设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x29.设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=30.设x y x 2e1+=+,求y '. 解:2121(21exx y x -+='+31.设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 32.设)(x y y =是由方程422=-+xy y x 确定的隐函数,求y d .解:方程两边对x 求导,得0)(22='+-'+y x y y y xxy x y y --='22于是得到x x y xy y d 22d --=33.设2e e cos y x y x =++,求y d .解:方程两边对x 求导,得y y y x y x '='++-2e e sinyx y yx2e e sin --=' 于是得到x yx y y xd 2e e sin d --=34.求微分方程yx y +='e 的通解解:将原方程分离变量 x y xy d e ed =x y x y d e d e =-两端积分得通解为C x y +=--e e35.求微分方程y y y x ln ='满足e )1(=y 的特解.解:将原方程分离变量x x yy yd ln d = 两端积分得 lnln y = ln C x通解为 y = e Cx将e )1(=y 代入通解,得1=C ,故特解为y = e x36.求微分方程xx y y ln 1=-'的通解. 解 此方程为一阶线性微分方程,且xx Q x x P ln 1)(,1)(=-=, 则方程的通解为)ln (ln )d ln 1()d e ln 1(e d 1d 1C x x C x xx x C x x y x x xx +=+=+⎰⎰=⎰⎰-37.求微分方程12+=+'x x y y 满足初始条件47)1(=y 的特解.解 此方程为一阶线性微分方程,且1)(,1)(2+==x x Q xx P ,则方程的通解为)2141(1)d )1((1)d e)1((e242d 12d 1C x x x C x x x x C x x y xx xx ++=++=+⎰+⎰=⎰⎰-将初始条件47)1(=y 代入通解,得1=C ,于是满足初始条件的为 )12141(124++=x x x y 四、应用题1.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 解:设底边的边长为x ,高为h ,用材料为y ,由已知22108,108xh h x ==x x xx x xh x y 432108442222+=⋅+=+= 令043222=-='x x y ,解得6=x 是唯一驻点, 且04322263>⨯+=''=x x y , 说明6=x 是函数的极小值点,所以当6=x ,336108==h2.用钢板焊接一个容积为43m 的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 解:设水箱的底边长为x ,高为h ,表面积为S ,且有24x h = 所以,164)(22xx xh x x S +=+= 2162)(x x x S -=' 令0)(='x S ,得2=x ,因为本问题存在最小值,且函数的驻点唯一,所以,当1,2==h x 时水箱的表面积最小. 此时的费用为 1604010)2(=+⨯S (元)3.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 解:设长方体底边的边长为x ,高为h ,用材料为y ,由已知22108,108xh h x == x x xx x xh x y 432108442222+=⋅+=+= 令043222=-='x x y ,解得6=x 是唯一驻点, 因为问题存在最小值,且驻点唯一,所以6=x 是函数的极小值点,即当6=x ,336108==h 时用料最省. 4.某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底半径与高各为多少时可使用料最省?解:设容器的底半径为r ,高为h ,则其表面积为S ,由已知h r V 2π=,于是2r Vh π=,则其表面积为 rVr rh r S 2π2π2π222+=+= 22π4rV r S -=' 令0='S ,解得唯一驻点3π2V r =,由实际问题可知,当3π2V r =时可使用料最省,此时3π4V h =,即当容器的底半径与高分别为3π2V 与3π4V时,用料最省.5、欲用围墙围成面积为216平方米的一快矩形的土地,并在中间用一堵墙将其隔成两块矩形(如图所示),问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?解:设土地一边长为x ,另一边长为x216,共用材料为y于是 y =3x x x x 43232162+=+ 24323xy -='令0='y 得唯一驻点12=x (12-=x 舍去) 因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为12,另一边长为18时,所用材料最省.6、欲做一个底为正方形,容积为108立方米的长方体开口容器,问该容器的底边和高为多少时用料最省?解:设底边的边长为x ,高为h ,用材料为y ,由已知22108,108xh h x ==x x xx x xh x y 432108442222+=⋅+=+=令043222=-='x x y ,解得6=x 是唯一驻点,且04322263>⨯+=''=x x y ,说明6=x 是函数的极小值点,所以当6=x ,336108==h 时用料最省。
清华大学微积分期末试题
期末样题参考解答一、填空题(15空45分,答案直接填写在横线上)1.积分⎰⎰xdy xy f dx 03)(在极坐标下的累次积分为 。
答案:⎰⎰=θπθθθcos 30240)sin cos (rdr r f d2.设平面闭域}1|||| :),{(≤+=y x y x D ,则积分()=+⎰⎰Ddxdy yx x )sin(12。
答案:2==⎰⎰Ddxdy3.已知函数),(y x f 在{}10 ,10 :),(≤≤≤≤=y x y x D 上具有连续偏导数,且x x f cos 2)1,(=,⎰⎰=Ddxdy y x f 1),(,则⎰⎰=∂∂Ddxdy yy x f y),( 。
答案:11sin 2-4.计算积分值⎰⎰=-1)1ln(yydx xx dy。
答案:⎰⎰⎰-=--=-=101041)1ln()1()1ln(2dx x x dy x x dx x x5. 设}2:),,{(22≤≤+=Ωz y x z y x ,则=++⎰⎰⎰Ωdxdydz z y x )( 。
答案:ππθπ4222302020====⎰⎰⎰⎰⎰⎰⎰Ωdz z zrdr dz d zdxdydz z6. 设L 是xy 平面上以)1,1(),1,1(),1,1(--C B A 为顶点的三角形周边构成的曲线, 则第一型曲线积分=-⎰Lds y x )(22 。
答案:07. 设S 为上半球面222y x R z --=,则第一型曲面积分=++⎰⎰SdS z y x )( 。
答案:3222R dxdy zRzzdS R y x S π===⎰⎰⎰⎰≤+ 8. 设L 为xy 平面上的曲线10,2≤≤=x e y x ,起点为)1,0(,终点为),1(e , 则第二型曲线积分=+⎰Lydy xdx 。
答案:2222),1()1,0(22),1()1,0(22e y x y x d e e =+=⎪⎪⎭⎫ ⎝⎛+=⎰ 9.设32),,(z xy z y x f =,则在1===z y x 点=)],,(div[grad z y x f 。
一元微积分高难度习题
第一章、极限与连续 1.求21)]1x x x -→+∞+-。
2。
求n 0≥x )。
3. 设3214lim1x x ax x l x →---+=+,求常数,a l 。
4。
求已知()0lim x f x →存在,且3x →=,求()0lim x f x →.5。
极限sin sin sin lim sin x t xt xt x -→⎛⎫⎪⎝⎭,并记此极限为()f x ,求函数()f x 的间断点并指出其间断类型。
6。
求常数,a b ,使()1,0, 011arctan , 1-1x x f x ax b x x x ⎧<⎪⎪⎪=+≤≤⎨⎪⎪>⎪⎩在所定义的区间上连续. 7。
设()()21211lim ,1n n n n n x a x f x a x ax +→∞+--=--为常数,求()f x 的分段表达式,并确定常数a 的值,使()f x 在[0,)+∞上连续. 8.设101=x , n n x x +=+61( ,3,2,1=n ),试证数列{}n x 极限存在,并求此极限。
第二章、导数1.设⎪⎩⎪⎨⎧=≠=.0),0(,0,)()(x f x x x f x F 其中)(x f 在0=x 处可导,0)0(≠'f ,0)0(=f ,则的是 )( 0x F x =( )(A )连续点; (B )第一类间断点; (C )第二类间断点; (D )不能确定。
2.函数x x x x x f ---=32)2()(不可导点的个数是( ). (A)3; (B)2; (C)1; (D)0。
3.⎪⎩⎪⎨⎧≤>-=,0 ),(,0 ,cos 1)(2x x g x x xxx f 其中)(x g 是有界函数,则)(x f 在0=x 处( )(A )极限不存在;(B )极限存在但不连续;(C )连续但不可导;(D )可导。
4.设x x x x f -=2)(,则)(x f ( )(A )处处不可导;(B )处处可导;(C )有且仅有一个不可导点;(D )有且仅有两个不可导点。
高等数学一元微积分学课后练习题含答案
高等数学一元微积分学课后练习题含答案概述高等数学一元微积分是大学数学中的重要课程,掌握好微积分理论和应用,对于理解和学习后续相关数学课程都有非常重要的作用。
在学习一元微积分的过程中,做好练习题也是非常重要的一环。
因此,本文档提供了一些高等数学一元微积分学课后练习题和答案,供大家练习和参考,希望能够帮助大家更好地掌握这门课程。
练习题与答案题目 1已知点A(0,1)和点B(2,5),则过点 A 且斜率为 3 的直线方程为?答案利用两点式,设所求直线方程为y=kx+1,则有:$$ k = \\frac{y_2 - y_1}{x_2 - x_1} = \\frac{5 - 1}{2 - 0} = 2 $$因为所求直线的斜率为 3,所以有k=3,代入上式得:y=3x+1所以答案为y=3x+1。
题目 2已知函数f(x)=x3−6x2+11x−6,求其零点。
答案为了求出函数f(x)的零点,我们需要通过解方程f(x)=0来得到。
对于一个三次函数,我们可以通过因式分解或利用根的判别式来求解。
首先,我们尝试对f(x)进行因式分解:f(x)=x3−6x2+11x−6=(x−1)(x−2)(x−3)因此,函数f(x)的零点为x=1,2,3。
题目 3求函数f(x)=x3−3x+2在[−1,2]上的最大值和最小值。
答案为了求出函数f(x)在[−1,2]上的最大值和最小值,我们需要使用微积分中的极值定理。
首先,求出函数f(x)的导数:f′(x)=3x2−3=3(x+1)(x−1)f′(x)在[−1,1]上是负数,在(1,2]上是正数,因此,f(x)在x=1处取得极大值,f(x)在x=−1和x=2处取得极小值。
当x=−1时,有f(−1)=(−1)3−3(−1)+2=6,即最小值为 6。
当x=1时,有f(1)=13−3(1)+2=0,即最大值为 0。
当x=2时,有f(2)=23−3(2)+2=4,即最小值为 4。
因此,函数f(x)在[−1,2]上的最大值为 0,最小值为 4。
清华大学微积分习题(有答案版)
第十二周习题课一.关于积分的不等式 1. 离散变量的不等式 (1)Jensen不等式:设)(x f 为],[b a 上的下凸函数,则1),,,2,1),1,0(],,[1==∈∀∈∀∑=nk k k k n k b a x λλΛ,有2),(11≥≤⎪⎭⎫ ⎝⎛∑∑==n x f x f k nk k k n k k λλ (2)广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得1),,,2,1),1,0(,01==∈∀>∑=nk k k k n k x λλΛ,有∑==≤∏nk k k k nk x x k11λλ当),2,1(1n k nk Λ==λ时,就是AG 不等式。
(3)Young 不等式:由(2)可得设111,1,,0,=+>>q p q p y x ,qyp x y x q p +≤11。
(4)Holder 不等式:设111,1,),,,2,1(0,=+>=≥qp q p n k y x k k Λ,则有 qnk q k pn k p k n k k k y x y x 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===在(3)中,令∑∑======nk qk n k p k p k p k y Y x X Y y y X x x 11,,,即可。
(5) Schwarz 不等式:211221121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===nk k nk k n k k k y x y x 。
(6)Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有()pnk p k pnk p k pnk p k k y x y x 111111⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤⎥⎦⎤⎢⎣⎡+∑∑∑=== 证明:()()()()()∑∑∑∑=-=-=-=+++=+⋅+=+nk p k k k nk p k k k nk p k k k k nk pk ky x y y x x y x y x y x1111111记111,11=+>-=qp p p q ,由Holder 不等式 ()()()qnk p q k k pnk p k qnk p q k k pnk p k nk p k ky x y y x x y x11)1(1111)1(111⎥⎦⎤⎢⎣⎡+⋅⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡+⋅⎪⎭⎫ ⎝⎛≤+∑∑∑∑∑=-==-==()q n k p k k p n k p k p n k p k y x y x 111111⎥⎦⎤⎢⎣⎡+⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑=== 即:()pnk p k pnk p k pnk p k ky x y x 111111⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤⎥⎦⎤⎢⎣⎡+∑∑∑===。
一元微积分数学函数题库有答案
一元微积分数学函数题库有答案一元微积分学数学(1) 函数一、 填空题: 1. 函数 y=arcsin 92-x定义域是:310103-≤≤-⋃≤≤x x2.设y=f (x)的定义域是[0,1],则复合函数f (sinx)的定义域是:z k k x k ∉+≤≤,22πππ.3.函数33+=x y 的值域是 0≤y ≤+∝ . 4.函数)1,0(11≠>+-=a a ax ax y 的反函数是:axa xy +-=1. 5.函数12+-=x y 在区间 ]0,(-∞ 内是单调增加的.在区间)0[∞+,内是单调减少.6.设21)1(x x x f ++=,(x>o ),则)(x f =xx 211++.7.设1)(-=x x x f ,则))(((x f f f =1-x x, ))((x f f = x . 8.函数⎪⎩⎪⎨⎧+∞<<≤≤<<-∞=x x x x x y x 4,241,1,2的反函数y=⎪⎩⎪⎨⎧+∞<≤≤≤<<-∞.16,log ,161,,1,2x x x x x x. 二.选择题:1. 在同一直角坐标系中,函数 与它的反函数说代表的曲线具有的性质是(D )(A) 关于y 轴对称; (B) 关于x 轴对称; (C)重合; (D) 关于直线y=x 对称.2.下列几对函数中,)(x f 与)(x g 相同的是(C ).(A )2lg )(x x f =与x x g lg 2)(= (B )x x f =)(与2)(x x g = (C )2)(x x g =与2)(x x g = (D )1)(=x f 与xxx g =)( 3.已知的定义域为则的定义域是(C )(A )[-a,3a] (B) [a,3a] (C) {a} (D) {-a} 4.如果1)(-=x x x g ,那么))(1(x f f 的表达式是(B )(A) x-1 (B)1-x (C)xx 1- (D) 都不是 三.设函数)(x f y =是线性函数,已知,3)1(,1)0(-==f f 求此函数. 解:设f(x)=ax+b,则有0+b=1, a+b=-3,解得a= -4,b=1.四.证明函数1)(2+=x xx f 在它的整个定义域内是有界.证明:f(x)的定义域为R.xx x x1112+=+因为2111,21≤+≥+xx xx 所以所以: 函数1)(2+=x xx f 在它的整个定义域内是有界 五.试讨论函数21121)(+-=xx f 的奇偶性. 解:21121)(+-=xx f 21121)(+-=--xx f 211211+-=x 212211+-=xx 21212+-=x x 2121211+-+-=xx 212111+-+-=x21211--=x )(x f -= 所以 21121)(+-=xx f 偶函数. 一元微积分学题库(2) 数列的极限一.判断题:1.如果数列{n u }以A 为极限,那么在数列{n u }增加或去掉有限项之后,说形成的新数列{n u }仍以阿A 为极限. ( T )2.如果0lim =∞→n n n v u ,则有0lim =∞→n n u 或0lim =∞→n n v( F )3.如果a a n n =∞→lim ,且存在自然数N ,当n>N 时恒有n a <0,则必有a<0. ( F )4.如果n n a ∞→lim ,n n b ∞→lim 均不存在,则有)(lim n n n b a +∞→必不存在. ( F )一元微积分学题库(3) 函数的极限,无穷大,无穷小一. 选择题:下列题中其条件对其结论来说是(A)充分但非必要条件; (B)必要但非充分条件; (C)充分必要条件: (D)既非充分又非必要条件; 1.条件a a n n =∞→lim ,b b n n =∞→lim .结论b a b a n n n +=+∞→)(lim (A )2.条件)(lim 0x f a n -→和)(lim 0x f a n +→都存在.结论)(lim x f an →存在 (B )3.条件)(lim x f an →和)(lim x g an →都存在.结论 )]()([lim x g x f an +→存在. (A )4.条件f(x)在a 的某个邻域内单调有界.结论)(lim x f an →存在. (D )三.求0)(,)(→==x xx x g x xx f ,当时的左右极限,并说明它们在x →0时的极限是否存在?解:xxx f =)(=1,所以1)(lim 0=→x f x .⎩⎨⎧><-==.0,1,0,1)(x x x xx g 所以 1)(lim 00-=-→x g x , 1)(lim 00=+→x g x 显然≠-→)(lim 00x g x )(lim 00x g x +→,故)(lim 0x g x →不存在.五.证明:函数 xx y 1cos 1=在区间(0,1]上无界,但当x →+0时,这函数不是无穷大.证明:1. 取+∞→∈=k N k k x 当),(21π时,x x y 1cos 1==+∞=πk 2 所以 x x y 1cos 1=在区间(0,1]上无界.2.取0),(21+→+∞→∈+=x k N k k x 时,当ππ, x x y 1cos 1==021⋅+ππk =0 即在0的任何邻域都不可能有M xx y >=1cos 1(M>0)成立. 所以当x →+0时,这函数不是无穷大.一元微积分学题库(4) 极限的求法一. 判断题:下列运算是否正确:0)(lim .12=∞-∞=--∞→x x x n(F).1)53(lim )32(lim 5332lim .24343=∞∞=++=++∞→∞→∞→x x x x x x x(F)0lim 2lim 1lim )21(lim .3222222=+⋅⋅⋅++=+⋅⋅⋅++∞→∞→∞→∞→nnn n n n n n n n n n (F )二.计算下列极限:1.x x xx x x 2324lim 2230++-→解:xx x x x x 2324lim 2230++-→ =23124lim 20++-→x x x x =21 2.)2141211(lim n n +⋅⋅⋅+++∞→解:)2141211(lim n n +⋅⋅⋅+++∞→=211)21(1lim--∞→nn =23.)1111(lim 31xx x ---→ 解:设31111)(x x x f ---=,则311111)(1x x x f ---=因为2313111lim 11111lim )(1lim x x x x x x f x x x +-=---=→→→=0,所以∞=→)(lim 1x f x即:∞=---→)1111(lim 31xx x 从而时,当,10,1lim .40-∞→-→→x x x arctgx 从而时,当,10,21lim 0+∞→+→-=-→x x x arctgx π)(.1lim ,21lim 00T xarctg x arctgx x 不存在所以→+→=π4.x x x 11lim-+→ 解:xx x 11lim-+→ =)11()11()11(lim++⋅++⋅-+→x x x x x=)11(lim++⋅→x x x x=111lim++→x x=21 5.xarctgxx ∞→lim解:因为 22ππ<<-arctgx 所以arctgx 为有界函数.而 xx 1lim∞→=0, 由有界函数与无穷小的乘积是无穷小知.xarctgxx ∞→lim =06.)(lim x x x x x -+++∞→解:)(lim x x x x x -+++∞→=xx x x x x x x x x x x x ++++++⋅-+++∞→)()(lim=xx x x x x x x x +++-+++∞→)(lim=xx x x x x x +++++∞→lim=xxx 111111lim+++++∞→=21 7.)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→解:)1()1)(1(lim 2n n x x x +⋅⋅⋅++∞→=x x x x x n n -+⋅⋅⋅++-∞→1)1()1)(1)(1(lim 2=xx n n --∞→11lim 2=x-11 三.已知a x f x a x x x x f x 存在,求且)(lim ,3,3,3)(3→⎩⎨⎧<+≥-= 解:)(lim 03x f x +→=3lim3-+→x x =0,)(lim 03x f x -→=)(lim 03a x x +-→=3+a,)(lim 3x f x →存在,即:)(lim 03x f x +→=a x f x +==-→3)(lim 003所以. 3-=a .一元微积分学题库(5)极限存在准则 两个重要极限 无穷小的比较一、 判断题:1. 因为0→x 时,tgx~x,sinx~x,所以 0lim sin lim 330=-=-→→xxx xtgx x x x (F ) 2. 222)21(lim )2(lim e xx x xx x x =+=+•∞→∞→ (T)3. 1sin lim )sin (lim sin lim=⋅=⋅=→→→x xx tgx x x x tgx x tgx x x x πππ (F)二、计算下列极限1. xxx 5sin 2sin lim 0→解:x x x 5sin 2sin lim 0→=)525sin 522sin (lim 0⋅⋅→x x x x x =⋅→x x x 22sin lim 0⋅→x x x 5sin 5lim 052=522. xctgx x 0lim →解:xctgx x 0lim →=)cos sin (lim 0x x x x ⋅→=)sin (cos lim 0x x x x ⋅→=⋅→x x cos lim 0xxx sin lim 0→=13. xx xx sin 2cos 1lim0-→解:x x x x sin 2cos 1lim 0-→=xx x x sin sin 2lim 20⋅→=x x x sin 2lim 0→=x x x sin lim 20→⋅=24. xx x 1sin lim ∞→解:x x x 1sin lim ∞→=x x x 11sinlim∞→=xx x11sinlim 01→=1. 5. kx x x)11(lim -∞→解:kx x x )11(lim -∞→=)()()11(lim k x x x -•-∞→--+=k x x x --∞→--+])11[(lim =ke - 6. xx x x )11(lim -+∞→ 解:x x x x )11(lim -+∞→=x x x x ]12)1([lim -+-∞→=x x x )121(lim -+∞→=1221)2111(lim +•-∞→-+x x x=)]2111()2111[(lim 221-+⋅-+•-∞→x x x x =2e . 二、 证明:当x →0时,下列各对无穷小量是等价的 1.x arctgx ~证明:设A=arctgx,则 x=tgA, 当0→x 时,0→A . xarctgx x 0lim→=tgA AA 0lim →=12.1-cosx ~ 22x证明:2cos 1lim 20x x x -→=2)2sin(2lim 220x xx ⋅→=2202)2(2)2sin(2lim x x x ⋅⋅→=2202)2()2sin(lim x x x →=1. 四、证明:0)2124321(lim =-⋅⋅⋅⋅∞→nn n 用两边夹法则:(解法一)设F(n)= nn 2124321-⋅⋅⋅⋅>0 则2)2124321()(nn n F -⋅⋅⋅=22222)2()12(4321n n -⋅⋅⋅⋅=1)2()12(14312122222--⋅⋅⋅-⋅-<n n )12()12()12(75353122+⋅--⋅⋅⋅⋅⋅⋅=n n n121+=n 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.(解法二):设F(n)=nn 2124321-⋅⋅⋅⋅>0 因为 nn n n 112-<--(n 为自然数), 所以有F(n)< 12254322124321+⋅⋅⋅⋅⋅-⋅⋅⋅⋅n n n n=n21 设 g(n)=0, h(n)= 121+n , 则g(n)=0 < F(n) < h(n).显然0)(lim =∞→n g n ,0)(lim =∞→n h n ;由极限存在准则I 知:0)(lim =∞→n F n .证毕.另解:设F(n)=nn 2124321-⋅⋅⋅⋅( 0<F(n)<1 ), 则F(n+1)= 122)(+⋅n nn F ,有F(n+1)<F(n).所以F(n)为单调有界数列,由极限存在准则II 知F(n)有极限.设A n F n =∞→)(lim .则有)1(lim +∞→n F n =))(1(lim n F n nn ⋅+∞→ )1(lim +∞→n F n =1+n n)(lim n F n ∞→⋅A=1+n nA , A=0. 即0)(lim =∞→n F n .证毕.五、设2112,,2,1,10n n n x x x n x -=⋅⋅⋅=<<+,证明数列}{n x 的极限存在,并求其极限.证明: 212n n n x x x -=+ 2211n n x x -+-=2)1(1n x --= ]))1(1(1[1221-----=n x 221)1(1---=n x 322)1(1---=n x = (1)21)1(1---=k x因为 ,101<<x 所以 ,10<<n x 因为 212n n n x x x -=+所以)1(1n n n n x x x x -=-+>0 即: n n x x >+1 所以}{n x 为单调有界数列,由极限存在准则II 知}{n x 有极限. A x n n =∞→lim , 则有 )2(lim lim 21n n n n n x x x -=∞→+∞→,A=2A--2A ,解得:A=1 或A=0(舍去,因为}{n x 为递增数列且01>x .)所以 1lim =∞→n n x一元微积分学题库(6) 函数的连续性一. 判断题1.21))12)(12(1...5*313*11(lim =+-+++∞→n n n ( T ) 2.设)(x f 在0x 点连续,则)lim ()(lim 0x f x f x x x x →→=( T )3.如果函数)(x f 在],[b a 上有定义,在],[b a 上连续,且<)(*)(b f a f 0,则在),(b a 内至少存在一点ξ,使得)(ξf = 0( T )4.若)(x f 连续,则)(x f 必连续. ( T )5.若函数)(x f 在],[b a 上连续且恒为正,则)(1x f 在],[b a 上必连续. ( T )6.若a x f x x =→)(lim 0,且0>a ,则在0x 的某一邻域内恒有0)(>x f .( F )7.0=x 是函数xx x f 1sin )(=的振荡间断点.( F )二. 填空题:1.-→ππx xx sin lim(1-) 2. =∞→x xx sin lim( 0 ) 3. =+--+-→123lim2312x x x x x x ( ∞ ) 4. 0=x 是xe xf 1)(=的第(二)类间断点.三. 求xx x x sin 10sin 1tan 1lim ⎪⎭⎫⎝⎛++→解:xx x x sin 10sin 1tan 1lim ⎪⎭⎫ ⎝⎛++→=()()1sin 1tan 1lim sin 1sec cot 0==++→ee x x xxx x 四. 求函数4tan()1()(π-+=x xx x f 在)2,0(π内的间断点,并判断其类型.解:)(x f 在()π2,0内的间断点有:4π=x ,43π=x ,45π=x ,47π=x因为 ),(lim 4x f x π→)(lim 45x f x π→不存在,,1)(lim 43=→x f x π1)(lim 47=→x f x π所以43π=x ,47π=x 是)(x f 的第一类(可去)间断点; 4π=x ,45π=x 是)(x f 的第二类间断点.五. 设1lim )(2212+++=-∞→n n n x bxax x x f ,(1)求)(x f ;(2)当)(x f 连续时,求b a ,的值.解:(1) n n n n xx bx ax x f 2122231lim )(---∞→+++= ∴ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<+-=-+-=++>=112112111)(2x bx ax x b a x b a x x x f(2) )(x f 连续21)1(11lim)(lim 0101ba f x x f x x ++====+→+→1=+⇒b a 21)1(11lim )(lim )01()01(b a f x x f x x -+-====--→--→1-=-⇒b a∴⎩⎨⎧==1b a .一元微积分学题库(7) 连续函数的性质一.计算下列极限: 1.2321lim4--+→x x x 解:原式= )321)(4()2)(921(lim4++-+-+→x x x x x =321)2(2lim4+++→x x x =342.22011lim xx x +-→ 解:原式=2220)11(lim x x x x ++→=)11(lim 20x x ++→=2 3.x x x sin lnlim 0→ 解:原式=)sin limln(0xxx →=01ln = 4.ctgx x tgx )31(lim 0+→解:原式=tgxx tgx 33)31(lim +→=331])31(lim [tgx x tgx +→=3e5.145lim1---→x xx x解:原式=)45)(1()1(4lim1x x x x x +---→=xx x +-→454lim1=26.xe x x 1lim 0-→解:令t e x =-1,得)1ln(+=t x ,当0,0→→t x 时 原式=)1ln(limt tt +→=tt t 10)1ln(1lim+→=])1(lim ln[110tt t +→=1ln 1=e二.证明方程b x a x +=sin 至少有一个不超过b a +的正根(其中0,0>>b a ). 证明:设x b x a x f -+=sin )(,则)(x f 在],0[b a +上连续. 又0)0(>=b f ,0]1)[sin()(≤-+=+b a a b a f . 若0)(=+b a f ,则结论成立.若0)(<+b a f ,则由零点定理0)(),0(=+∈∃ξξf b a 使得. 三.设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得ξξ=)(f .证明:设x x f x F -=)()(,则)(x F 在]1,0[上连续. 又0)0(0)0()0(≥=-=f f F ,01)1()1(≤-=f F 若0)1(0)0(==F F 或,则结论成立.若0)1(0)0(<>F F 或,则由零点定理0)()1,0(=∈∃ξξf 使得.四.设)(x f 在),(b a 上连续,且B x f x f bx ax ==-+→→)(lim )(lim 00,又存在),(1b a x ∈使 B x f >)(1.证明)(x f 在),(b a 上有最大值. 证明:取),(1B x f -=ε1δ∃, 当10δ<-<a x 时, B x f B x f -<-)()(1. 即 当),(1δ+∈a a x 时,)()(1x f x f <.2δ∃, 当02<-<-b x δ时, B x f B x f -<-)()(1. 即 当),(2b b x δ-∈时,)()(1x f x f <.若21δδ->+b a ,)(1x f 为最大值),(1b a x ∈.若21δδ-≤+b a ,)(x f 在],[21δδ-+b a 上连续,必有最大值. )()(10x f x f ≥, ],[210δδ-+∈b a x .∴在),(b a 上)(x f 取得最大值)(0x f .一元微积分学题库(8) 导数的概念一. 选择题:1. 设f ′ (x)存在,a 为常数,则ha h x f a h x f h )()(lim0--+→等于(C ). (A) f ′(x) ; (B) 0 ; (C) )('2x f a; (D) )('2x f .2. 在抛物线23x y =上,与抛物线上横坐标11=x 和22-=x 的两点连线平行的切线方程是(B ).(A) 12x-4y+3=0; (B)12x+4y+3=0; (C) 4x+12x+3=0; (D)12x+4y+1=0.3. 将一个物体铅直上抛,设经过时间t 秒后,物体上升的高度为22140gt t s -=,则物体在3秒时的瞬时速度为(B ).(A) g 2340-; (B) 40-3g ; (C) 0 ; (D) g 29120-.4. 若函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f 在x=0处 (B). (A) 连续且可导; (B )连续,不可导;(C )不连续; (D )都不是.二.设函数⎩⎨⎧>+≤=1,1,)(2x b ax x x x f 在处x=1可导,求a 和b. 解:)(x f 在x=1处可导∴)(x f 在x=1处连续,可得 )(lim )(lim 0101x f x f x x -→+→= 即 1=+b a (1)又)(x f 在x=1处可导, 可得1)1()(lim 1)1()(lim0101--=---→+→x f x f x f x f x x 即 211lim 11lim20101=--=--+-→+→x x x b ax x x (2) 由(1),(2)得 2=a , 1-=b . 三.设5323)(xx x x f =,求)('x f .解: 67)(x x f =, 由幂函数的导数公式可得6167)('x x f =.四.已知⎩⎨⎧≥<=0,0,sin )(x x x x x f ,求)('x f .(提示:分段点x=0处的导数用导数的定义求)解: 当x=0时, 令0-=x h , 1sinhlim )0()0(lim 00==-+--→→hh f h f h h ;1lim )()0(lim00==-+++→→h hhx f h f h h . 所以 1)0('=f∴ ⎩⎨⎧≥<=0,10,cos )('x x x x f 五.设f(x)在),(+∞-∞上有连续导函数.证明f(x)为偶函数的充要条件是:)('x f 为奇函数(充分性的证明用到不定积分的概念,只证必要性).证明: 对于∀ ),(0+∞-∞∈x 则有),(0+∞-∞∈-x 依题意 令0x x h -=有 h x f h x f x f h )()(lim)('0000-+=→;hx f h x f x f h )()(lim)('0000--+-=-→;)(x f 为偶函数).(')()(lim)('00000x f hx f h x f x f h -=--=-∴→一元微积分学题库(9) 求导法与复合函数求导一. 填空题:1. 曲线xx y 1-=与x 轴交点的切线方程是)1(2±=x y .2. 曲线2sin 2x x y +=在横坐标x=0点处的切线方程是x y 2=,法线方程是x y 21-=.3. 设x x y ln 1ln 1+-=,则2)ln 1(2'x x y +-=. 4. 设x x y 2sin =,则22sin 2cos 2'xxx x y -=. 5. 设)(cos )(sin 22x f x f y +=,则x x f x x f y 2sin )(cos '2sin )(sin ''22-=. 二. 求下列函数的导数. 1. 52322+-=xx y .解: 3222246)'2()'3()'523('x x x x x x y +=-=+-=.2. x x y cos 2=.解: )'(cos cos )()'cos ('222x x x x x x y +==x x x x sin cos 22-=. 3. x x y cos sin ⋅=.解: x x x x y 2cos )'2sin 21()'cos (sin '==⋅=.4. )13(2+-=x x e y x .解: )'13()13('22+-++-=x x e x x e y x x )3213(2-++-=x x x e x )2(2--=x x e x .5. 110110+-=x x y .解: 2)110()110(10ln 10)110(10ln 10'+--+=x x x x x y2)110(10ln 102+⋅=x x . 三.求导数:1. x y 2ln 1+=,求'y . 解: x x x x x y 222ln 1211ln 2ln 121)'ln 1('+⋅⋅=+⋅+= xx x 2ln 1ln +=.2. 2ln x tgy =,求dx dy. 解: x x x x x x tg y csc sin 12cos 2sin 212sec 2121'2==⋅=⋅⋅=.3. t t y cos 1sin 1-+=,求dtdy.解: 2)cos 1()'cos 1()sin 1()cos 1()'sin 1('t t t t t y --⋅+--⋅+=222)cos 1(sin cos sin cos t t t t t ----= 2)cos 1(1sin cos t t t ---=. 四.已知)2523(+-=x x f y ,2arctan )('x x f =,求0=x dx dy. 解: 令2523+-=x x u ,则 22)2523()25()23(5)25(3)('''+-⋅+--+=⋅=x x arctg x x x u f u y ===140arctg dxdy x π.一元微积分学题库(10) 复合函数求导(二) 高阶导数一. 求下列函数的导数: 1. )21arcsin(2x y -=. 解:2222124)21(11)'21('xx x x x y --=--⋅-=.⎪⎪⎩⎪⎪⎨⎧<<--<<--=01,1210,1222x xx x2.xe y arcsin=.解: xxe xxe x y arcsinarcsin1121)'(arcsin '⋅-⋅=⋅=2arcsin2xx e x -=.3.3212tt arctgy +=. 解: 1444)21()21(82)212(11)'212('23623233233++++⋅+-=++⋅+=t t t t t t tt tty 1444822363+++-=t t t t .4.242arcsinx xx y -+=. 解: 22422)2(11212arcsin 'xx xx x y ---⋅⋅+=)4242(22arcsin 22x x x x ---+=2arcsin x =. 5.xey 1sin 2-=.解: x xe x x xe x y 1sin 21sin 222)1cos 1sin 2(1)'1sin ('--⋅⋅-⋅-=⋅-=x e x x 1sin 222sin-⋅=.二. 求下列函数的二阶导数:1. )1ln(2x y -=.解: 212'x x y --=, 222222)1()1(2)1(22)1(2''x x x x x x y -+-=-⋅---=. 2. arctgx x y )1(2+=.解: 1211)1(2'22+=+⋅++=xarctgx x x xarctgx y , 2122''xx arctgx y ++=. 3. x xe y =.解: x x xe e y +=', x x x x x xe e xe e e y +=++=2''. 三. 求函数x x y ln =的n 阶导数. 解: 1ln '+=x y ,x y 1''=,21'''x y -=,3)4(2x y =, 一般地,可得 ⎪⎩⎪⎨⎧≥--=+=-2,)!2()1(1,1ln 1)(n x n n x y n n n . 四. 设)()()(2x a x x f ϕ-=,其中)('x ϕ在点a 的邻域内连续,求)(''a f . 解: )(')()()22()('2x a x x a x x f ϕϕ-+-=.ax x a x x a x a x a f x f a f a x a x --+-=--=→→)(')()()22(lim )(')('lim )(''2ϕϕ)('x ϕ在点a 的邻域内连续 ∴)(')('lim a x ax ϕϕ=→∴0)(lim )(')(')(lim2=-=--→→a x a ax x a x a x a x ϕϕ. )(20)(2lim )(''a x a f ax ϕϕ=+=→.一元微积分学题库(11) 隐函数求导法一. 求由下列方程所确定的隐函数y 的导数dxdy. 1. y xe y -=1.解: )'('yye xy e y +-=, 即 yyxee y +-=1' 其中y 是由方程y xe y -=1所确定的隐函数. 2. )(y x tg y +=.解: )(sec )'1('2y x y y +⋅+=, 即 221'yy y +-=. 其中y 是由方程)(y x tg y +=所确定的隐函数. 3. 0922=+-xy y .解: 0'22'2=--xy y y y , 即 xy y y -='. 其中y 是由方程0922=+-xy y 所确定的隐函数. 二. 用对数函数求导法求下列函数的导数'y : 1. 22x ctg xtg y =.解: 先两边取对数(假定422πππk x k +<< . ,2,1,0±±=k ) 得 x tg xctg y 2ln 2ln ⋅=. 则)2ln 2csc 21222sec 2('122x tg xx ctg x ctg x y y -⋅⋅=. )2ln 2csc 21222sec 2(2'222x tg xx ctgx ctg x x tg y xctg -⋅⋅=. 当2)1(42πππ+<<+k x k 时,用同样的方法可得与上面相同的结果. 2. 55225+-=x x y .解: 先两边取对数(假定5>x ) 得)]2ln(51)5[ln(51ln 2+--=x x y .对上式两边对x 求导,得)2125151(51'12+⋅⋅--=x x x y y .即 ])2(5251[2551'2552+--+-=x xx x x y . 当5<x 时,用同样的方法可得与上面相同的结果.三. 求下列函数的二阶导数22dxyd .1. ⎩⎨⎧==tb y t a x sin cos .解: t a bt a t b dtdx dt dy dx dy cot sin cos -=-==,t a b t a t a b dtdx t a b dt d dx y d 32222sin sin 1csc 1)cot (-=-⋅=⋅-=.2. 已知⎩⎨⎧-==)()(')('t f t tf y t f x 这里)(''t f 存在且不为零.解: )(''t f 存在且不为零 ∴t t f t f t tf t f dx dy =-+=)('')(')('')(', )(''122t f dxy d =. 四. 设⎪⎩⎪⎨⎧+=+=tt t y tt x 4522,证明y=y(x)在t=0时dx dy 存在,并求其值. 证明: 原方程可化为 02=-x y . 当0=t 时0=x ,.0)0()(lim lim )0()(lim 0200=-==--+→→→hf h f h h h f h f h h h 一元微积分学题库(12) 微分一. 选择题:1. 已知x y 2tan =,则dy 等于(C).(A) 2tgxdx ; (B)tgxdx x212+ ; (C) xdx tgx 2sec 2 ; (D) x tgx 2sec 2. 2. 一元函数连续是可导的(A );一元函数可导是可微的(C ). (A )必要条件; (B )充分条件;(C )充要条件; (D )既非充分条件又非必要条件. 2. 函数x x x x x f ---=32)2()(不可微点的个数是(B ). (A ) 3; (B) 2; (C) 1; (D) 0. 二.填空题:1. 已知函数2)(x x f =在点x 处的自变量的增量2.0=∆x ,对应的函数增量y ∆的线性主部是8.0-=dy ,那末自变量的始值为2-. 2. )](ln ln[ln 32x y =,则dx xx dy ln ln ln 2-=.3. xdx c x d 3cos )sin 31(=+; dx e c e d xx22)2(--=+-;dx xc xd 1)2(=+; dx x c x d 11))1(ln(-=+-. 三. 利用微分求近似值:ο59cos .解: 180359ππο-=. 这里x ∆较小应用(p150)(2)式,得1803sin3cos)1803cos(59cos πππππο⋅+≈+=5151.01802321=⋅+=π. 四. 已知测量球的直径D 时有1%的相对误差,问用公式36D V π=计算球的体积时,相对误差有多少?解: 我们把测量D 时所产生的误差当作自变量D 的增量D ∆,那么,利用公式36D V π=来计算V 时所产生的误差就是函数V 的对应增量V ∆.当V∆很小时,可以利用微分dV 近似地代替增量V ∆,即D D D V dV V ∆⋅=∆⋅=≈∆22'π.其相对误差 %3)(3=∆=∆=D VV V s v . 五. 求由方程t t s st =-+)ln()sin(所确定的隐函数s 在t=0处的微分ds .解: 对方程两边关于t 求导,得11')cos()'(=--++t s s st s t s . 当 t=0时, 得 1'2++-=s s s .又对原方程, 当 t=0时, 得 0ln =s 即 s=1.1111=++-=∴dt ds一元微积分学题库(13)中值定理一.选择题:1.下列函数中,满足罗尔定理条件的是(B ).(A)()[];1,1,132-∈-=x x x f (B)()()[];8,0,42∈-=x x x f(C)()];3,1[,3-∈=x x x f(D)()[].1,10,00,1sin 2-∈⎪⎩⎪⎨⎧=≠=x x x xx x f 2.对于函数()332x x f -=,在区间[]1,0上满足拉格朗日中值定理的点ξ是(A).(A)21; (B)31±; (C)31; (D)1. 二. 应用导数证明恒等式:()112arccos arcsin ≤≤-=+x x x π.(注意:对1±=x处的讨论)证:令()x x x f arccos arcsin +=当()1,1-∈x 时,()()()01111'arccos 'arcsin '22=---=+=xxx x x f()C x f =∴(C 为常数). 特别地,取0=x ,则求得()20π==f C当1-=x 时,()221πππ=+-=-f当1=x 时,()2021ππ=+=f∴ 当[]1,1-∈x 时,2arccos arcsin π=+x x三. 设0>>b a ,证明:bba b a a b a -<<-ln .证:设()x x f ln =,在],[a b 上利用拉格朗日中值定理,有:()()a b b a b a <<==--ξξξ1'ln ln lnba 111<<ξ∴bba b a a b a -<<-ln . 四. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根.证:反证法.设()b x x x f +-=33,且在区间[]1,1-上有两个以上实根,其中两个分别记为21,x x ,不妨设1121≤<≤-x x ,则()()021==x f x f ,由罗尔定理,在()1,1-内至少有一点ξ,使()0'=ξf . 而()33'2-=x x f 在()1,1-内恒小于0,矛盾.命题成立.五. 构造辅助函数,证明不等式e e ππ>.证:设()x x f ln =,则在区间[]π,e 上,()ππln =f ,().1=e f 根据拉格朗日中值定理,在()π,e 内至少存在一点ξ使()()()()πξξξππ<<==--e f e e f f ,1'即()ξππe -+=1ln 又πξ<<e()()e e e ππξππ=-+<-+=∴11lnππ<∴ln e 即ππe e <六. 设函数()x f 和()x g 在[]b a ,上存在二阶导数,且(),0''≠x g()()()()0====b g a g b f a f ,证明 (1) 在(a,b)内()0≠x g ;(2) 在(a,b)内至少存在一点ξ,使()()()()ξξξξ''''g f g f =. 证:(1)反证法.设(a,b )内存在一点1x 使0)(1=x g ,则在[]1,x a 上有g(a)=g(x 1)=0,由罗尔定理知在(a,x 1)内至少存在一点ξ1使'g (ξ1)=0. 同理在(x 1,b)内也至少存在一点ξ2使'g (ξ2)=0. ∵'g (ξ1)='g (ξ2)=0∴由罗尔定理,在(ξ1,ξ2)内至少存在一点3ξ使0)(''3=ξg ,这与0)(''≠x g 矛盾,故在()b a ,内()0≠x g . (3) 令)(')()(')()(x f x g x g x f x F -=由题设条件可知,F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理可知,存在()b a ,∈ξ使得()0'=ξF 即()()()()0''''=-ξξξξg f g f 由于()()0'',0≠≠ξξg g ,故()()()()ξξξξ''''g f g f =. 一元微积分学题库(14)罗必塔法则一. 求下列极限:1. xe e x x x cos 12lim 0--+-→解:原式=2cos lim sin lim00=+=--→-→xe e x e e xx x x x x 2. 0lim→x xxx 3sin arcsin -解:原式=0lim →x cos sin 311122=--x x x 0lim →x ()()xx x x x sin cos 9sin 321212232+---- =0lim→x xx sin 0lim→x ()xx 2232cos 931+----=61- 3.0lim →x xctgx解:原式=0lim→x x xsin 0lim →x x cos =1 4.tgxx x ⎪⎭⎫ ⎝⎛+→1lim 0 解:令tgxx y ⎪⎭⎫⎝⎛=1,则ctgx x x tgx y ln ln ln -=-= 0lim +→x =y ln 0sin lim csc 1lim ln lim 20200===-+→+→+→xx x x ctgx x x x x ∴lim +→x y=e 0=1 5.⎪⎭⎫ ⎝⎛--→x x xx ln 11lim 1 解:原式=()()21111lim 1ln 11ln lim ln 11ln lim 2111=+=-+-+=---→→→xx xx x x x x x x x x x x x 一元微积分学题库(15)函数的单调性一. 填空题:1.函数y=(x-1)(x+1)3在区间)5.0,(-∞内单调减少,在区间),5.0(+∞内单调增加.2.函数2x ax x y -= (a>0)在区间)43,0(a 内单调增加,在区间),43(a a 内单调减少.3.函数7186223---=x x x y 在区间),3()1,(+∞⋃--∞内单调增加,在区间(-1, 3)内单调减少. 4. 函数xx x y 6941023+-=在区间(0.5,1)内单调增加,在区间()),1()5.0,0(0,+∞∞- 内单调减少.二. 证明下列不等式: 1. 当4>x 时,22x x >.证:令22)(x x f x -=,则0)4(=f .x x f x 22ln 2)('-=,082ln 16)4('>-=f2)2(ln 2)(''2-=x x f ,显然,当4>x 时,0)(''>x f )('x f ∴在区间),4(+∞内单调增加. 又0)4('>f)('x f ∴在区间),4(+∞内恒大于零. 又0)4(=f)(x f ∴在区间),4(+∞内大于零.即当4>x 时,02)(2>-=x x f x 即22x x >. 2. 当20π<<x 时,x tgx x 2sin >+.证:令x tgx x x f 2sin )(-+= 2sec cos )('2-+=x x x f)1sec 2(sin sec 2sin )(''32-=+-=x x x tgx x x f 显然,当20π<<x 时,0)(''>x f)('x f ∴在)2,0(π内单调增加.又)0('f =0)('x f ∴在)2,0(π内大于零.)(x f ∴在)2,0(π内单调增加.而)0(f =0 )(x f ∴在)2,0(π内恒大于零. 即当20π<<x 时,02sin )(>-+=x tgx x x f即.2sin x tgx x >+ 3. 当20π<<x 时,x x x <<sin 2π证:令x x x f sin )(=,则2sin cos )('x xx x x f -=. 令x x x x g sin cos )(-=,则)20(0sin )('π<<<-=x x x x g .)(x g ∴在此区间内单调减少.)('x f ∴在此区间内也单调减少.而()02sin lim sin cos lim0'020=-=-=→→x xx xx x x f x x )('x f ∴在)2,0(π内小于0.)(x f ∴在)2,0(π内单调减少.∴xxx f sin )(=在区间的两端取得极大极小值.即ππ2)2(1sin lim)0(0===→f xxf xx x x <<∴sin 2π三. 证明方程sinx=x 只有一个根.证:令x x x f -=sin )(,则01cos )('≤-=x x f . )(x f ∴在),(+∞-∞内单调减少.∴f(x)=sinx-1=0至多有一个根.而f(0)=0, 0)(=∴x f 有且只有一个根. 即方程sinx=x 只有一个根.一元微积分学题库(16)函数的极值一. 填空题:1. 函数3443x x y -=在1=x 处取得极小值.2. 已知函数322)1()5(+-=x x y 当=x -1或5时,y=0为极小值;当x=0.5时, y=318881为极大值. 3.已知bx ax x x f ++=23)(在x=1处有极值-2,则a=0,b=-3,y=f(x)的极大值为2; 极小值为-2.二. 求下列函数的极值: 1. ()()23321--=x x y解:)12)(32()1(5'2++-=x x x y)188)(1(10''2-+-=x x x y令0'=y 得三驻点:5.0,5.1,1321-=-==x x x . 当1>x 时,0'>y ,当15.0<<-x 时,0'>y . 11=∴x 处为非极值点.当5.12-=x 时,,0''<y 取得极大值,其值为0. 当5.03-=x 时,0''>y ,取得极小值,其值为-13.5. 2. x e y x cos =解:)sin (cos 'x x e y x -=,令0'=y ,得驻点4ππ+=k x (k 为整数).x e y x sin 2''-=∴当42ππ+=k x 时,,0''<y x 在该处取得极大值,其值为4222ππ+=k ey 当452ππ+=k x 时,,0''>y x 在该处取得极小值,其值为45222ππ+-=k ey 三. 试问a 为何值时,函数x x a x f 2sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求出此极值.解:x x a x f 2cos 32cos )('+=,令0)('=x f ,则02cos 32cos =+x x a即x x a cos /2cos 32-=3π=x 时)(x f 取得极值.323cos /32cos 32=-=∴ππax x x x a x f 2sin 34sin 322sin 34sin )(''--=--=0332sin 343sin 32)3(''<-=--=πππf)(x f ∴在3π=x 处取得极大值,其值为23. 四. 设q px x x f +-=3)(,q p ,为实数,且0>p(1) 求函数的极值.(2) 求方程03=+-q px x 有三个实根的条件.解:(1) p x x f -=23)(',令0)('=x f 得3p x ±=,而x x f 6)(''= 31px =∴处取得极小值,其值为q p +-23)3(231px -=处取得极大值,其值为q p +23)3(2 (2)由上述的讨论我们可以看出,)(x f 仅有 ),3(),3,3(),3,(+∞---∞p p p p 三个单调区间,由介值定理及区间 单调性知:方程要有三个实根,必须满足在这三个单调区间上各有一个实根,也就是说,极小值应小于或等于0同时极大值应大于或等于0(等于0时含重根).即0320322323≥+⎪⎭⎫⎝⎛≤+⎪⎭⎫⎝⎛-q p q p即当23233232⎪⎭⎫⎝⎛≤≤⎪⎭⎫ ⎝⎛-p q p 时,方程有三个实根.五. 一个无盖的圆柱形大桶,已规定体积为V,要使其表面积为最小,问圆 柱的底半径及高应是多少?解:设圆柱的底半径为R,高为h ,则h R V 2π=,R V R Rh R S /2222+=+=πππ表0/222=-=R V R dRdS π表则3πVR =32/RV R V h ==π 六. 设)(x f 在[]1,0上二阶可微,0)1()0(==f f ,且2)(max 10=≤≤x f x .证明存在 )1,0(∈ξ,使得()16''-≤ξf .证:将)1(),0(f f 在x 取得极大值处展开一阶泰勒公式(设此时0x x =)201000)0(!2)('')0(!1)(')()0(x f x x f x f f -+-+=ξ,010x <<ξ202000)1(!2)('')1(!1)(')()1(x f x x f x f f -+-+=ξ,120<<ξx 0)1()0(,0)(',2)(00====f f x f x f ,两式相加得:8)1)(('')(''202201-=-+x f x f ξξ令()(){}21'',''min )(''ξξξf f f =,则16212128)(''8)122)((''20020-≤+⎪⎭⎫ ⎝⎛--≤-≤+-x f x x f ξξ一元微积分学题库 (17) 最大值 最小值 凹凸性 拐点一、求下列函数的最大值和最小值: 1.)41( 3223≤≤--=x x x y-11234-2-11函数在所给区间内可导,因此可令 066)(2=-='='x x x f y 解得 1 ,0==x x而 104)4( ,1)1( ,0)0( ,5)1(=-==-=-f f f f 所以函数在区间]4,1[-上的最大值、最小值分别为104和-5. 2. )41( 718x -6223≤≤+-=x x x y-1123456-50-25255075100函数在所给区间内可导,因此可令18126)(2=--='='xxxfy解得)(1,3舍去-==xx而33)4(,47)3(,15)1(-=-=-=fff所以函数在区间]4,1[上的最大值、最小值分别为-47和-15.二、某车间靠墙壁盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?解:设宽为)200(<<xx米,则长为x220-米,因此,面积为xxS)220(-=显然,当5=x时,面积取最大值502m.三、求数项),2,1(=nnn中的最大项.解:246810121.11.21.31.4令 0)(x )(1>=xx x f 则 )ln 1()(21x xx f x-='-解得唯一驻点,e x = ,并且)(x f 在区间e] ,0[上单调递增,在区间] ,[∞+e 上单调递减,而332<所以数项),2,1( =n n n 中的最大项为33. 四、求下列函数的凹凸区间与拐点: 1. 53x 523++-=x x y 解:-2246-20-101020函数在定义域) ,(∞+-∞内阶导数存在,并且 3106)(2+-='='x x x f y 1012)(-=''=''x x f y因此,当)65 ,(-∞∈x 时,0<''y ,曲线为凸的,当) ,65(∞+∈x 时,0>''y ,曲线为凹的,点)216995,65(是曲线的拐点. 2. )1ln(2+=x y解:-4-2240.511.522.53函数在定义域) ,(∞+-∞内阶导数存在,并且 12)(2+='='x xx f y 22)1()1)(1(2)(x x x x f y ++-=''='' 因此,当)1- ,(-∞∈x 时,0<''y ,曲线为凸的,当) 1 ,1(-∈x 时,0>''y ,曲线为凹的,当) ,1(∞+∈x 时,0<''y ,曲线为凸的,点)ln2 ,1(±是曲线的拐点.五、证明112+-=x x y 有三个拐点位于同一直线上. 证明:-4-224-1.5-1-0.5函数在定义域) ,(∞+-∞内二阶导数存在,并且。
清华大学微积分习题课参考答案(微分法、方向导数与梯度、泰勒公式)
(x
+
y)
+
f
(x
−
y)
+
∫ x+y x− y
g (t )dt
其中函数
f
具有二阶导数
g
具有一阶导
数,求 , . ∂2u , ∂2u ∂x2 ∂y2
∂2u ∂x∂y
解:因为 , ∂u ∂x
=
f
′(x +
y) +
f
′(x
−
y) +
g(x
+
y) −
g(x −
y)
, ∂u
∂y
=
f ′(x +
y) −
f ′(x −
. x(z
+
y)x
−1
(
∂z ∂y
+ 1)
=
x
所以 . ∂z ∂y
(1,2)
=
0
( )设函数 由方程 确定,求 . 2
z = z(x, y)
x + y − z = ez
∂z
∂x(1,0)
解:将 y 看作常数, z 看作是 x 的函数,在 x + y − z = ez 两端关于 x 求导,得
. 1 −
r2 cos2 θ
−
∂f ∂x
r
cosθ
−
∂f ∂y
r sinθ
, ∂2u = ∂2 f
∂z2 ∂z2
微积分 B(2)
第 2 次习题课(By ) Huzm
6 / 12
所以
∂2u ∂r 2
+
1 r2
∂2u ∂θ 2
+
1 r
清华大学微积分第1次习题课答案
(5) lim
x y
x y . x xy y 2
2
解: (1) (2)
( x , y ) (1,0)
lim ( x y )
x y 1 x y 1
( x , y ) (1,0)
lim (1 ( x y 1))
1 ( x y 1) x y 1
2
因此 lim
x y =0. x x xy y 2 y
2
y 0 x 0 x 0 y 0 x 0 y 0
4.讨论下列函数的累次极限 lim lim f x, y , lim lim f x, y 与二重极限 lim f x, y
1 1 x sin y sin , x y 0 y x (1) f x, y = 0, x y 0 x2 y 2 (3) f ( x, y ) 2 2 . x y ( x y)2
即 U ( a, 0 ) f
1
(G ) ,即 f 1 (G ) 是 R n 中的开集,证毕。
Page 1
of 7
作者:闫浩, 章纪民
2014 年 3 月
二、多元函数的极限与连续 3. 下列极限是否存在?若存在,求出极限值;若不存在,说明理由。
(1)
( x , y ) (1, 0 )
lim ( x y )
n m m
f 1 (G ) {x R n | f ( x) G} 是 R n 中的开集。
证明: 由于 f : R R 是一个连续映射,由定义,有 a R , 0, 0 ,当
n m
n
d n ( x, a ) 时,有 d m ( f ( x), f (a )) 。
2024-2025学年清华大学附属中学九年级上学期9月月考数学试题及答案
2024—2025学年第一学期统一练习01数学(清华附中初22级)2024.09一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.以下是在棋谱中截取的四个部分,由黑白棋子摆成的图案是中心对称图形的是( )A. B. C. D.2. 如图,直线AB 、CD 相交于点O ,OC 平分,35,AOE BOD °∠∠=则∠BOE 的度数为( )A. 95°B. 100°C. 110°D. 145°3. 已知30m +< ) A. 33m m −<<−<B. 33m m <−<−<C. 33m m −<<<−D. 33m m <−<<−4. 若关于x 的一元二次方程2690kx x −+=有实数根,则k 的取值范围是( ) A 1k <B. 1k ≤C. 1k <,且0k ≠D. 1k ≤,且0k ≠5. 正六边形的外角和是( ) A. 720°B. 540°C. 360°D. 180°6. 2024年第33届巴黎奥运会是史上第一届男女比例完全平衡的奥运会,参赛的男女运动员分别为5250,5250名,本届奥运会的运动员总数用科学记数法表示为( ) A 35.2510×B. 45.2510×C. .41510×D. 41.0510×7. 如图,在菱形ABCD 中,点E 在边AD 上,射线CE 交BA 的延长线于点F ,若12AE ED =,3AB =,则AF 的长为( )..A. 1B.23C.32D. 28. 如图,在四边形ABCD 中,90B BCD ∠=∠=°,点E 在BC 上,CE BE <,连接AE 并延长交DC 的延长线于点F ,连接DE ,ABE ECD ≌. 给出下面三个结论:①AE DE ⊥;②AB CD AE +>;EF AD CF ⋅=⋅. 上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③二.填空题(本题共16分,每小题2分)9. 若代数式15x −有意义,则实数x 的取值范围是___________. 10. 因式分解:3269x x x ++=____________. 11. 方程1203x x −=+ 的解为 ______ . 12. 在平面直角坐标系xOy 中,一次函数()21y k x =−+的图象经过点()11,A y ,()22,B y ,如果12y y <,那么k 的取值范围是______.13. 某农科所试验田有3万棵水稻.为了考察水稻穗长的情况,于同一天从中随机抽取了50个稻穗进行测量,获得了它们的长度x (单位:cm ),数据整理如下: 稻穗长度 5.0x < 5.0 5.5x ≤< 5.5 6.0x ≤< 6.0 6.5x ≤< 6.5x ≥稻穗个数5816147根据以上数据,估计此试验田的3万棵水稻中“良好”(穗长在5.5 6.5x ≤<范围内)的水稻数量为__________万棵.14. 如图,直线AD ,BC 交于点O ,AB EF CD ∥∥,若5AO =,2OF =,3FD =,则BEEC的值为________.15. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量 2.4BE =米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)16. 车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表: 车床代号AB CD E修复时间(分钟) 15 8 29 710若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D BE A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是______(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为______元.三.解答题(本题共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17. 计算:()112024π12−−−−+18. 解不等式组()21581252x x x x +≤+−−<.19. 先化简,再求值:2226911x x x x x ⎛⎫-+⎪ ÷-⎪ --⎝⎭,其中5x =.20. 如图,四边形ABCD 的对角线AC ,BBBB 相交于点O ,BC ,EO 为矩形BECO 对角线,,BC AD AD EO =∥.(1)求证:四边形ABCD 是菱形;(2)连接BBDD ,若4,120AC BCD =∠=°,BBDD 的值. 21. 羽毛球运动深受大众喜爱,该运动的场地是一块中间设有球网的矩形区域,它既可以进行单打比赛,也可以进行双打比赛,下图是羽毛球场地的平面示意图,已知场地上各条分界线宽均为......4cm ,场地的长比宽的2倍还多120cm 包含分界线宽,单、双打后发球线(球网同侧)间的距离与单、双打边线(中线同侧)间的距离之比是12:7.根据图中所给数据,求单、双打后发球线间的距离.22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()()3,5,2,0A B −, 且与y 轴交于点 C .(1)求该函数的解析式及点C 的坐标;(2)当2x <时, 对于x 的每一个值, 函数3y x n =−+的值大于函数()0y kx b k =+≠的值,直接写出n 的取值范围.23. 小宇观看奥运会跳水比赛,对运动员每一跳成绩的计算方法产生了浓厚的兴趣,查阅资料后,小宇了解到跳水比赛的计分规则为:a .每次试跳的动作,按照其完成难度的不同,对应一个难度系数H ;b .每次试跳都有7名裁判进行打分(0~10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和两个最低分,剩下3个得分的平均值为这次试跳的完成分p ;c .运动员该次试跳的得分A =难度系数H ×完成分p ×3. 在比赛中,甲运动员最后一次试跳后的打分表为: 难度系数 裁判 1# 2# 3# 4# 5# 6# 7# 3.5 打分7.58.54.09.08.08.57.0(1)甲运动员这次试跳完成分P 甲= , 得分A 甲= ; (直接写出答案)(2)若按照全部7名裁判打分的平均分来计算完成分,得到的完成分为P 甲',那么与(1)中所得的P 甲比较,判断P 甲' P 甲 (填“>”,“=”或“<”)并说明理由;(3)在最后一次试跳之前,乙运动员的总分比甲运动员低13.1分,乙最后一次试跳的难度系数为3.6,若乙想要在总分上反超甲,则这一跳乙的完成分P 乙至少要达到多少分.24. 如图,在OAB △中,OA OB =,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作BD OB ⊥,交CE 的延长线于点D .(1)求证:DB DE =;(2)若12AB =,5BD =,求OA 的长.25. 某款电热水壶有两种工作模式:煮沸模式和保温模式,在煮沸模式下将水加热至100C °后自动进入保温模式,此时电热水壶开始检测壶中水温,若水温高于50C °水壶不加热;若水温降至50C °,水壶开始加热,水温达到100C °时停止加热……此后一直在保温模式下循环工作.某数学小组对壶中水量a (单位:L ),水温T (单位: C °)与时间t (单位:分)进行了观测和记录,以下为该小组记录的部分数据. 表1从20C °开始加热至100C °水量与时间对照表的a 0.5 1 1.5 2 2.5 3t4.5 8 11.5 15 18.5 22表2 1L 水从20C °开始加热,水温与时间对照表煮沸模式保温模式t 0 3 6m10 12 14 16 18 20 22 24 26 …T 20 50 80 100 89 80 72 66 60 55 50 55 60对以上实验数据进行分析后,该小组发现,水壶中水量为1L 时,无论在煮沸模式还是在保温模式下,只要水壶开始加热,壶中水温T 就是加热时间t 的一次函数.(1)写出表中m 的值;(2)根据表2中的数据,补充完成以下内容: ①在下图中补全水温与时间的函数图象; ②当60t =时,T = ;(3)假设降温过程中,壶中水温与时间的函数关系和水量多少无关.某天小明距离出门仅有30分钟,他往水壶中注入2.5L 温度为 20C °的水,当水加热至100C °后立即关闭电源.出门前,他 (填“能”或“不能”)喝到低于50C °的水.26. 在平面直角坐标系xOy 中,抛物线()222y x m x m =−++的对称轴为直线x t =. (1)求t 值(用含m 的代数式表示);(2)点()1,A t y −,()2,B t y ,()31,C t y +在该抛物线上.若抛物线与x 轴一个交点为()0,0x ,其中002x <<,比较1y ,2y ,3y 的大小,并说明理由.27. 在ABC 中,AB AC =,BAC α∠=,点D 是BC 中点,点E 是线段BC 上一点,以点A 为中心,将线段AE 逆时针旋转α得到线段AF ,连接EF .的的(1)如图1,当点E 与点D 重合时,线段EF ,AC 交于点G ,求证:点G 是EF 的中点;(2)如图2,当点E 在线段BD 上时(不与点B ,D 重合),若点H 是EF 的中点,作射线DH 交AC 于点M ,补全图形,直接写出AMD ∠的大小,并证明.28. 在平面直角坐标系xOy 中,对于线段a ,给出如下定义:直线11:3l y x b =+经过线段a 的一个端点,直线22:4l y x b =−+经过线段a 的另一个端点,若直线1l 与2l 交于点P ,且点P 不在线段a 上,则称点P 为线段a 的“双线关联点”.(1)已知,线段a 的两个端点分别为()0,2−和()0,5,则在点()()123413,3,1,1,,2,1,222P P P P−−,中,线段a 的“双线关联点”是___________: (2)()()12,,3,A m y B m y +是直线23y x =上的两个动点. ①点P 是线段AB 的“双线关联点”,其纵坐标为3,直接写出点P 的横坐标___________;②正方形CDEF 的四个顶点的坐标分别为()()()(),,,,3,,3,C t t D t t E t t F t t −−,其中0t >.若所有线段AB 的“双线关联点”中,有且仅有两个点在正方形CDEF 的边上,直接写出t 的取值范围___________.2024—2025学年第一学期统一练习01数学(清华附中初22级)2024.09一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.以下是在棋谱中截取的四个部分,由黑白棋子摆成的图案是中心对称图形的是( )A. B. C. D.【答案】D 【解析】【分析】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合. 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此判断即可.【详解】解:选项A 、B 、C 不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项D 能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:D .2. 如图,直线AB 、CD 相交于点O ,OC 平分,35,AOE BOD °∠∠=则∠BOE 的度数为( )A. 95°B. 100°C. 110°D. 145°【答案】C 【解析】【分析】本题考查的是对顶角性质,邻补角的性质,角平分线的定义,熟记邻补角之和为180°是解题的关键.先由对顶角性质求得35AOC ∠=°,再根据角平分线的定义求出AOE ∠,再根据邻补角之和为180°计算,即可得到答案.【详解】解:∵35AOC BOD ∠=∠=°, 又∵OC 平分AOE ∠, 270AOE AOC ∴∠=∠=°, 180110BOE AOE ∴∠=°−∠=°,故选:C .3. 已知30m +<,则下列结论正确是( ) A. 33m m −<<−< B. 33m m <−<−<C. 33m m −<<<−D. 33m m <−<<−【答案】D 【解析】【分析】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.根据不等式的性质,逐项判断即可求解. 【详解】解:∵30m +<, ∴3m <−, ∴3m −>, ∴33m m <−<<−,∴A ,B ,C 不符合题意;D 符合题意; 故选:D4. 若关于x 的一元二次方程2690kx x −+=有实数根,则k 的取值范围是( ) A. 1k < B. 1k ≤C. 1k <,且0k ≠D. 1k ≤,且0k ≠【答案】D 【解析】【分析】先根据一元二次方程的定义及根的判别式列出关于k 的不等式,求出k 的取值范围即可.本题主要考查了一元二次方程的定义,一元二次方程的根的判别式. 【详解】解: 关于x 的一元二次方程2690kx x −+=有实数根,∴()2Δ64936360k k =−−××=−≥,0k ≠,解得:1k ≤,且0k ≠ 故选:D .的5. 正六边形的外角和是( ) A. 720° B. 540° C. 360° D. 180°【答案】C 【解析】【分析】根据任何多边形的外角和是360度即可求出答案. 【详解】解:六边形的外角和是360°. 故选:C .【点睛】考查了多边形的外角和定理,任何多边形的外角和是360度.外角和与多边形的边数无关. 6. 2024年第33届巴黎奥运会是史上第一届男女比例完全平衡的奥运会,参赛的男女运动员分别为5250,5250名,本届奥运会的运动员总数用科学记数法表示为( ) A. 35.2510× B. 45.2510× C. .41510× D. 41.0510×【答案】D 【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中1||10,a n ≤<为整数,正确确定a 的值以及n 的值是解决问题的关键.科学记数法的表示形式为10n a ×的形式,其中1||10,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:45250210500 1.0510×==×. 故选:D .7. 如图,在菱形ABCD 中,点E 在边AD 上,射线CE 交BA 的延长线于点F ,若12AE ED =,3AB =,则AF 的长为( )A. 1B.23C.32D. 2【答案】C 【解析】【分析】此题考查菱形的性质、相似三角形的判定与性质等知识,证明AFE DCE ∽ 是解题的关键.由菱形的性质得AB DC ∥,3AB DC ==,可证明AFE DCE ∽ ,则12AF AE DC ED ==,求得3122AF DC ==,于是得到问题的答案.【详解】解:∵四边形ABCD 是菱形,3AB =,∴AB DC ∥,3AB DC ==,∵点F 在直线AB 上,∴AF DC ∥,∴AFE DCE ∽ , ∴12AF AE DC ED ==, ∴1322AF DC ==. 故选:C .8. 如图,在四边形ABCD 中,90B BCD ∠=∠=°,点E 在BC 上,CE BE <,连接AE 并延长交DC 的延长线于点F ,连接DE ,ABE ECD ≌. 给出下面三个结论:①AE DE ⊥;②AB CD AE +>;EF AD CF ⋅=⋅. 上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】 【分析】本题考查了全等三角形的性质、直角三角形的性质、勾股定理、三角形三边关系、相似三角形的判定与性质等知识点,由全等三角形的性质可得BAE CED ∠=∠,AE ED =,BE CD =,结合90B BCD ∠=∠=°,求出90AED ∠=°,即可判断①;由三角形三边关系即可判断②;证明FEC AEB ∽,得出EF CF AE AB=,即可判断③,从而得解. 【详解】解:ABE ECD ≌,BAE CED ∴∠=∠,AE ED =,BE CD =,90B BCD ∠=∠=° ,90AEB CED AEB BAE ∴∠+∠=∠+∠=°,()18090AED AEB CED ∴∠=°−∠+∠=°,AE DE ∴⊥,故①正确,符合题意;AB BE AE +> ,且BE CD =,AB CD AE ∴+>,故②正确,符合题意;AE ED = ,90AED ∠=°,AD ∴=,AE AD ∴, 90FCE B ∠=∠=° ,FEC AEB ∠=∠,FEC AEB ∴ ∽,EF CF AE AB∴=,AB EF AD CF ∴⋅=⋅,EF AD CF ⋅=⋅,故③正确,符合题意;故选:D .二.填空题(本题共162分)9. 若代数式15x −有意义,则实数x 的取值范围是___________. 【答案】5x ≠【解析】【分析】本题主要考查了分式有意义的条件,根据分式要有意义,分母不等于零,列出式子,求解即可. 【详解】解:∵代数式15x −有意义, ∴50x −≠,解得:5x ≠,故答案为:5x ≠.10. 因式分解:3269x x x ++=____________.【答案】()23x x +【解析】【分析】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.先提公因式,然后利用完全平方公式因式分解即可.【详解】解:3269x x x ++()269x x x =++()23x x +.故答案为:()23x x +.11. 方程1203x x −=+ 的解为 ______ . 【答案】3x =【解析】【分析】本题主要考查了解方程,先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可. 【详解】解:1203x x −=+, 去分母得:320x x +−=,移项,合并同类项得:3x −=−,系数化为1得:3x =,检验:把3x =代入()()3333180x x +=×+=≠, ∴3x =是原方程的解,故答案为:3x =.12. 在平面直角坐标系xOy 中,一次函数()21y k x =−+的图象经过点()11,A y ,()22,B y ,如果12y y <,那么k 的取值范围是______.【答案】2k >【解析】【分析】根据一次函数的增减性进行解答即可.【详解】解: 一次函数()21y k x =−+的图象经过点()11,A y ,()22,B y ,且12y y <,∴一次函数()21y k x =−+的图像y 随x 的增大而增大,20k ∴−>,2k ∴>,故答案为:2k >.【点睛】此题考查了一次函数的增减性,掌握k 的正负性与一次函数y kx b =+的增减性之间的关系是解题的关键.13. 某农科所试验田有3万棵水稻.为了考察水稻穗长的情况,于同一天从中随机抽取了50个稻穗进行测量,获得了它们的长度x (单位:cm ),数据整理如下: 稻穗长度5.0x < 5.0 5.5x ≤< 5.56.0x ≤< 6.0 6.5x ≤< 6.5x ≥ 稻穗个数 5 8 16 14 7根据以上数据,估计此试验田的3万棵水稻中“良好”(穗长在5.5 6.5x ≤<范围内)的水稻数量为__________万棵.【答案】1.8【解析】【分析】本题考查用样本估计总体,利用3万棵水稻乘以穗长在5.5 6.5x ≤<范围内的所占比,即可解题.【详解】解:由题知,16143 1.850+×=(万棵), 故答案:1.8.14. 如图,直线AD ,BC 交于点O ,AB EF CD ∥∥,若5AO =,2OF =,3FD =,则BE EC的值为________.【答案】73##123【解析】【分析】本题考查了平行线分线段成比例的知识点,根据平行线分线段成比例找出线段之间的关系是解决本题的关键. 由平行线分线段成比例可得,BE AF CE DF=,从而可得答案. 【详解】解:∵AB EF CD ∥∥,5AO =,2OF =,3FD =,为52733BE AF CE DF +∴===, 故答案为:73. 15. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量 2.4BE =米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)【答案】14【解析】【分析】根据题意可得ABC DBE ∽△△,根据相似三角形对应边成比例,即可进行解答.【详解】解:∵DE CE ⊥,A C C E ⊥, ∴90C E ∠=∠=°,根据平面镜反射原理,入射角等于反射角可得:ABC DBE ∠=∠,∴ABC DBE ∽△△, ∴DE BE AC BC =,即1.6 2.421AC =, 解得:14AC =,故答案为:14.【点睛】本题主要考查了利用相似三角形测高,解题的关键是掌握相似三角形对应边成比例. 16. 车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表: 车床代号 A B C D E修复时间(分钟) 15 8 29 7 10 若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D B E A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是______(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为______元.【答案】 ①. ① ②. 1010【解析】【分析】本题考查了有理数的混合运算,找出方案是解题的关键.(1)因为要经济损失最少,就要使总停产的时间尽量短,显然先修复时间短的即可;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,修复时间最短,据此计算即可.【详解】解:(1)①总停产时间:574831021529156×+×+×+×+=分钟,②总停产时间:574153292108210×+×+×+×+=分钟,③总停产时间:529415310287258×+×+×+×+=分钟,故答案为:①;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,7514936223101×+×+×+×+=分钟,101101010×=(元)故答案为:1010.三.解答题(本题共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)17. 计算:()1012024π12− −−−+【答案】2−【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂和化简二次根式,先计算零指数幂,负整数指数幂和化简二次根式,再根据实数的运算法则求解即可.【详解】解:()1012024π12− −−−+112=+−−+2−.18. 解不等式组()21581252x x x x +≤+ −−<. 【答案】3x ≤<-2【解析】【分析】分别求出不等式组中不等式的解集,再根据确定不等式组解集的原则:大大取较大,小小取较小,大小小大中间找,大大小小无处找,得出不等式组的解集即可.【详解】解:()21581252x x x x +≤+ −−<①②, 解①得:2x ≥−,解②得:3x <,∴3x ≤<-2.【点睛】本题考查解一元一次不等式组,熟练掌握确定不等式组的解集是解题的关键.19. 先化简,再求值:2226911x x x x x ⎛⎫-+ ⎪-÷ ⎪--⎝⎭,其中5x =. 【答案】3x x −,52【解析】【分析】先进行通分,和因式分解,再应用分数的除法法则,将5x =代入,即可求解,本题考查了,分式的华计件求值,解题的关键是:熟练掌握相关运算法则. 【详解】解:2226911x x x x x ⎛⎫-+⎪ ÷-⎪ --⎝⎭ ()()2312111x x x x x x −− =−÷ −−−()()21313x x x x x −−×−− 3x x =−, 当5x =时,553532xx ==−−. 20. 如图,四边形ABCD 的对角线AC ,BBBB 相交于点O ,BC ,EO 为矩形BECO 对角线,,BC AD AD EO=∥.(1)求证:四边形ABCD 是菱形;(2)连接BBDD ,若4,120AC BCD =∠=°,BBDD 的值. 【答案】(1)见解析 (2)DE =【解析】【分析】(1)由矩形的性质可得OE CB =,90BOC ∠=°,结合AD EO =可得AD CB =,结合BC AD ∥,可证四边形ABCD 是平行四边形,再根据90BOC ∠=°可证四边形ABCD 是菱形;(2)先根据已知条件和(1)中结论证明ABC 是等边三角形,进而求出AO ,BO ,再利用勾股定理解Rt DBE 即可.【小问1详解】证明: 四边形BECO 是矩形,OE CB ∴=,90BOC ∠=°, AD EO = ,AD CB ∴=,AD BC ∴∥,∴四边形ABCD 是平行四边形.90BOC ∠=° ,∴平行四边形ABCD 是菱形.【小问2详解】解:如图,连接DE ,四边形ABCD 是菱形,∴AB BC CD AD ===,AB CD ∥,AC BD ⊥,∴180BCD ABC ∠+∠=°,120BCD ∠=°,∴18060ABC BCD ∠=°−∠=°,∴ABC 等边三角形,AC BD ⊥,4AC =,是∴122AO OC AC ===,∴BO , ∴2BD BO ==,四边形BECO 是矩形,2BE OC ∴==,90OBE ∠=°,∴DE =.【点睛】本题考查菱形的判定和性质,等边三角形的判定和性质,矩形的性质,勾股定理解直角三角形等,难度一般,解题的关键是掌握菱形的判定方法.21. 羽毛球运动深受大众喜爱,该运动的场地是一块中间设有球网的矩形区域,它既可以进行单打比赛,也可以进行双打比赛,下图是羽毛球场地的平面示意图,已知场地上各条分界线宽均为......4cm ,场地的长比宽的2倍还多120cm 包含分界线宽,单、双打后发球线(球网同侧)间的距离与单、双打边线(中线同侧)间的距离之比是12:7.根据图中所给数据,求单、双打后发球线间的距离.【答案】球网同侧的单、双打后发球线间的距离是72cm【解析】【分析】此题考查了一元一次方程的应用,设球网同侧的单、双打后发球线间的距离是12cm x ,则中线同侧的单、双打边线间的距离是7cm x ,根据题意列方程求解即可.【详解】解:设球网同侧的单、双打后发球线间的距离是12cm x ,则中线同侧的单、双打边线间的距离是7cm x ,由题意可得()1180244425101444120x x ++×=++×+. 解得6x =∴1272x =,答:球网同侧的单、双打后发球线间的距离是72cm .22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠图象经过点()()3,5,2,0A B −, 且与y 轴交于点 C .(1)求该函数的解析式及点C 的坐标;(2)当2x <时, 对于x 的每一个值, 函数3y x n =−+的值大于函数()0y kx b k =+≠的值,直接写出n 的取值范围.【答案】(1)函数的解析式为2y x =+,点C 的坐标为()0,2(2)10n ≥【解析】【分析】本题考查了待定系数法求函数解析式及解不等式,(1)利用待定系数法即可求得函数解析式,当0x =时,求出2y =即可求解.(2)根据题意结合解出不等式32x n x −+>+结合2x <,即可求解.【小问1详解】解:将()()3,5,2,0A B −,代入函数解析式得,3520k b k b += −+= ,解得12k b = =, ∴函数的解析式为:2y x =+,当0x =时,2y =,∴点C 的坐标为()0,2.【小问2详解】解:由题意得,32x n x −+>+,的即24nx−<,又2x<,∴22 4n−≥,解得:10n≥,∴n的取值范围为10n≥.23. 小宇观看奥运会跳水比赛,对运动员每一跳成绩的计算方法产生了浓厚的兴趣,查阅资料后,小宇了解到跳水比赛的计分规则为:a.每次试跳的动作,按照其完成难度的不同,对应一个难度系数H;b.每次试跳都有7名裁判进行打分(0~10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和两个最低分,剩下3个得分的平均值为这次试跳的完成分p;c.运动员该次试跳的得分A=难度系数H×完成分p×3.在比赛中,甲运动员最后一次试跳后的打分表为:难度系数裁判1#2#3#4#5#6#7#3.5 打分7.5 8.54.0 9.0 8.0 8.5 7.0(1)甲运动员这次试跳的完成分P甲=,得分A甲=;(直接写出答案)(2)若按照全部7名裁判打分的平均分来计算完成分,得到的完成分为P甲',那么与(1)中所得的P甲比较,判断P甲'P甲(填“>”,“=”或“<”)并说明理由;(3)在最后一次试跳之前,乙运动员的总分比甲运动员低13.1分,乙最后一次试跳的难度系数为3.6,若乙想要在总分上反超甲,则这一跳乙的完成分P乙至少要达到多少分.【答案】(1)8.0,84;(2)<;(3)9.0分【解析】【分析】(1)根据公式求出P甲、A甲即可;(2)根据平均数的公式求出P甲',比较得出答案;(3)列方程求解即可.【小问1详解】解:7名裁判得分中去掉2个最高分和两个最低分,剩下3个得分为7.5,8.0,8.5,平均数=7.58.08.58.03++=,∴完成分P 甲=8.0;得分A 甲=3.58.0384××=, 故答案为:8.0,84; 【小问2详解】 P 甲'=7.58.5 4.09.08.08.57.07.57++++++=,∵7.5<8.0, ∴P 甲'<P 甲, 故答案为<; 【小问3详解】由题意得3.638413.1P ××+乙, 解得971108P =乙, ∴这一跳乙的完成分P 乙至少要达到9.0分.【点睛】此题考查了平均数的计算公式,列一元一次方程解决问题,正确理解题意,掌握平均数的计算公式是解题的关键.24. 如图,在OAB △中,OA OB =,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作BD OB ⊥,交CE 的延长线于点D .(1)求证:DB DE =;(2)若12AB =,5BD =,求OA 的长. 【答案】(1)证明见详解 (2)152OA = 【解析】【分析】(1)根据等边对等角得出OAB OBA ∠=∠,再根据余角和对顶角的性质可得DEB DBE ∠=∠,即可证明DB DE =.(2)连接OE ,过点D 作AB 的垂线,垂足为F ,根据等腰三角形的性质可得90OEA OEB DFE ∠=∠=∠=°,根据E 是AB 的中点,12AB =,5BD =,得出6AE BE ,3EF BF ==,5EDBD ==,勾股定理可得4DF =,即4sin 5DF DEF DE ∠==,再根据余角和对顶角可得DEF CEA AOE ∠=∠=∠,得4sin sin 5AE AOE DEF AO ∠=∠==,即可求出152OA =. 【小问1详解】 证明:∵OA OB =, ∴OAB OBA ∠=∠, 又∵EC OA ⊥,BD OB ⊥,∴OAB CEA OBA DBE ∠+∠=∠+∠, ∴CEA DBE ∠=∠, 又∵CEA DEB ∠=∠, ∴DEB DBE ∠=∠, ∴DB DE =. 【小问2详解】解:连接OE ,过点D 作AB 的垂线,垂足为F ,如图:∵OA OB =,E 是AB 的中点,DB DE =, ∴90OEA OEB DFE ∠=∠=∠=°, ∵E 是AB 的中点,12AB =,5BD =, ∴6AE BE ,3EF BF ==,5EDBD ==, ∵5BD =,90DFB ∠=°,∴4DF ==,∴4sin 5DF DEF DE ∠==, ∵CEA DEB ∠=∠,90CEA OAE OAE AOE ∠+∠=∠+∠=°, ∴DEF CEA AOE ∠=∠=∠,∴4sin sin 5AE AOE DEF AO ∠=∠==, ∵6AE =,∴645AO =, 解得:152OA =.【点睛】本题主要考查了等腰三角形的性质,勾股定理,三角函数值,余角和对顶角,熟练掌握以上知识是解题的关键.25. 某款电热水壶有两种工作模式:煮沸模式和保温模式,在煮沸模式下将水加热至100C °后自动进入保温模式,此时电热水壶开始检测壶中水温,若水温高于50C °水壶不加热;若水温降至50C °,水壶开始加热,水温达到100C °时停止加热……此后一直在保温模式下循环工作.某数学小组对壶中水量a (单位:L ),水温T (单位: C °)与时间t (单位:分)进行了观测和记录,以下为该小组记录的部分数据. 表1从20C °开始加热至100C °水量与时间对照表a 0.5 1 1.5 2 2.5 3t4.5 8 11.5 15 18.5 22表2 1L 水从20C °开始加热,水温与时间对照表对以上实验数据进行分析后,该小组发现,水壶中水量为1L 时,无论在煮沸模式还是在保温模式下,只要水壶开始加热,壶中水温T 就是加热时间t 的一次函数.(1)写出表中m 的值;(2)根据表2中的数据,补充完成以下内容: ①在下图中补全水温与时间的函数图象; ②当60t =时,T = ;(3)假设降温过程中,壶中水温与时间的函数关系和水量多少无关.某天小明距离出门仅有30分钟,他往水壶中注入2.5L 温度为 20C °的水,当水加热至100C °后立即关闭电源.出门前,他 (填“能”或“不能”)喝到低于50C °的水. 【答案】(1)8(2)①图见解析;②60℃ (3)不能 【解析】【分析】本题考查了一次函数的应用,理解题意并分析表格中数据变化的规律是解题的关键.(1)在煮沸模式下,加热时间每增加3分钟,水温就上升30℃,从而计算出每增加1分钟水上升的温度,据此列方程并求解即可; (2)①描点并连线即可;②当时间从26分开始,设时间为t 时,水温加热到100℃.在这个过程中每2分钟,水温升高5℃,从而求出每增加1分钟水上升的温度,据此列方程求出t ,再计算出剩下的时间,根据表2,得到在剩下的时间内水温可以变化到多少;(3)由表1可知,2.5L 的水从20℃加热到100℃需要18.5分,此时离出门还剩3018.511.5−=(分);根据表2,计算水温从100℃降到50℃需要的时间,将这个时间与21.5分比较,在关闭电源的基础上即可得到结论. 【小问1详解】解:在煮沸模式下,加热时间每增加3分钟,水温就上升30℃,30310÷=(℃),∴在煮沸模式下,加热时间每增加1分钟,水温就上升10℃, ∴()10610080m −−, ∴8m =. 【小问2详解】解:①补全水温与时间的函数图象如图所示:。
清华大学一元微积分期中考题答案
一.填空题(每空3分,共15空)(请将答案直接填写在横线上!)1.答案: 5-=+b a2. 。
答案:21-e3. 。
答案:214. 已知0→x 时,x x a x x f sin cos 34)(⎪⎭⎫⎝⎛+-=为x 的5阶无穷小量,则=a 。
答案:31-5. =--+→220sin )1ln(lim xx x x x 。
答案:23- 6. =⎪⎭⎫ ⎝⎛+∞→n n n 11sin lim 。
答案:17.=-+--++→11211lim 20x x x x 。
答案:21-8. =⎪⎪⎭⎫ ⎝⎛+--∞→1222533lim x x x x x x 。
答案:31-e9. 2cos )(x e x f =,则=')(x f 。
答案:2cos 2sin 2x e x x -10. )()2)(1()(n x x x x x f +++= ,则=')0(f 。
答案:!n11. 函数x x x x x f 2)(23-+=的不可导点的个数为 。
答案:212. 曲线12+-+=x x x y 当+∞→x 时的渐近线为 。
答案:212-=x y13. 设x x f arctan )(=,则='')(x f 。
答案:22)1(2x x +- 14. 已知函数)(x y y =由0=+--xy e e x y 确定,则曲线)(x y y =在0=x 点处的切线方程为 。
答案:0=+y x15. 函数x x y sin 2+=的反函数的导数=dydx 。
答案:xcos 21+ 二.计算题(每题10分,共40分)1. 已知,arctan )1ln(2⎩⎨⎧=+=ty t x 求22,dx y d dx dy 。
解: ,21t dx dy = ……………………………………………………5分322241tt dx y d +-= ……………………………………………………..5分1. 写出函数 2)(2--=x x x x f 在00=x 处的带有La grang e余项的n 阶泰勒公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题(每空3分,共15空)(请将答案直接填写在横线上!) 1.
答案: 5-=+b a
2. 。
答案:21-e
3. 。
答案:
21
4. 已知0→x 时,x x a x x f sin cos 34)(⎪⎭⎫
⎝⎛+-=为x 的5阶无穷小量,则=a 。
答案:3
1-
5. =--+→22
0sin )1ln(lim x
x x x x 。
答案:2
3- 6. =⎪⎭⎫ ⎝
⎛+∞→n n n 1
1sin lim 。
答案:1
7.
=-+--++→11211lim 20x x x x 。
答案:21-
8. =⎪⎪⎭
⎫ ⎝⎛+--∞→1222533lim x x x x x x 。
答案:31
-e
9. 2cos )(x e x f =,则=')(x f 。
答案:2cos 2sin 2x e x x -
10. )()2)(1()(n x x x x x f +++=Λ,则=')0(f 。
答案:!n
11. 函数x x x x x f 2)(23-+=的不可导点的个数为 。
答案:2
12. 曲线12+-+
=x x x y 当+∞→x 时的渐近线为 。
答案:212-
=x y
13. 设x x f arctan )(=,则='')(x f 。
答案:2
2)1(2x x +- 14. 已知函数)(x y y =由0=+--xy e e x y 确定,则曲线)(x y y =在0=x 点处的切线方程
为 。
答案:0=+y x
15. 函数x x y sin 2+=的反函数的导数=dy
dx 。
答案:
x
cos 21+ 二.计算题(每题10分,共40分)
1. 已知,arctan )1ln(2⎩⎨⎧=+=t
y t x 求22,dx y d dx dy 。
解: ,21t dx dy = ……………………………………………………5分
32
2241t
t dx y d +-= ……………………………………………………..5分
1. 写出函数 2
)(2--=x x x x f 在00=x 处的带有Lagrange 余项的n 阶泰勒公式。
解:∑=⎪⎭
⎫ ⎝⎛-=---=--n k k k x x x x x x 022******* ………………………6分 1221)1(1)
2(2)1(++++⎥⎦⎤⎢⎣⎡----+n n n n x x x θθ,)1,0(∈θ…….4分 …………………………….(注:只写出Peano 余项,给2分)
2. 根据n 的奇数偶数不同情况分别讨论函数x n e
x x f -=)((n 为正整数)的增减性,求 它在实数范围的最值并画出其图像。
解:0)()(1=-='--x n e x x n x f
当1=n 时,驻点为1==n x ,)1,(-∞上单调增,),1(+∞单调降,最大值为1-e ,无最
小值; ……………………………………………………………………………………2分
当12+=k n 为奇数时(k 为正整数),驻点为n x =与0=x ,),(n -∞上单调增,),(+∞n 单调降,最大值为n n e n -,无最小值; ………………………………………2分
当k n 2=为偶数时(k 为正整数),驻点为n x =与0=x ,)0,(-∞上单调降,),0(n 上单调增,),(+∞n 单调降,最小值为0。
………………………………………3分
…………………………………………….图像3分,一个1分
2. 设)(x f 为),(+∞-∞上的连续可导函数,()
x x f x g =)(,
(I)
求证:)(x g 为),(+∞-∞上的可导函数; (II) 计算)(x g '。
解:(I) ()⎩
⎨⎧<-≥==0),(0),()(22x x f x x f x x f x g 因为)(x f 为),(+∞-∞上的可导函数,当0>x 或0<x 时,)(x g 为可导函数。
当0=x 时,因为)(x f 为),(+∞-∞上的连续可导函数,由罗比达法则,
()02)(lim 0)(lim )0()(lim 20200=⋅'=-=-+++→→→x x f x
f x f x
g x g x x x , ()0)2()(lim 0)(lim )0()(lim 20200=-⋅-'=--=----→→→x x f x
f x f x
g x g x x x ,
所以)(x g 在0=x 点可导。
…………………………………………………………..5分 故)(x g 为),(+∞-∞上的可导函数。
(II)⎪⎩
⎪⎨⎧<-'-=>'='0
),(20,00),(2)(22x x f x x x f x x g ……………………………………………………..5分 三.证明题
1. (8分)设),0[)(+∞∈C x f ,0)0(=f ,且当0>x 时,)(x f '存在且单调增,证明:当0
>x 时,
x
x f )(单调增。
证明:设x
x f x F )()(=,则当0>x 时, 22)]0()([)()()()(x
f x f x f x x x f x f x x F --'=-'=' …………………………4分 x f x f x f x x f x )()()()(2ξξ'-'='-'= 其中),0(x ∈ξ。
…………………………………………………………………2分
由于)(x f '单调增,故0)(>'x F ,从而
x
x f )(单调增。
…………………………2分
2. (7分)设函数)(x f y =在),(βα内二阶可导,且其图像在),(βα内有三个点满足关系c bx ax y ++=2,
(I)
证明必然存在一个点),(βαξ∈,使得a f 2)(''=ξ; (II) 写出此命题的一个推广命题。
证明:(I) 记)()()(2c bx ax x f x F ++-=,则)(x F 在),(βα内二阶可导。
由已知条件,
设)(,,w v u w v u <<为区间),(βα内的三个点,使得函数)(x f y =与c bx ax y ++=2得图像相交,即0)()()(===w F v F u F ,由微分中值定理可知,),(),,(21w v v u ∈∈∃ξξ 0)()(21='='ξξF F ………………………………………………2分 ),(),(21βαξξξ⊂∈∃,02)()(=-''=''a f F ξξ,即a f 2)(''=ξ。
…………………..3分 (II) 任意一个有道理的推广命题 ……………………………………………2分。