8.4_因式分解-分组分解法_-----用

合集下载

分组分解法因式分解课件

分组分解法因式分解课件
详细描述
在分组后,需要对每个组内的项式进行因式分解。常用的因式分解技巧包括提公 因式法、十字相乘法、公式法等。根据不同组内项式的特征,选择合适的因式分 解技巧,并灵活运用,以获得最佳的分解结果。
问题三:如何确定分组分解法的正确性?
总结词
确定分组分解法的正确性是确保因式分解结果准确无误的重要步骤。
详细描述
03
原理概述
分组分解法是一种将多项 式分组,然后对每组进行 因式分解的方法。
分组依据
分组依据是多项式的项数 和各项系数的特征,通常 是将系数相近或具有某种 关系的项分为一组。
分解步骤
分组后,对每组进行因式 分解,最后将各组的因式 结果组合起来。
原理应用示例
示例1
将多项式$2x^2 + 3x - 5$分组为$(2x^2 - 5) + 3x$,然后 分别对$2x^2 - 5$和$3x$进行因式分解,得到结果$(2x + 5)(x - 1) + 3x = 2x^2 + x - 5$。
特点
分组分解法适用于多项式的因式 分解,尤其在处理复杂的多项式 时具有高效性和实用性。
分组分解法的应用场景
多项式的因式分解
适用于任何可以分组提取公因式的多 项式,如二次、三次、四次多项式等 。
代数方程的求解
数学竞赛和数学教育
分组分解法是数学竞赛和中学数学教 育中的重要内容,用于提高学生的数 学思维和解题能力。
06 分组分解法的总结与展望
总结
定义
分组分解法是一种将多项式分 组并提取公因式进行因式分解
的方法。
适用范围
适用于具有明显分组特征的多 项式,如三项一组、二项一组 等。
步骤
首先观察多项式的项数和系数 特点,然后选择合适的分组方 式,提取公因式进行因式分解 。

初中数学 沪科版 七年级下册 8.4因式分解--公式法 一课一练(含答案)

初中数学 沪科版 七年级下册 8.4因式分解--公式法 一课一练(含答案)

8.4因式分解公式法知识要点1.把乘法公式反过来,就可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.常用公式有:①两个数的平方差,等于这两个数的和与这两个数的差的积.即a2-b2=(a+b)(a-•b).②两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.即a2±2ab+b2=(a±b)2.2.分解因式时首先观察有无公因式可提,再考虑能否运用公式法.典型例题例.一个正方形的面积是(x+1)(x+2)(x+3)(x+4)+1,你知道这个正方形的边长是多少吗?(x>0)分析:本题的实质是把多项式(x+1)(x+2)(x+3)(x+4)+1化成完全平方式的形式,可以运用分解因式的方法.解:∵(x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)][(x+2)(x+3)]+1=(x2+5x+4)(x2+5x+6)+1=(x2+5x)2+10(x2+5x)+24+1=(x2+5x+5)2∴这个正方形的边形是x2+5x+5.练习题第一课时一、选择题1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2二、填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).8.已知a2+14a+49=25,则a的值是_________.三、解答题9.把下列各式分解因式:①a2+10a+25 ②m2-12mn+36n2③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y210.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.四、探究题12.你知道数学中的整体思想吗?解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.你能用整体的思想方法把下列式子分解因式吗?①(x+2y)2-2(x+2y)+1 ②(a+b)2-4(a+b-1)答案:1.C 2.D 3.B 4.D 5.y2 6.-30ab 7.-y2;2x-y 8.-2或-129.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)210.4 11.49 12.①(x+2y-1)2;②(a+b-2)2第二课时一、选择题:1.下列代数式中能用平方差公式分解因式的是()A.a2+b2 B.-a2-b2 C.a2-c2-2ac D.-4a2+b22.-4+0.09x2分解因式的结果是()A.(0.3x+2)(0.3x-2) B.(2+0.3x)(2-0.3x)C.(0.03x+2)(0.03x-2) D.(2+0.03x)(2-0.03x)3.已知多项式x+81b4可以分解为(4a2+9b2)(2a+3b)(3b-2a),则x的值是()A.16a4 B.-16a4 C.4a2 D.-4a24.分解因式2x2-32的结果是()A.2(x2-16) B.2(x+8)(x-8) C.2(x+4)(x-4) D.(2x+8(x-8)二、填空题:5.已知一个长方形的面积是a2-b2(a>b),其中长边为a+b,则短边长是_______.6.代数式-9m2+4n2分解因式的结果是_________.7.25a2-__________=(-5a+3b)(-5a-3b).8.已知a+b=8,且a2-b2=48,则式子a-3b的值是__________.三、解答题9.把下列各式分解因式:①a2-144b2②πR2-πr2③-x4+x2y210.把下列各式分解因式:①3(a+b)2-27c2②16(x+y)2-25(x-y)2③a2(a-b)+b2(b-a)④(5m2+3n2)2-(3m2+5n2)2四、探究题11.你能想办法把下列式子分解因式吗?①3a2-13b2②(a2-b2)+(3a-3b)答案:1.D 2.A 3.B 4.C 5.a-b 6.(2n+3m)(2n-3m) 7.9b2 8.4 9.①(a+12b)(a-12b);② (R+r)(R-r);③-x2(x+y)(x-y)10.①3(a+b+3c)(a+b-3c);②(9x-y)(9y-x);③(a+b)(a-b)2;④16(m2+n2)(m+n)(m+n)11.①13(3a+b)·(3a-b);②(a-b)(a+b+3)。

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。

一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

因式分解-分组分解法

因式分解-分组分解法

总结与归纳
(1) a2+2ab+b2-c2 (2) x2-y2+ax+ay
(2)利用分组分解法进行因式分解时,应该怎样 进行分解?
若多项式有四项,且不能直接提公因式时,可考虑用 分组分解法,常用分组方法有一、三分组,二、二分组; 一、三分组的前提是可以运用完全平方公式,然后再和 剩下的一项用平方差公式来分解;二、二分组的前提是 可以运用提公因式法或平方差公式,然后再用提公因式 法来分解.
②提取公因式后, 如果是三项的则考虑用完全平方 公式来分解因式如;果是二项的则考虑用平方差公式来分 解因式.
③最后检查式子是不是分解彻底了.
探究新知 例 把下列各式因式分解:
(1) a2+2ab+b2-c2 解:原式=( a2+2ab+b2 ) -c2
=(a+b)2-c2 =(a+b+c)(a+b-c)
同步练习 把下列各式因式分解:
(1) 4a2-b2+4a-2b
解:原式=(4a2-b2 ) +( 4a-2b) =[(2a)2-b2]+(4a-2b) =(2a+b)(2a-b)+2(2a-b) =(2a-b)(2a+b+2)
同步练习 把下列各式因式分解:
(2) x2-2xy+y2 Nhomakorabea1解:原式=( x2-2xy+y2 ) -1
拓展提升
已知a2+b2-6a+2b+10=0,求a,b的值.
解:因为 a2+b2-6a+2b+10=0 所以 a2-6a+9+b2+2b+1=0 所以 (a-3)2+(b+1)2=0 所以 a-3=0,b+1=0 解得 a=3,b=-1

八年级数学因式分解方法总结

八年级数学因式分解方法总结

八年级数学因式分解方法总结嘿,同学们!咱今天就来好好聊聊八年级数学里的因式分解呀!这可真是个有趣又重要的玩意儿呢!因式分解,就好像是把一个大拼图拆成一个个小拼图,然后再看看能组合出啥花样来。

咱先说说提公因式法吧,这就好比是从一堆糖果里把相同口味的挑出来,简单直接!你看,一个式子里面要是有相同的部分,咱就直接把它提出来,一下子就把式子变简单啦。

然后呢,公式法也不能小瞧呀!平方差公式,就像是一把神奇的钥匙,能打开那些看似复杂的式子的大门。

a²-b²,嘿,这不就是两个数的平方差嘛,一下子就能分解成(a+b)(a-b),多神奇呀!还有完全平方公式,就像是给式子穿上了一套合适的衣服,让它变得整整齐齐的。

(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,记住这些公式,就像是记住了自己家的钥匙在哪里一样重要。

分组分解法呢,就有点像分组做游戏啦。

把式子分成几个小组,然后在每个小组里找线索,最后把它们组合起来,哇,因式分解就完成啦!十字相乘法,这可是个厉害的角色!就像是玩连连看一样,找到合适的数字组合,一下子就能把式子分解出来。

哎呀呀,你们想想,要是不会因式分解,那数学题可不得难倒我们呀!就好比走路没有了方向,那得多迷茫呀!所以呀,一定要好好掌握这些方法哦。

在做因式分解的时候,可不能马虎呀!要像侦探一样细心,不能放过任何一个小细节。

有时候可能就因为一个小数字没注意到,整个式子就解不出来啦。

而且哦,多做练习也是很重要的呢!就像跑步一样,跑得多了,自然就跑得快啦。

多做几道因式分解的题,那以后再遇到,不就轻松搞定啦!同学们呀,八年级的数学可不简单呢,但只要我们把因式分解这些方法掌握好,那数学的大门就会为我们敞开啦!加油吧,让我们在数学的海洋里畅游,把因式分解这个小怪兽给征服咯!相信自己,我们一定行!。

沪科版数学七年级下册8.4《因式分解-分组分解法》 教案设计

沪科版数学七年级下册8.4《因式分解-分组分解法》 教案设计

因式分解——分组分解法
高四琴
教学设计说明:
本节课的设计以减轻学生负担,全面实施素质教育为指导思想。

在这节课中,学生广泛参与,积极主动投入学习活动,学生的主体性得到了培养和发展,在教学过程中,我始终以在目标的引领下,引导学生通过小组内的互相讨论、合作学习,来暴露各层次学生的思维过程及特点,对所学内容的不同层次,不同侧面的理解,从而建构起学生自己的知识体系。

同时,在教学过程中充分调动学生学习主动性,对每一个新的发现,每一个问题的解决,每一个知识的获得给予足够的肯定,始终让学生保持心情愉悦,精神振奋,处于学习的最佳状态。

沪科版数学七年级下册8.4《因式分解》教学设计3

沪科版数学七年级下册8.4《因式分解》教学设计3

沪科版数学七年级下册8.4《因式分解》教学设计3一. 教材分析《因式分解》是沪科版数学七年级下册8.4节的内容,本节课主要让学生掌握因式分解的基本方法和技巧。

教材通过实例引导学生探索、发现并总结因式分解的规律,使学生能够灵活运用各种方法进行因式分解。

教材内容由浅入深,循序渐进,让学生在解决实际问题的过程中,体会因式分解的意义和价值。

二. 学情分析学生在七年级上学期已经学习了整式的乘法,对基本的代数运算有一定的了解。

但因式分解较为抽象,需要学生具有一定的逻辑思维能力和探索精神。

通过前面的学习,大部分学生能掌握简单的因式分解,但遇到一些较复杂的题目时,可能会感到困惑。

因此,在教学过程中,要关注学生的学习需求,针对性地进行辅导。

三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够熟练地进行因式分解。

2.过程与方法:通过探索、发现和总结,培养学生逻辑思维能力和解决问题的能力。

3.情感态度与价值观:让学生体验到数学的乐趣,培养学生的自信心,激发学生学习数学的兴趣。

四. 教学重难点1.重点:因式分解的基本方法和技巧。

2.难点:如何引导学生发现并总结因式分解的规律,以及如何运用各种方法解决实际问题。

五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探索。

2.启发式教学法:在教学过程中,引导学生积极思考,发现并总结因式分解的规律。

3.小组合作学习:学生进行小组讨论,培养学生的团队协作能力和沟通能力。

六. 教学准备1.课件:制作精美的课件,展示因式分解的实例和规律。

2.练习题:准备一定数量的练习题,以便在课堂上进行操练和巩固。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,引出因式分解的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过多媒体课件,展示因式分解的实例,引导学生观察、分析并总结因式分解的规律。

3.操练(10分钟)让学生在课堂上进行练习,运用所学的因式分解方法解决实际问题。

七年级下册8、4因式分解第1课时因式分解和提公因式法习题新版沪科版

七年级下册8、4因式分解第1课时因式分解和提公因式法习题新版沪科版

(3)在(2)的条件下,把多项式 x3+mx2+12x+n 分解因式.
解:因为 m=-7,n=0, 所以 x3+mx2+12x+n 可化为 x3-7x2+12x, 所以 x3-7x2+12x=x(x-3)(x-4).
D.-2 或 30
12.如图,相邻两边长分别为 a,b 的长方形的周长为 16,面积
为 15,则 a2b+ab2 的值为( B )
A.240
B.120
C.32
D.30
【点拨】根据题意知 2(a+b)=16,ab=15,则 a+b=8. 所以 a2b+ab2=ab(a+b)=15×8=120.
13.分解因式:(2a+b)2-2b(2a+b)=_(_2_a_+__b_)(_2_a_-__b_)_.
14.分解因式:2a(x-y)-3b(y-x)=_(_x_-__y)_(_2_a_+__3_b_)__.
15.用提公因式法分解因式: (1)6m2n-15mn2+30m2n2;
解:原式=3mn(2m-5n+10mn). (2)-4x3+16x2-26x;
原式=-2x(2x2-8x+13). (3)2x(a-b)+4y(b-a).
A.-x+y B.x-y
C.(x-y)2
Hale Waihona Puke D.以上都不对8.把(x-a)3-(a-x)2 分解因式的结果为( B )
A.(x-a)2(x-a+1)
B.(x-a)2(x-a-1)
C.(x-a)2(x+a)
D.(a-x)2(x+a+1)
9.下列变形正确的是__①__④__⑤____(填序号). ①a-b=-(b-a); ②a+b=-(a+b); ③(b-a)2=-(a-b)2; ④(a-b)2=(b-a)2; ⑤(a-b)3=-(b-a)3.

因式分解的14种方法

因式分解的14种方法

因式分解的14种方法1因式分解的14种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:??1332xxxx)分解因式技巧1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

沪科版数学七年级下册8.4《因式分解》教学设计2

沪科版数学七年级下册8.4《因式分解》教学设计2

沪科版数学七年级下册8.4《因式分解》教学设计2一. 教材分析《因式分解》是沪科版数学七年级下册8.4节的内容,本节课主要让学生掌握因式分解的方法和技巧,能够将多项式分解为几个整式的乘积形式。

教材通过例题和练习题,让学生逐步理解和掌握因式分解的方法,提高解决实际问题的能力。

二. 学情分析学生在七年级上学期已经学习了整式的乘法,对多项式有一定的了解。

但因式分解相对较为抽象,需要学生具有一定的逻辑思维能力和转化能力。

在实际教学中,我发现部分学生对因式分解的概念和方法理解不深,容易混淆,需要通过大量的练习来巩固。

三. 教学目标1.让学生掌握因式分解的概念和方法,能够正确进行因式分解。

2.培养学生观察、分析、归纳的能力,提高解决问题的能力。

3.培养学生的团队合作精神,提高学生的表达能力和沟通能力。

四. 教学重难点1.因式分解的方法和技巧。

2.如何在实际问题中应用因式分解。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究,合作解决问题。

通过具体的例题和练习题,让学生在实践中掌握因式分解的方法和技巧。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备因式分解的练习题,难度适中,以便进行课堂练习和课后作业。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对因式分解的思考。

例如:已知二次函数的图像是一个开口向上的抛物线,顶点坐标为(1,2),求该二次函数的解析式。

让学生尝试解决该问题,从而引出因式分解的概念。

2.呈现(10分钟)呈现因式分解的定义和基本方法,通过PPT和相关的教学素材,让学生对因式分解有一个直观的认识。

同时,给出一些例题,让学生观察和分析,归纳出因式分解的方法和技巧。

3.操练(10分钟)让学生进行因式分解的练习,教师巡回指导,解答学生的疑问。

可以设置一些小组合作的活动,让学生互相讨论和交流,共同解决问题。

4.巩固(10分钟)通过一些巩固性的练习题,让学生进一步理解和掌握因式分解的方法。

新沪科版七年级数学下册《8章 整式乘法与因式分解 8.4 因式分解 公式法》教案_9

新沪科版七年级数学下册《8章 整式乘法与因式分解  8.4 因式分解  公式法》教案_9

运用公式法分解因式1.理解完全平方公式和平方差公式的特点,并能用语言表述这两个公式,培养学生的语言表达能力.2.能较熟练地运用完全平方公式和平方差公式分解因式.3.会用公式法分解因式求一些特殊代数式的值,体验分解因式在数学解题中的应用.4. 经历通过整式乘法和乘法公式逆向得出分解因式的方法的过程,进一步发展学生的逆向思维、整体换元思想和推理能力.三、教学重难点1.教学重点:运用公式法(完全平方公式和平方差公式)分解因式是本节课的教学重点.2.教学难点:灵活应用公式法分解因式是本节课的教学难点.四、学情分析及教学方法1. 学情分析:因式分解是数学学习的重要工具,它是约分和通分及后续学习的预备知识,根据知识内容和课程标准将本节教学内容安排四课时。

即第一课时是提公因式法,第二课时是运用公式法,第三课时是两种方法的综合应用,第四课时是分组分解法和十字相乘法。

本节课是因式分解的第二种方法,重点关注公式的基本特点和一般形式,使学生明确本节课的学习主线。

2.教学方法:探究与讲练相结合的方法.五、设计理念课件、投影片、导学案等.六、教学过程实录及点评活动1:创设情境,设疑激思.复习:1.什么叫因式分解?它和整式乘法有何关系?2.分解因式:6(x-y)3-3y(y-x)2;试问你用的是什么方法?你能用提公因式法分解下列多项式吗?(1)x2-6ax+9a2;(2)0.49x2-144y2.[师]本节课我和大家一道来解决这个提公因式法不能分解的问题.引例:在一个边长为(n+2)cm的正方形中,截去一个边长为ncn的正方形,请问剩下的面积是多少?问题1:解题中用到什么乘法公式?之前你学过了哪些乘法公式?问题2:根据等式性质的置换性,公式又能写成什么样的形式?此时从左往右叫什么运算?即:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2;(3)a2-b2=(a+b)(a-b).[生]将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.[师]能不能用语言叙述呢?[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方;两个数的平方差等于这两个数的和乘以这两个数的差. [师]今天我们就来研究用完全平方公式和平方差公式分解因式.活动2:理性思考,归纳公式.1. 填空:(1)4a 2=( )2;(2)49b 2=( )2; (3)0.16a 4=( )2;(4)1.21a 2b 2=( )2;2.下列各式是不是完全平方式?(1)a 2-4a+4(2)x 2+4x+14y 2 (3)4a 2+2ab+b2 (4)a 2-ab+b2 (5)x 2-6x-9(6)a 2+a+0.25(放手让学生讨论,达到熟悉公式结构特征的目的).3.填空:(1)++mn m 31412 =+m 21( )2 (2)如果二次三项式4x 2+mx+36是一个完全平方式,则m= .4.公式特点(1)分解因式的完全平方公式,左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方.从而达到因式分解的目的.(2) 让同学们自行总结平方差公式的特点,说说如何利用平方差公式分解因式.5.例题解析例1. 分解因式:(1)x 2-6ax+9a 2;(2)0.49x 2-144y 2.( 关注学生对公式模式的识别,突出多项式的变形与验算,向学生讲清算理,切不可死记硬背公式,防止盲目乱套公式)活动3:深化探究,拓展公式.例2. 分解因式:(1)(m+n)2-6(m+n)+9 (2)9(a+b )2-(a-b)2( 学生有前面学习公式法的经验,可以让学生先前面的因式分解加以比较,然后尝试独立完成,然后与同伴交流、总结解题经验.可提示学生运用整体换元思想分散解题难点) 归纳公式模型:活动4:知识应用,巩固新知.1.用因式分解解决引例中的问题.(让学生感受数学解题方法的多样性,体会优化数学解法的必要性)2.已知:2a+b=6,2a-b=5,利用因式分解计算4a 2-b 2.( 讲解时可分组完成,1,2两组用解方程组的方法,3,4两组用因式分解的方法,比一比哪组完成的既快又对.注重渗透与培养学生的整体思想,突出因式分解在数学解题中的重要性.)活动5:归纳理解,回顾现实.学习因式分解内容后,你有什么收获,能将前后知识联系,做个总结吗?(引导学生回顾本大节内容,梳理知识,培养学生的总结归纳能力,最后出示投影片,给出分解因式的知识框架图,使学生对这部分知识有一个清晰的了解)活动6:课后作业.1.填空(1)4a 2=( )2;(2)49b 2=( )2; (3)0.16a 4=( )2; (4)1.21a 2b 2=( )2;(5)2x 2=( )2;(6)949x 4y 2=( )2. 2..下列各式是不是完全平方式?(1)a 2-4a+4 ( )(2)x 2+4x+4y 2 ( )(3)4a 2+2ab+14b 2 ( )(4)a 2-ab+b 2 ( )(5)x 2-6x-9 ( )(6)a 2+a+0.25 ( )3.填空(1)++mn m 31412 =+m 21( )2 (2)如果二次三项式4x 2+mx+36是一个完全平方式,则m= .4.练一练把下列多项式分解因式:(1)6a-a 2-9;(2)-8ab-16a 2-b 2;(3)-16+m 2n 2;(4)4x 2+20(x-x 2)+25(1-x )2七、教学反思。

沪科版(2012)初中数学七年级下册 8.4.1 因式分解-提公因式法 教案

沪科版(2012)初中数学七年级下册 8.4.1 因式分解-提公因式法 教案

沪科版数学七年级下册第八章第四节·因式分解教学设计提公因式法法《8.4.1因式分解-提公因式法》教学设计一、教学目标1、知识与技能:了解因式分解的意义及其与整式乘法的关系;能确定多项式各项的公因式,会用提公因式法分解因式。

2、过程与方法:经历探索多项式各项公因式的过程,感受知识的整体性,依据转化思想进行因式分解。

3、情感与态度:经历通过整式乘法推导出因式分解的过程,发展学生逆向思维。

二、重点、难点分析(1)重点:掌握如何找公因式,用提公因式法将多项式分解因式。

(2)难点:正确提取公因式。

三、教学过程设计(二)合作交流探究新知活动:比较因式分解与整式乘法的关系.练习1:下列从左到右的变形是否是因式分解?如果不是,请说明原因.(1)()44222++=+xxx(2)()6162--=-+xxxx(3)⎪⎭⎫⎝⎛-=-xxxx1122(4)()()2122-+=--xxxx观察:多项式mcmbma++的各项有什么特点?师生共识:一个多项式中,每一项都含有的因式叫做这个多项式的公因式.练习2:找出下列多项式各项的公因式.(1)mnm842-(2)baba231015+(3)xxx24623-+-归纳:(如何找公因式)(1)看系数:找系数的最大公约数(2)看字母:找各项的相同字母(3)看指数:相同字母的最低次幂例1:把下列各式分解因式.mnm842-()nmmnmmm24244-=⋅-⋅=教师归纳:如果一个多项式中,各项1.通过等式对称性及从形式上判断,确定整式乘法与因式分解的关系.2.依据因式分解的概念判断上述变形是否是因式分解.3.(1)找各项均含有的因式;(2)类比公因数尝试得出公因式概念.4.(1)找公因式;(2)先同桌交流,再小组讨论;(3)分享找公因式方法.(4)归纳笔记让学生掌握因式分解与整式乘法之间的联系与区别.强化学生对于因式分解概念的理解.引导学生观察分析,归纳出公因式的概念.引导学生找公因式,并分享自己的做法;培养学生语言组织能力;培养学生逆向思维能力.类比mcmbma++()cbam++=板书练习2(1)的过程,将知识自然过渡到提公因式法;通过例题讲解,(五)课堂回顾知识小结1.这节课你有什么收获?(引导学生从知识、思想方法、情感态度等方面进行总结)学生自由表达充分肯定学生课堂积极表现,在反思中感悟,在感悟中升华.(六)作业布置1. 必做题全品作业141TT-2.选做题全品作业15T分层设计,满足不同学生对学习的要求.自由选择,不强加给学生任务,充分体现减负思想和人性化设计.(七)板书设计因式分解——提公因式法1.因式分解的概念2.公因式概念(1)看系数:找系数的最大公约数(2)看字母:找各项的相同字母(3)看指数:相同字母的最低次幂3. 提公因式法例题:mnm842-()nmmnmmm24244-=⋅-⋅=。

8.4.4因式分解-分组分解法

8.4.4因式分解-分组分解法
(1) -10ay+5by (2) (x2-y2)+a(x+y) (3) 9x2-24x+16
? (4) 3x2-5xy-12y2
(5) am+an+bm+bn =(m+n)(a+b)
这个一次四项式没有公因式,它 是如何进行因式分解的呢?
分解因式am+an+bm+bn am+an+bm+bn =(aamm++bamn+)+a(nb+mb+nbn) =(aa(m+bnm)+)+b((man++nb) n) =m(m(a++nb)()a++nb(a) +b) =(a+b)(m+n)
因此,分组分解因式要有预见性;
(2)分组的方法不唯一,而合理的选择分组方 案,会使分解过程简单;
(3)分组时要用到添括号法则,注意在添加带 有负号的括号时,括号内每项的符号都要改变;
(4)实际上,分组只是为实际分解创造了条 件,并没有直接达到分解的目的。
(1)(2ab a2 ) (c2 b2 ) (2)xy x y 1
方法 分类 分组方法
特点
①按字母分组②按
二项、二项 系数分组③符合公
分 四项
式的两项分组
组 分 解
五项
三项、一项 三项、二项
先完全平方公式后 平方差公式
各组之间有公因式

三项、三项
各组之间有公因式
六项 二项、二项、二项
Hale Waihona Puke 三项、二项、一项 可化为二次三项式
(1)把有公因式的各项归为一组,并使组之间 产生新的公因式,这是正确分组的关键所在;

因式分解的常用方法方法最全最

因式分解的常用方法方法最全最

文档根源为 :从网络采集整理.word 版本可编写 .支持.因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)往常采纳一“提”、二“公”、三“分”、四“变”的步骤。

即第一看有无公因式可提,其次看可否直接利用乘法公式;如前两个步骤都不可以实行,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法持续分解;(2)若上述方法都行不通,能够试试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不可以再分解为止。

一、提公因式法.: ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,比如:(1) (a+b)(a -b) = a2 2-----------a2 2=(a+b)(a -b) ;-b -b(2) (a ± b) 2 = a 2± 2ab+b2 ---------a 2±2ab+b2=(a ± b) 2;(3) (a+b)(a 2 2) =a3 3 3 3 2 2 -ab+b +b ---------a +b =(a+b)(a -ab+b ) ;(4) (a -b)(a 2 2) = a3 3--------a3 3 2 2 +ab+b -b -b =(a -b)(a +ab+b ) .下边再增补两个常用的公式:(5)a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3+c3-3abc=(a+b+c)(a 2+b2+c2-ab-bc-ca) ;例 .已知a,b,c是ABC 的三边,且a2 b2 c2 ab bc ca ,则ABC 的形状是()A. 直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解: a2 b2 c2 ab bc ca 2a2 2b2 2c2 2ab 2bc 2ca三、分组分解法 .(一)分组后能直接提公因式例 1、分解因式:am an bm bn剖析:从“整体”看,这个多项式的各项既没有公因式可提,也不可以运用公式分解,但从“局部”看,这个多项式前两项都含有 a,后两项都含有b,所以能够考虑将前两项分为一组,后两项分为一组先分解,而后再考虑两组之间的联系。

七年级下册数学精品学案-8.4.3 分组分解法

七年级下册数学精品学案-8.4.3 分组分解法

8.4 因式分解3.分组分解法练习:把下列各式分解因式,并说明运用了分组分解法中的什么方法.(1)a2-ab+3b-3a;(2)x2-6xy+9y2-1;解(3)am-an-m2+n2;(4)2ab-a2-b2+c2.第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式继续分解因式.第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式,第四项与这一组再运用平方差公式分解因式.把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.二、新课例1 把am+bm+an-cm+bn-cn分解因式.例2 把a4b+2a3b2-a2b-2ab2分解因式.例3 把45m2-20ax2+20axy-5ay2分解因式.三、课堂练习把下列各式分解因式:(1)a 2+2ab+b 2-ac -bc ; (2)a 2-2ab+b 2-m 2-2mn -n 2;(3)4a 2+4a -4a 2b+b+1; (4)ax 2+16ay 2-a -8axy ;五、作业1.把下列各式分解因式:(1)x 3y -xy 3; (2)a 4b -ab 4; (3)4x 2-y 2+2x -y ;(4)a 4+a 3+a+1; (5)x 4y+2x 3y 2-x 2y-2xy 2; (6)x 3-8y 3-x 2-2xy -4y 2;(7)x 2+x -(y 2+y); (8)ab(x 2-y 2)+xy(a 2-b 2). (9)762-+x x(10)322222--++-y x y xy x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
解:原式=
②4a b 4a 2b
2 2
解:原式=
分解因式: ①2ax 10ay 5by bx
解:原式=
②x ax y ay
2 2
解:原式=
练习1 分解因式
3ax 4by 4ay 3bx 9 x 6 x 2 y y
2
解:原式= 解:原式=
分组分解法
分组分解法
要发现式中隐含的条件,通 过交换项的位置,添、去括号等 一些变换达到因式分解的目的。
例1:因式分解 ab–ac+bd–cd 。 解:原式 = (ab – ac) + (bd – cd) 还有别 的解法 吗? = a (b – c ) + d (b – c ) = (a + d ) (b – c )
2
m 5n m n 5m
2
解:原式=
4x y 6x 3 y
2 2
解:原式=
二.四项式的三一分组
分解因式
解:原式=
x 1 2 xy y
2
解:原式=2ຫໍສະໝຸດ a 2ab b c2 2
2
练习2 分解因式
2 2
解:原式=
2ab a b 9 解:原式=
4a 9b c 4ac
四、分组分解法
要发现式中隐含的条件,通 过交换项的位置,添、去括号等 一些变换达到因式分解的目的。
例1:因式分解 ab–ac+bd–cd 。 解:原式 = (ab + bd) – (ac + cd) = b (a + d ) – c (a + d ) = ( a + d ) (b – c )
例2:因式分解 。 解:原式 = (x5+x4+x3)+(x2+x+1)
2)(m2–1)(n2–1)+4mn
完全平方公式
平方差公式
配方法
配方法是一种特殊的拆项添项 法,将多项式配成完全平方式,再 用平方差公式进行分解。
因式分解 a2–b2+4a+2b+3 。 解:原式 = (a2+4a+4) – (b2–2b+1)
配方法 (拆项添项法) 分组分解法
= (a+2)2 – (b–1)2
另解:原式 = (x5+x4)+(x3+x2)+(x+1)
= (x+1)(x4+x2+1)
因为它还 怎么结果 与刚才不 可以继续 一样呢? 因式分解 = (x+1)(x4+2x2+1–x2)
= (x+1)[(x2+1)2–x2]
= (x+1)(x2+x+1)(x2–x+1)
五*、拆项添项法 拆项添项法对数学能力有着更 高的要求,需要观察到多项式中应 拆哪一项使得接下来可以继续因式 分解,要对结果有一定的预见性, 尝试较多,做题较繁琐。
③ x y a b 2ax 2by
2 2 2 2
解:原式=
④m n 2mn 4n 4m 4
2 2
解:原式=
例若x y 2 y 4 x 5 0
2 2
,求x和y的值.
解:
五*、拆项添项法
回顾例题:因式分解 x5+x4+x3+x2+x+1 。
最好能根据现有多项式内的项 猜测可能需要使用的公式,有时要 根据形式猜测可能的系数。
因式分解 x4 + 4
解:原式 = x4 + 4x2 + 4
都是平方项 猜测使用完全平方公式 – 4x2
= (x2+2)2 – (2x)2 = (x2+2x+2)(x2–2x+2) 拆项添项法随堂练习:
1)x4–23x2y2+y4
=( x2+x+1) (x3+1)
2 2 (x+1)(x –x+1)(x +x+1)
5 4 3 2 x +x +x +x +x+1
=
分组分解法随堂练习:
1)xy–xz–y2+2yz–z2
2)a2–b2–c2–2bc–2a+1
立方和公式
一.四项式的二二分组
分解因式: ①a ab ac bc
双十字相乘法
双十字相乘法适用于二次六项式 的因式分解,而待定系数法则没有这 个限制。 因式分解 2x2+3xy–9y2+14x–3y+20。 2 x2 + 3 xy – 9 y2 + 14 x – 3 y + 20
2
1
4 5
–3
3
∴原式 = (2x–3y+4)(x+3y+5)
12 10 6– +–15 43==14 – 33
2 2 2
x 4 y 12 yz 9 z a 2ab b c 解:原式=
2 2 2
2
2
2
解:原式=
一.五项及以上的分组分解举例
例分解因式: ①x 6 y 9 y 2 x 6 xy
2 2
解:原式=
②ax bx bx ax a b
2 2
解:原式=
= (a+b+1)(a–b+3)
完全平方公式 平方差公式
六*、待定系数法 试因式分解 2x2+3xy–9y2+14x–3y+20。
通过十字相乘法得到 (2x–3y)(x+3y)
设原式等于(2x–3y+a)(x+3y+b)
a 2b 14 通过比较两式同类项的系数可得: 3a 3b 3 a 4 解得: ,∴原式 = (2x–3y+4)(x+3y+5) b 5
相关文档
最新文档